JPS59153317A - Crystal oscillator with temperature compensation - Google Patents

Crystal oscillator with temperature compensation

Info

Publication number
JPS59153317A
JPS59153317A JP2692183A JP2692183A JPS59153317A JP S59153317 A JPS59153317 A JP S59153317A JP 2692183 A JP2692183 A JP 2692183A JP 2692183 A JP2692183 A JP 2692183A JP S59153317 A JPS59153317 A JP S59153317A
Authority
JP
Japan
Prior art keywords
positive characteristic
porcelain
crystal oscillator
temperature
characteristic porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2692183A
Other languages
Japanese (ja)
Other versions
JPH0344450B2 (en
Inventor
Hitoaki Hayashi
林 仁顕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Dempa Co Ltd
Original Assignee
Asahi Dempa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Dempa Co Ltd filed Critical Asahi Dempa Co Ltd
Priority to JP2692183A priority Critical patent/JPS59153317A/en
Priority to US06/520,598 priority patent/US4443732A/en
Priority to DE8383107854T priority patent/DE3382033D1/en
Priority to EP83107854A priority patent/EP0116680B1/en
Publication of JPS59153317A publication Critical patent/JPS59153317A/en
Publication of JPH0344450B2 publication Critical patent/JPH0344450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/08Holders with means for regulating temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain a crystal oscillator with small size, large temperature gain and very slight change in oscillating frequency even when ambient temperature is changed by making the temperature change of the crystal oscillator very small against the change in the ambient temperature. CONSTITUTION:The 1st positive characteristic porcelain 2 is fitted to a metallic case outer wall of a crystal oscillator 1 in the way of heat conduction, the 2nd positive characteristic porcelain 5 is fitted to the bottom 4 of a metallic case 3 containing the crystal oscillator 1 and the 1st positive characteristic porcelain 2 in the way of heat conduction, and the positive characteristic porcelains 3 and 5 are connected electrically in series via the metallic case of the crystal oscillator 1 with a jumper 6. Further, a space is provided so that the crystal oscillator 1 does not directly contact with the positive characteristic porcelains 2,5. Then, the temperature change of the crystal oscillator 1 is made very small against the ambient temperature change. Thus, the change in the oscillating frequency is very slight even when the ambient temperature is changed and the crystal oscillator having small size and large temperature gain is obtained.

Description

【発明の詳細な説明】 本発明は周囲湿度の変化に対して、水晶振動子の渇1丈
変化を極めて小さくすることによって、周囲温度が変化
しても振動周波数の変化が、ごくわずかである小型で、
安価な温度ゲインの大きい水晶振動子に関するものであ
る。
[Detailed Description of the Invention] The present invention minimizes the change in the height of the crystal resonator in response to changes in ambient humidity, so that even if the ambient temperature changes, the vibration frequency changes only slightly. Small and
This invention relates to an inexpensive crystal resonator with a large temperature gain.

(従来技術) 従来から、水晶振動子の周囲?M度の変化に対する振動
周波数の変化を小さくする目的で、自己温度補償機能を
もつ正特性磁器発熱体と水晶振動子を組合せた湿度補償
付水晶振動子が知られでいる。
(Prior art) Around the crystal oscillator? A humidity-compensated crystal resonator is known in which a crystal resonator is combined with a positive characteristic porcelain heating element having a self-temperature compensation function for the purpose of reducing changes in vibration frequency with respect to changes in M degrees.

