JPH0344450B2 - - Google Patents

Info

Publication number
JPH0344450B2
JPH0344450B2 JP2692183A JP2692183A JPH0344450B2 JP H0344450 B2 JPH0344450 B2 JP H0344450B2 JP 2692183 A JP2692183 A JP 2692183A JP 2692183 A JP2692183 A JP 2692183A JP H0344450 B2 JPH0344450 B2 JP H0344450B2
Authority
JP
Japan
Prior art keywords
positive characteristic
porcelain
temperature
characteristic porcelain
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2692183A
Other languages
Japanese (ja)
Other versions
JPS59153317A (en
Inventor
Hitoaki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Dempa Co Ltd
Original Assignee
Asahi Dempa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Dempa Co Ltd filed Critical Asahi Dempa Co Ltd
Priority to JP2692183A priority Critical patent/JPS59153317A/en
Priority to US06/520,598 priority patent/US4443732A/en
Priority to DE8383107854T priority patent/DE3382033D1/en
Priority to EP83107854A priority patent/EP0116680B1/en
Publication of JPS59153317A publication Critical patent/JPS59153317A/en
Publication of JPH0344450B2 publication Critical patent/JPH0344450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/08Holders with means for regulating temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 (発明の目的) 本発明は周囲温度の変化に対して、水晶振動子
の温度変化を極めて小さくすることによつて、周
囲温度が変化しても振動周波数の変化が、ごくわ
ずかである小型で、安価な温度ゲインの大きい水
晶振動子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Objective of the Invention) The present invention minimizes the temperature change of the crystal resonator in response to changes in ambient temperature, thereby preventing changes in vibration frequency even if the ambient temperature changes. This relates to a crystal resonator that is small, inexpensive, and has a large temperature gain.

(従来技術) 従来から、水晶振動子の周囲温度の変化に対す
る振動周波数の変化を小さくする目的で、自己温
度補償機能をもつ正特性磁器発熱体と水晶振動子
を組合せた温度補償付水晶振動子が知られてい
る。
(Prior art) Temperature-compensated crystal resonators, which combine a positive characteristic porcelain heating element with a self-temperature compensation function and a crystal resonator, have been developed in order to reduce changes in vibration frequency due to changes in ambient temperature of the crystal resonator. It has been known.

従来から知られている温度補償付水晶振動子
は、水晶板を収納した水晶振動子容器外壁に正特
性磁器を伝熱的に取りつけ、単にこの全体を別の
容器に収納した構成、あるいは水晶振動子を収納
する容器に正特性磁器を伝熱的に取りつけ、この
容器内に単に水晶振動子を収納した構成、さらに
は水晶振動子に通常の金属線発熱体をまきつける
と共に、正特性磁器を伝熱的にとりつけ、この両
者を電気的に並列に接続した構成などであつて、
その特性は、例えば周囲温度が−30℃から+60℃
まで変化すると、水晶振動子の温度は30〜40℃、
厳密に調整しても10℃以上の温度幅で変化してし
まい、このためその温度ゲイン(温度ゲイン=周
囲温度変化幅/水晶振動子の温度変化幅)は、通
常2〜3、厳密に調整してもたかだか7〜8.5で
あるため、水晶振動子の振動周波数は、大きく変
化してしまうものであつた。
Conventionally known temperature-compensated crystal resonators have a structure in which positive-characteristic porcelain is heat-conductingly attached to the outer wall of a crystal resonator container housing a crystal plate, and the whole is simply housed in a separate container, or a crystal resonator is A structure in which a positive characteristic porcelain is attached to a container that stores the crystal for heat transfer, and a crystal resonator is simply housed in this container, and a structure in which a normal metal wire heating element is wrapped around the crystal resonator and a positive characteristic porcelain is used as a conductor. It is a configuration in which the two are connected thermally and electrically in parallel,
Its characteristics are, for example, when the ambient temperature ranges from -30°C to +60°C.
When the temperature of the crystal oscillator changes to 30 to 40℃,
Even if it is precisely adjusted, the temperature will change in a range of 10℃ or more, so the temperature gain (temperature gain = ambient temperature change width / crystal resonator temperature change width) is usually 2 to 3, and must be adjusted strictly. However, since it is at most 7 to 8.5, the vibration frequency of the crystal resonator changes greatly.

また、水晶振動子の周囲温度による振動周波数
の変化を小さくする目的で、通常の発熱体と電子
温度制御機構とを組合せた水晶振動子も知られて
いる。このような水晶振動子は温度ゲインは非常
に大きくできるものであるが大型になり、かつ高
価なものであるため特定の限られた用途にしか利
用できないものであつた。
Furthermore, crystal resonators are also known in which a normal heating element is combined with an electronic temperature control mechanism for the purpose of reducing changes in vibration frequency due to ambient temperature of the crystal resonator. Although such a crystal resonator can have a very large temperature gain, it is large and expensive, so it can only be used for specific and limited applications.