従来から知られている温度補償付水晶振動子は、水晶板
を収納した水晶振動子容器外壁に正特性磁器を伝熱的に
取りつり、単にこの全体を別の磁器に収納した構成、あ
るいは水晶振動子を収納する容器に正特性磁器を伝熱的
に取りつけ、この容器内に単に水晶振動子を収納した構
成、さらには水晶振動子に通常の金属線発熱体をまきつ
けると共に、正特性磁器を伝熱的にとりつり、この両者
を電気的に並列に接続した構成などであって、その特性
は、例えば周囲湿度が−80“Cから+60°Cまで変
化すると、水晶振動子の温度は80〜40°C1厳密に
調整しても10°C以上の温度幅で変化してしまい、こ
のためその温度ゲイン(温度ゲインー周囲濡度鎚化幅/
水晶振組子の7晶度変化1’lllil )は、通常2
〜3、厳密に調整してもたかだか7〜8、5であるため
、水晶振動子の振動周波数は、大きく変化してしまうも
のであった。
Conventionally known temperature-compensated crystal resonators have a structure in which a positive characteristic porcelain is heat-conductively attached to the outer wall of a quartz crystal resonator container housing a quartz plate, and the whole is simply housed in another porcelain, or a quartz crystal resonator is used. A structure in which a positive characteristic porcelain is attached to a container that houses the resonator for thermal conductivity, and a crystal resonator is simply housed in this container, and a structure in which a normal metal wire heating element is wrapped around the crystal resonator, and a positive characteristic porcelain is For example, when the ambient humidity changes from -80°C to +60°C, the temperature of the crystal oscillator changes from 80°C to +60°C. Even if the temperature is adjusted strictly to 40°C, the temperature will change over a range of 10°C or more.
The 7-crystallinity change of a quartz crystal pendulum (1'llil) is usually 2
~3. Even if strictly adjusted, it is only 7~8.5, so the vibration frequency of the crystal resonator would change greatly.

また、水晶振動子の周囲温度にょる撮動周波数の変化を
小さくする目的で、通常の発熱体と電子温度制御機構と
を組合せた水晶揚動子も知られている。このような水晶
振動子は温度ゲインは非常に大きくできるものであるが
大型になり、かつ高価なものであるため特定の限られた
用途にしか利用できないものであった。
Furthermore, a crystal lifter is also known in which a normal heating element is combined with an electronic temperature control mechanism for the purpose of reducing changes in the imaging frequency due to the ambient temperature of the crystal resonator. Although such a crystal resonator can have a very large temperature gain, it is large and expensive, so it can only be used for certain limited applications.

このため従来がら温度ゲインが大きく、小型で、安価な
、水晶振動子が強く望まれていた。
For this reason, there has been a strong desire for a crystal resonator that has a large temperature gain, is small, and is inexpensive.

(発明の構成) 本発明はこのような要求に応えた温度ゲインが大きく、
小型で、安価な水晶振動子であって、水晶振動子に第1
の正特性磁器を伝熱的に取りつけ、これを収納する容器
に第2の正特性磁器を伝熱的に取りつけ、第1の正特性
磁器と第2の正特性磁器とを’ML気的に的外に接続し
、がっ水晶振動子および第1の正特性磁器と第2の正特
性磁器とは、直接に接触しないように構成した温度補償
付水晶撮動子である。
(Structure of the Invention) The present invention has a large temperature gain that meets these requirements.
It is a small and inexpensive crystal oscillator, and it is the first crystal oscillator.
A positive characteristic porcelain is thermally attached, a second positive characteristic porcelain is thermally attached to a container for storing the positive characteristic porcelain, and the first positive characteristic porcelain and the second positive characteristic porcelain are connected in a 'ML' manner. The quartz crystal resonator, the first positive characteristic porcelain, and the second positive characteristic porcelain are connected externally and are a temperature compensated quartz crystal sensor configured so as not to be in direct contact with each other.

本発明の構成をその一具体例の模式断面図である第1図
により詳細に説明すると、水晶振動子1の金属性ケース
外壁部に第1の正特性磁器2を伝熱的に取りつけ、水晶
振動子1と第1の正特性磁器2を収納する金属性容器8
の底部4に第2の正特性磁器5を伝熱的に取りつ番フ、
第1の正特性磁器2と第2の正特性磁器5とは、接続線
6で水晶振動子の金属性ケースを介して電気的に直列に
接続する。また水晶振動子1および第1の正特性磁器2
と第2の正特性磁器5とは直接に接触しないように空間
を設ける。水晶振動子1の端子7,7′は容器8の底部
4から容器と電気的に絶縁されて取り出され、正特注磁
器2,5の一方の端子8は金属ケースの底s4に接続さ
れ、他力の端子9は底部4と電気的に絶縁されて取り出
される。容器の蓋部10の外周は保温相11を被着し保
湿する。
The structure of the present invention will be explained in detail with reference to FIG. 1, which is a schematic cross-sectional view of a specific example thereof. A first positive characteristic porcelain 2 is thermally attached to the outer wall of a metal case of a crystal resonator 1, and a crystal A metal container 8 that houses the vibrator 1 and the first positive characteristic porcelain 2
A second positive characteristic porcelain 5 is attached to the bottom 4 of the porcelain 5 for thermal conduction,
The first positive characteristic porcelain 2 and the second positive characteristic porcelain 5 are electrically connected in series by a connecting wire 6 via the metal case of the crystal resonator. Also, a crystal oscillator 1 and a first positive characteristic porcelain 2
A space is provided so that they do not come into direct contact with the second positive characteristic porcelain 5. The terminals 7, 7' of the crystal oscillator 1 are taken out from the bottom 4 of the container 8 while being electrically insulated from the container, one terminal 8 of the custom-made porcelain 2, 5 is connected to the bottom s4 of the metal case, and the other terminal 8 is connected to the bottom s4 of the metal case. The power terminal 9 is electrically isolated from the bottom 4 and taken out. The outer periphery of the lid part 10 of the container is coated with a heat-retaining layer 11 to retain moisture.

第1の正特性磁器と第2の正特性Mi益をi気的に直列
に接続し、かつ水晶振動子および第1の正特性磁器と第
2の正特性磁器をIk接に接触させない理由は、水晶振
動子の温度ゲインを大きくするために、周囲湿度が低い
場合には、電圧印加後電流が安定した状態では、第1の
正特性磁器の抵抗が第2の正特性磁器の抵抗より大きく
、印加された電圧の大部分が第1の正特性磁器に印加さ
れて、第1の正特性磁器が主たる発熱体となって、水晶
振動子全直接的に加熱し、周囲温度が高くなるにつ^で
、第2の正特性磁器が第1の正特性磁器の熱と周囲温度
の上昇による容器の温度上昇を感知してその抵抗を増大
し、第2の正特性磁器に印加されるηL圧の比率を大き
くして、第1の正特性磁器の発熱量を減少させて、第1
の正特性磁器が直接的に、水晶振動子を加熱する電力を
小さくさせると共に、全体の発熱量も大きく低減させて
水晶振動子の温度ゲインを大きくするためである。
The reason why the first positive characteristic porcelain and the second positive characteristic porcelain are electrically connected in series, and the crystal oscillator and the first positive characteristic porcelain and the second positive characteristic porcelain are not brought into contact with each other in Ik contact is , in order to increase the temperature gain of the crystal resonator, when the ambient humidity is low and the current is stable after voltage application, the resistance of the first positive characteristic porcelain is larger than the resistance of the second positive characteristic porcelain. , most of the applied voltage is applied to the first positive characteristic porcelain, and the first positive characteristic porcelain becomes the main heating element, heating the entire crystal oscillator directly, and as the ambient temperature increases. Then, the second positive characteristic porcelain senses the heat of the first positive characteristic porcelain and the temperature rise of the container due to the rise in ambient temperature, increases its resistance, and increases the ηL applied to the second positive characteristic porcelain. The ratio of pressure is increased to reduce the calorific value of the first positive characteristic porcelain.
This is because the positive characteristic porcelain directly reduces the electric power used to heat the crystal resonator, and also greatly reduces the overall heat generation amount, thereby increasing the temperature gain of the crystal resonator.

電圧を印加し電流が安定した状態で、周囲温度が低い時
に第1の正特性磁器が第2の正特性Mi器より抵抗が大
きく、主発熱体となり周囲温度が高くなるにつれて、第
2の正特性磁器の抵抗が大きくなって、第2の正特性磁
器に印加される電圧の比率を大きくするためには、第1
および第2の正特性(G器それぞれの大きさ、個数、抵
抗(+k %キュリ一温度および水晶振動子と容器の熱
容量を適切に選ぶことが勘要であり、特に水晶振動子の
熱容量を容器の熱容量より小さくすることが望ましい。
When a voltage is applied and the current is stable, when the ambient temperature is low, the first positive characteristic porcelain has a higher resistance than the second positive characteristic porcelain, and becomes the main heating element, and as the ambient temperature increases, the second positive characteristic porcelain becomes the main heating element. In order to increase the resistance of the characteristic porcelain and increase the ratio of the voltage applied to the second positive characteristic porcelain, the first
and the second positive characteristic (size, number, resistance (+k%) of each G unit.It is important to appropriately select the Curie temperature and the heat capacity of the crystal resonator and the container. It is desirable that the heat capacity be smaller than the heat capacity of .