このため従来から温度ゲインが大きく、小型
で、安価な、水晶振動子が強く望まれていた。
For this reason, there has been a strong desire for a crystal resonator that has a large temperature gain, is small, and is inexpensive.

(発明の構成) 本発明はこのような要求に応えた温度ゲインが
大きく、小型で、安価な水晶振動子であつて、水
晶振動子に、第1の正特性磁器を伝熱的に取りつ
け、これを収納する容器に第2の正特性磁器を伝
熱的に取りつけ、第1の正特性磁器と第2の正特
性磁器とを水晶振動子を介して電気的に直列に接
続し、第1の正特性磁器と第2の正特性磁器と
は、直接に接触しないように互に離間して構成
し、水晶振動子の端子と正特性磁器の端子とをそ
れぞれ容器底部と絶縁して外部に導出して水晶振
動子を容器内に固定したことを特徴とする温度補
償付水晶振動子である。
(Structure of the Invention) The present invention is a small, inexpensive crystal resonator with a large temperature gain that meets such demands, and includes a first positive characteristic porcelain attached to the crystal resonator in a thermally conductive manner. A second positive characteristic porcelain is heat-conductively attached to a container that stores this, and the first positive characteristic porcelain and the second positive characteristic porcelain are electrically connected in series via a crystal oscillator. The positive characteristic porcelain and the second positive characteristic porcelain are configured to be separated from each other so as not to come into direct contact with each other, and the terminals of the crystal resonator and the terminals of the positive characteristic porcelain are insulated from the bottom of the container and exposed to the outside. This is a temperature-compensated crystal resonator characterized in that the crystal resonator is derived and fixed in a container.

本発明の構成をその一具体例の模式断面図であ
る第1図により詳細に説明すると、水晶振動子1
の金属性ケース外壁部に第1の正特性磁器2を伝
熱的に取りつけ、水晶振動子1と第1の正特性磁
器2を収納する金属性容器3の底部4に第2の正
特性磁器5を伝熱的に取りつけ、第1の正特性磁
器2と第2の正特性磁器5とは、接続線6で水晶
振動子の金属性ケースを介して電気的に直列に接
続する。また水晶振動子1および第1の正特性磁
器2と第2の正特性磁器5とは直接に接触しない
ように空間を設ける。水晶振動子1の端子7,
7′は容器3の底部4から容器と電気的に絶縁さ
れて取り出され、正特性磁器2,5の一方の端子
8は金属ケースの底部4に接続され、他方の端子
9は底部4と電気的に絶縁されて取り出される。
容器の蓋部10の外周は保温材11を被着し保温
する。
The structure of the present invention will be explained in detail with reference to FIG. 1, which is a schematic cross-sectional view of one specific example.
A first positive characteristic porcelain 2 is thermally attached to the outer wall of a metallic case, and a second positive characteristic porcelain is attached to the bottom 4 of a metallic container 3 that houses the crystal oscillator 1 and the first positive characteristic porcelain 2. The first positive characteristic porcelain 2 and the second positive characteristic porcelain 5 are electrically connected in series by a connecting wire 6 via the metal case of the crystal resonator. Further, a space is provided so that the crystal resonator 1, the first positive characteristic ceramic 2, and the second positive characteristic ceramic 5 do not come into direct contact. Terminal 7 of crystal oscillator 1,
7' is taken out from the bottom 4 of the container 3 while being electrically insulated from the container, one terminal 8 of the positive characteristic porcelain 2, 5 is connected to the bottom 4 of the metal case, and the other terminal 9 is electrically insulated from the bottom 4 of the container 3. It is insulated and removed.
A heat insulating material 11 is applied to the outer periphery of the lid 10 of the container to keep it warm.