水晶振動子と第1の正特性磁器とを伝熱的に取りつけ、
かつ容器と第2の正特性磁器とを伝熱的に取りつけるに
は、通常知られている導電性接着剤を用いて接着したり
、ハンダイ・」けする方法あるいは金属性バネ材で抑圧
固定する方法さらに通常知られている絶縁性の接着材或
は導熱性の絶縁性接着剤を用いる等の方法を用いれはよ
い。もちろん電気的に絶縁性の接涜剤を用いた場合には
、相互の電気的接続には通′帛のリード線接続法のよう
な電気的接続手段全付加ずれはよい。
A crystal oscillator and a first positive characteristic porcelain are attached thermally,
In addition, in order to heat-conductively attach the container and the second positive characteristic porcelain, they may be bonded using a commonly known conductive adhesive, soldered together, or pressed and fixed using a metallic spring material. Further, a commonly known method such as using an insulating adhesive or a heat conductive insulating adhesive may be used. Of course, when an electrically insulating sanitizing agent is used, the mutual electrical connection may be made by any electrical connection means such as the conventional lead wire connection method.

第lの正特性磁器および第2の正特性磁器は醇ガ性の点
から各々1個であることが好ましいが、それぞれ複数個
用いてもよい。例えは第2図に示すように、水晶振動子
の両面に第1の正特性磁器2.2′を取りつけてもよい
し、第8図に示すように容器に複数個の正特性磁器5,
5′を取りつけてもよい。第1の正特性磁器と第2の1
」正特性磁器は電気的に相互に直列でなければならない
が、第1の正特性磁器、第2の正特性磁器各々の間では
電気的にも、構造的にも、直列でも、並列でもよい。
Although it is preferable to use one each of the first positive characteristic porcelain and the second positive characteristic porcelain from the viewpoint of sturdiness, a plurality of each may be used. For example, as shown in FIG. 2, the first positive characteristic porcelain 2.2' may be attached to both sides of the crystal resonator, or as shown in FIG. 8, a plurality of positive characteristic porcelains 5,
5' may be attached. The first positive characteristic porcelain and the second one
"The positive characteristic porcelains must be electrically in series with each other, but the first positive characteristic porcelain and the second positive characteristic porcelain may be electrically and structurally connected in series or in parallel. .

第1の正特性磁器、第2の正特性磁器のキュリ一温度は
同じでも、兵なっていてもよく、要は水晶振動子の温度
が周囲温度の変化を受けにくいように適宜選択ずれはよ
いものであるが、好ましくは第2の正特性磁器の抵抗が
周囲温度の変化に敏感に変化するように、第2の正特性
磁器のキュリ一温度は、第1の正特性磁−器のキュリ一
温度と同じか、好ましくは5〜15°C低い温度とする
ことが望ましい。また水晶振動子の温度は、通常80”
C以下であることが好ましいので、正特性磁器のキュリ
一温度は80℃以下、より好ましくは60′C以下とす
ることが畝ましい。
The Curie temperature of the first positive characteristic porcelain and the second positive characteristic porcelain may be the same or different.In short, the temperature of the crystal oscillator may be selected appropriately so that the temperature is not easily affected by changes in the ambient temperature. Preferably, the Curie temperature of the second Positive Characteristic porcelain is equal to the Curie temperature of the first Positive Characteristic porcelain so that the resistance of the second Positive Characteristic porcelain changes sensitively to changes in ambient temperature. It is desirable that the temperature be the same as, or preferably 5 to 15°C lower. Also, the temperature of the crystal oscillator is usually 80"
Since the Curie temperature of the positive characteristic porcelain is preferably 80°C or less, more preferably 60'C or less.

容器の材料は金属にこだわることはなく、例えば第1図
において容器8の底部4を金属とし、磯部10を樹脂製
にするとか、容器の底部をセラミックとし、無都10を
樹脂製とするとか、容器8の全体を樹脂あるいはセラミ
ックで構成してもよく、さらに容器8の全体又は一部に
保湿性のよい材料11を組合せて用いてもよい。また保
温のため、容器をジュワー瓶(魔法瓶〕のような構造と
してもよい。また、使用温度域の低温側においては、′
電圧印加後、電流の安定した状態で第1の正特性磁器の
抵抗分給2の正特性磁器の抵抗より大きくしやすくする
ため、茶器の熱容量を水晶振動子の熱容量より大きくす
ることが好ましいので、第2の正特性磁器に熱容量を大
きくするためのヒート・シンクを附加してもよい。
The material of the container is not limited to metal; for example, the bottom 4 of the container 8 in FIG. The entire container 8 may be made of resin or ceramic, and the entire container 8 or a portion thereof may be combined with a material 11 having good moisture retention properties. In addition, to keep warm, the container may be structured like a dewar flask (thermos flask).
After voltage is applied, it is preferable to make the heat capacity of the tea utensil larger than the heat capacity of the crystal oscillator in order to easily make the resistance of the first positive characteristic porcelain larger than the resistance of the second positive characteristic porcelain when the current is stable. , a heat sink may be added to the second positive characteristic porcelain to increase its heat capacity.

(実施例) 次に6柚の実施例について述べる。(Example) Next, an example of 6 yuzu will be described.

He −45/Uの水晶振動子に直径6朋、厚さl t
n+n、25°C(D批抗イl[(20Ω、キュリ一温
度80°Cの第。
He -45/U crystal resonator with a diameter of 6 mm and a thickness of 1 t
n+n, 25°C (20Ω, Curie temperature 80°C).

1の正特性磁器を4寛性接看材で接層し、これを10X
15X15關の金属性容器に収納し、金h41fIj容
器の内側低面に同じ大きさ、同じ抵抗、同じキュリ一温
度の第2の正特性磁器を専′屯性接着材で取りつけ、第
1の正特性磁器と第2の正特性磁器を直列に接続し、容
器外面を厚さ2馴の発泡シリコンゴムで保温して18.
5 Vの電圧を印加し、周囲湿度=ao’cから+60
°Cまで変化させ、その特性を測定したところ、第4図
(a) l (b) l (C)に示すように、低湿で
は第1の〒)−特性磁器の抵抗が第2の正特性磁器の7
倍で、+60’Cでは0.9倍となり、水晶振動子の温
度は65°C±2°C1すなわち温度ゲイン22.5 
、振動周波数はo、a ppm以下と極めて安定であっ
た。このときの消費tカは一30°Cで0.4 W、 
+60°Cで0.06 Wと非常に少ないものであった
1 positive characteristic porcelain is layered with 4 permissive porcelain, and this is 10X
A second positive characteristic porcelain of the same size, the same resistance, and the same Curie temperature is attached to the inner lower surface of the gold H41FIj container with a specialized adhesive, and then the first positive 18. Connect the characteristic porcelain and the second positive characteristic porcelain in series, and insulate the outer surface of the container with foamed silicone rubber with a thickness of 2 mm.
Apply a voltage of 5 V, ambient humidity = ao'c to +60
℃ and measured its characteristics, as shown in Figure 4 (a) l (b) l (C), at low humidity the resistance of the first 〒)-characteristic porcelain changes to the second positive characteristic. 7 of porcelain
At +60'C, it becomes 0.9 times, and the temperature of the crystal oscillator is 65°C ± 2°C1, or temperature gain 22.5.
The vibration frequency was extremely stable, below 0.5 ppm. The power consumption at this time is 0.4 W at -30°C,
It was 0.06 W at +60°C, which was very small.

なお、同じ構造で第2の正特性磁器を用いず第1の正特
性Mi器のみとした場合には水晶振動子の温度は、第4
図(DJに点線で示すように70”C±b゛C1すなわ
ち温度ゲインは9と小さいものであって、また第4図(
C)に点線で示すように振動周波数は1.5 ppmと
大きく変化した。
In addition, if the same structure is used but only the first positive characteristic ceramic is used without using the second positive characteristic ceramic, the temperature of the crystal oscillator will be the same as that of the fourth positive characteristic ceramic.
As shown by the dotted line in Fig. 4 (DJ), the temperature gain is as small as 70''C±b゛C1, or 9;
As shown by the dotted line in C), the vibration frequency changed significantly to 1.5 ppm.

実施例 2 HG −−L5/Llの水晶振動子に直径8朋、厚さl
 amで25”Cの4氏わL20(ン、キュリー7晶曳
85°Cの第1の正特性磁器をハンダ付し、これをlQ
X15X204mの金属性容器に収納し、金属性容器の
外底面に同じ大きさ、同じキュリ一温度で25°Cの抵
抗40Ωの第2の正特性磁器を/’1ンダ付し、第1の
正特性磁器と第2の正特性磁器を″電気的に1h1列に
接続して18.5 Vの電圧を印加し、周囲温度−80
°Cから+60°Cまでその特性を測定したところ水晶
振動子の11iA度は65”Cずなわち温度ゲイン約1
3と良好であった。
Example 2 HG --L5/Ll crystal resonator with diameter 8mm and thickness 1
Solder the first positive characteristic porcelain of 25"C at 25"C (N, Curie 7 crystal and 85°C) and connect it to lQ.
It is stored in a metal container measuring The characteristic porcelain and the second positive characteristic porcelain were electrically connected in a 1h1 row, a voltage of 18.5 V was applied, and the ambient temperature was -80
When we measured its characteristics from °C to +60°C, the 11iA degree of the crystal resonator was 65"C, or a temperature gain of about 1.
3, which was good.

なお同じ構造で、第1の正特性磁器と第2の正特性磁器
を!気的に並列に接続した場合には+10 75′CCと中心温度が大きくずれるととも    5 に、温度ケイン6と小さくなった。
In addition, the first positive characteristic porcelain and the second positive characteristic porcelain have the same structure! When they were connected in parallel, the center temperature deviated significantly from +10 75'CC, and the temperature curve decreased to 6.

実施例 8 HO−45/Uの水晶振動子に第3図に示すように直径
8市、厚さ1mm、25°Cの抵抗20Ω、キュリ一温
度80°Cの第1の正特性磁器を導電性接着材で取りつ
け、これを10 X 15 X 20 amの金属性容
器に収納し、金属性容器の内底面に同じ大きさ、同じキ
ュリー湿度、同じ抵抗の2ケの第2の正特検磁器を2ヶ
重ねて導電性接着材で取りつけ、全部で8ケの正特性磁
器を電気的に直列に接続し、水晶振動子と第2の正特性
&3器の間に2mmの空間を設けた。IL5 Vの電圧
を印加して周囲温度−3O″Gから+60°Cまで変化
し、その特性を測定したところ、水晶振動子の湿度は6
8°C±8°C1ずなわぢ温度ゲインは15と極めて優
れたものであった。
Example 8 As shown in Fig. 3, a first positive characteristic porcelain with a diameter of 8 squares, a thickness of 1 mm, a resistance of 20 Ω at 25°C, and a Curie temperature of 80°C was applied to the HO-45/U crystal resonator. This was placed in a 10 x 15 x 20 am metal container, and two second special test porcelains of the same size, same Curie humidity, and same resistance were placed on the inner bottom of the metal container. A total of 8 positive temperature ceramics were electrically connected in series, and a 2 mm space was provided between the crystal resonator and the second positive temperature ceramic and the third positive temperature ceramic. When applying a voltage of IL5 V and changing the ambient temperature from -3 O''G to +60°C and measuring its characteristics, the humidity of the crystal resonator was 6
The temperature gain of 8°C±8°C1 was 15, which was extremely excellent.

実施例 4 He −4・3/Uの水晶振動子の両面に第2図に示す
ように1r1径8rIm、厚さl vrfn、25°C
の抵抗30Ω、キュリ一温度35°Cの第1の正特性磁
器を各1ヶ導電性mff1材で取りつ(ツ、この全体を
シリコン製の熱11M kt4チューブで憶い、これを
l 5 X 20 X 20 mmの金端性容器に収納
し、金属性容器に直径10關、jv−さimm、25°
Cの抵抗lOΩ、キュリ一温度30°Cの第2の正特性
磁器をハンダ付し、2ヶの第1の正特性磁器は電気的に
並列接続とし、第1の正特性磁器と第2の正特性磁器を
電気的に直列接続とし、13.5 Vの′紙圧を印加し
て周囲温度−80°Cから+60’Cで、その特性を測
定したところ水晶振動子の温度は66±3′C1すなわ
ち温度ゲイン15と極めて優れたものであった。
Example 4 As shown in Fig. 2, 1r1 diameter 8rIm, thickness 1vrfn, 25°C were applied to both sides of a He-4.3/U crystal resonator.
A piece of first positive characteristic porcelain with a resistance of 30 Ω and a Curie temperature of 35°C was taken from conductive mff1 material (T).The whole was stored in a silicon heat 11M kt4 tube, and this was Stored in a metal container measuring 20 x 20 mm, with a diameter of 10 mm, jv-width, and 25 degrees.
A second positive characteristic porcelain with a resistance of 10Ω and a Curie temperature of 30°C is soldered, the two first positive characteristic porcelains are electrically connected in parallel, and the first positive characteristic porcelain and the second positive characteristic porcelain are Positive characteristic porcelains were electrically connected in series and their characteristics were measured at an ambient temperature of -80°C to +60°C with a paper pressure of 13.5 V applied, and the temperature of the crystal resonator was 66 ± 3. 'C1, that is, a temperature gain of 15, which was extremely excellent.

(発明の効果ン 以−ト旺記したように、本発明は周囲湿度が低いときに
、水晶振動子と伝熱的に取りつけられた第1の正特性値
器が水晶振動子を直接加熱し、周1711fM度が高く
なるにつれて第1の正特性磁器と′電気的に直列に接続
された第2の正特性磁器が第1の正特性磁器の熱による
芥器内稿曳と周囲温度とを感知してその抵抗を増加させ
て、第1の正特性磁器が直接水晶振動子を加熱する電力
を減少させて、水晶振動子の温度上昇1抑1111]す
るように作用するので、jM四湿温度大きく変化しても
水晶振動子の温Pi変化は極めて小さく、その温良ゲイ
ンを容易に10以上とすることができるとともに、水晶
振動子および′?81の正特性磁器と第2の正特性(磁
器とが直接に接触していないので、If11囲湿度が変
化した時に水晶振動子の渦IWにヒステリシスが生じた
り、製造1臣の正特性磁器の抵抗11t」のばらつきで
、温度ゲインが十分大きくならなかったりという恐れが
ない、簡単な構造で、小型、安価かつ従来にない大きな
温度ゲインの温度補償付水晶振動子を提供するものであ
って、産業上有用である。
(Advantageous Effects of the Invention) As mentioned above, the present invention has the advantage that when the ambient humidity is low, the first positive characteristic value device thermally connected to the crystal oscillator directly heats the crystal oscillator. , as the circumference of 1711 fM degrees increases, the second positive characteristic porcelain electrically connected in series with the first positive characteristic porcelain will reduce the amount of heat generated by the first positive characteristic porcelain and the ambient temperature. By sensing and increasing its resistance, the first positive characteristic porcelain reduces the electric power that directly heats the crystal resonator, and acts to suppress the temperature rise of the crystal resonator. Even if the temperature changes greatly, the change in temperature Pi of the crystal resonator is extremely small, and its temperature gain can easily be increased to 10 or more. Since it is not in direct contact with the porcelain, hysteresis may occur in the vortex IW of the crystal oscillator when the ambient humidity changes, and the temperature gain will be sufficiently large due to variations in the resistance 11t of the positive characteristic porcelain manufactured by the manufacturer. The present invention provides a temperature-compensated crystal resonator that has a simple structure, is small, inexpensive, and has an unprecedentedly large temperature gain, without fear of failure, and is industrially useful.

4図[ru )111+車な説明 第1図は本うも明の構成を説明するための一具体例の模
式断面図、第2図、第3図は本発明の別の其体例を説明
するための模式断面図、第4図は本発明の一実施例の性
能を示す図である。
Figure 4 [RU) 111 + Vehicle Explanation Figure 1 is a schematic sectional view of one specific example for explaining the configuration of the present invention, and Figures 2 and 3 are for explaining another example of the body of the present invention. FIG. 4 is a schematic sectional view showing the performance of an embodiment of the present invention.

■・・・水晶振動子、2,2′・・・第1の正特性磁器
、3・・・芥島、4・・・容器底部、5,5′・・・第
2の正特性磁器、6・・・接続濯、7.7’・・・水晶
振動子の端子、8・正特性磁器の端子、9・・・正特性
磁器の端子、10・・・凶都、11・・・保湿材。
■...Crystal oscillator, 2, 2'...First positive characteristic porcelain, 3...Akutajima, 4...Bottom of container, 5,5'...Second positive characteristic porcelain, 6... Connection rinse, 7.7'... Terminal of crystal oscillator, 8... Terminal of positive characteristic porcelain, 9... Terminal of positive characteristic porcelain, 10... Evil city, 11... Moisturizing Material.

特許出願人 朝日電波株式会社Patent applicant: Asahi Denpa Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 水晶振動子に、第1の正特性磁器を伝熱的に取り
つけ、これを収納する容器に第2の正特性磁器を伝熱的
に取りつけ、第1の正特性磁器と第2の正特性磁器とを
電気的に直列に接続し、水晶振動子および第1の正特性
磁器と第2の正特性磁器とは、直接に接触しないように
構成したことを特徴とする温度補償付水晶振動子。
1. A first positive characteristic porcelain is thermally attached to a crystal oscillator, a second positive characteristic porcelain is thermally attached to a container for storing the first positive characteristic porcelain, and the first positive characteristic porcelain and the second positive characteristic porcelain are connected together. A crystal oscillator with temperature compensation characterized in that the crystal oscillator and the first positive characteristic porcelain and the second positive characteristic porcelain are configured to be electrically connected in series so that they do not come into direct contact with each other. Child.
JP2692183A 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation Granted JPS59153317A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2692183A JPS59153317A (en) 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation
US06/520,598 US4443732A (en) 1983-02-22 1983-08-05 Temperature-compensated crystal resonator unit
DE8383107854T DE3382033D1 (en) 1983-02-22 1983-08-09 TEMPERATURE COMPENSATED CRYSTAL VIBRATION ARRANGEMENT.
EP83107854A EP0116680B1 (en) 1983-02-22 1983-08-09 A temperature-compensated crystal resonator unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2692183A JPS59153317A (en) 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation

Publications (2)

Publication Number Publication Date
JPS59153317A true JPS59153317A (en) 1984-09-01
JPH0344450B2 JPH0344450B2 (en) 1991-07-08

Family

ID=12206646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2692183A Granted JPS59153317A (en) 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation

Country Status (1)

Country Link
JP (1) JPS59153317A (en)

Also Published As

Publication number Publication date
JPH0344450B2 (en) 1991-07-08

Similar Documents

Publication Publication Date Title
US8035454B2 (en) Oscillator device comprising a thermally-controlled piezoelectric resonator
US20020136664A1 (en) Absolute humidity sensor
US3201621A (en) Thermally stabilized crystal units
JPS6027932B2 (en) Pyroelectric infrared detection device
US3715563A (en) Contact heaters for quartz crystals in evacuated enclosures
JP2779619B2 (en) Crystal oscillator
JPS59153317A (en) Crystal oscillator with temperature compensation
US2986034A (en) Air-backed thermistor bolometer
JPS6318817B2 (en)
JP5807755B2 (en) Piezoelectric device
JPH0514470Y2 (en)
EP0116680B1 (en) A temperature-compensated crystal resonator unit
JPH0226884B2 (en)
JPH06337229A (en) Temperature detection element and applied element thereof
RU2706721C1 (en) Foil resistor
JPS5933194Y2 (en) Heating element device using positive temperature coefficient thermistor
JPS59188549A (en) Two-terminal type semiconductor gas detecting element
JPH01195706A (en) Piezoelectric-oscillator
JPH0318894Y2 (en)
JPS5850630Y2 (en) heating element device
JPS5910712Y2 (en) Heating element device using positive temperature coefficient thermistor
JPS5813609Y2 (en) Atsudenshindoushinoondosouchi
SU917221A1 (en) Variable capacitor
JPS6236243Y2 (en)
JPH0535294Y2 (en)