第1の正特性磁器と第2の正特性磁器を電気的
に直列に接続し、かつ水晶振動子および第1の正
特性磁器と第2の正特性磁器を直接に接触させな
い理由は、水晶振動子の温度ゲインを大きくする
ために、周囲温度が低い場合には、電圧印加後電
流が安定した状態では、第1の正特性磁器の抵抗
が第2の正特性磁器の抵抗より大きく、印加され
た電圧の大部分が第1の正特性磁器に印加され
て、第1の正特性磁器が主たる発熱体となつて、
水晶振動子を直接的に加熱し、周囲温度が高くな
るにつれて、第2の正特性磁器が第1の正特性磁
器の熱と周囲温度の上昇による容器の温度上昇を
感知してその抵抗を増大し、第2の正特性磁器に
印加される電圧の比率を大きくして、第1の正特
性磁器の発熱量を減少させて、第1の正特性磁器
が直接的に、水晶振動子を加熱する電力を小さく
させると共に、全体の発熱量も大きく低減させて
水晶振動子の温度ゲインを大きくするためであ
る。
The reason why the first positive characteristic porcelain and the second positive characteristic porcelain are electrically connected in series and the crystal oscillator and the first positive characteristic porcelain and the second positive characteristic porcelain are not brought into direct contact is that the crystal vibration In order to increase the temperature gain of the child, when the ambient temperature is low and the current is stable after voltage is applied, the resistance of the first positive characteristic porcelain is greater than the resistance of the second positive characteristic porcelain, and when the applied voltage is Most of the voltage applied is applied to the first positive characteristic porcelain, and the first positive characteristic porcelain becomes the main heating element,
The crystal oscillator is directly heated, and as the ambient temperature rises, the second positive characteristic porcelain senses the heat of the first positive characteristic porcelain and the temperature rise of the container due to the rise in ambient temperature, and increases its resistance. Then, the ratio of the voltage applied to the second positive characteristic porcelain is increased to reduce the amount of heat generated by the first positive characteristic porcelain, so that the first positive characteristic porcelain directly heats the crystal resonator. This is to reduce the amount of power generated and to greatly reduce the overall amount of heat generated, thereby increasing the temperature gain of the crystal resonator.

電圧を印加し電流が安定した状態で、周囲温度
が低い時に第1の正特性磁器が第2の正特性磁器
より抵抗が大きく、主発熱体となり周囲温度が高
くなるにつれて、第2の正特性磁器の抵抗が大き
くなつて、第2の正特性磁器に印加される電圧の
比率を大きくするためには、第1および第2の正
特性磁器それぞれの大きさ、個数、抵抗値、キユ
リー温度および水晶振動子と容器の熱容量を適切
に選ぶことが勘要であり、特に水晶振動子の熱容
量を容器の熱容量より小さくすることが望まし
い。
When a voltage is applied and the current is stable, when the ambient temperature is low, the first positive characteristic porcelain has a higher resistance than the second positive characteristic porcelain, and becomes the main heating element, and as the ambient temperature increases, the second positive characteristic porcelain In order to increase the resistance of the porcelain and increase the ratio of the voltage applied to the second positive characteristic porcelain, the size, number, resistance value, Curie temperature, and It is important to appropriately select the heat capacity of the crystal resonator and the container, and it is particularly desirable that the heat capacity of the crystal resonator be smaller than the heat capacity of the container.

水晶振動子と第1の正特性磁器とを伝熱的に取
りつけ、かつ容器と第2の正特性磁器とを伝熱的
に取りつけるには、通常知られている導電性接着
剤を用いて接着したり、ハンダ付けする方法ある
いは金属性バネ材で押圧固定する方法さらに通常
知られている絶縁性の接着材或は導熱性の絶縁性
接着剤を用いる等の方法を用いればよい。もちろ
ん電気的に絶縁性の接着剤を用いた場合には、相
互の電気的接続には通常のリード線接続法のよう
な電気的接続手段を付加すればよい。
In order to thermally attach the crystal oscillator and the first positive characteristic porcelain, and to thermally attach the container and the second positive characteristic porcelain, bonding is performed using a commonly known conductive adhesive. Alternatively, a method of soldering, a method of pressing and fixing with a metal spring material, or a method of using a commonly known insulating adhesive or a heat-conducting insulating adhesive may be used. Of course, when an electrically insulating adhesive is used, electrical connection means such as a normal lead wire connection method may be added for mutual electrical connection.

第1の正特性磁器および第2の正特性磁器は経
済性の点から各々1個であることが好ましいが、
それぞれ複数個用いてもよい。例えば第2図に示
すように、水晶振動子の両面に第1の正特性磁器
2,2′を取りつけてもよいし、第3図に示すよ
うに容器に複数個の正特性磁器5,5′を取りつ
けてもよい。第1の正特性磁器と第2の正特性磁
器は、電気的に相互に直列でなければならない
が、第1の正特性磁器、第2の正特性磁器各々の
間では電気的にも、構造的にも、直列でも、並列
でもよい。
The number of the first positive characteristic porcelain and the second positive characteristic porcelain is preferably one each from the point of view of economy;
A plurality of each may be used. For example, as shown in FIG. 2, the first positive characteristic porcelains 2, 2' may be attached to both sides of the crystal resonator, or as shown in FIG. ’ may be attached. The first positive characteristic porcelain and the second positive characteristic porcelain must be electrically in series with each other, but there is no electrical or structural difference between the first positive characteristic porcelain and the second positive characteristic porcelain. They may be connected in parallel, in series, or in parallel.

第1の正特性磁器、第2の正特性磁器のキユリ
ー温度は同じでも、異なつていてもよく、要は水
晶振動子の温度が周囲温度の変化を受けにくいよ
うに適宜選択すればよいものであるが、好ましく
は第2の正特性磁器の抵抗が周囲温度の変化に敏
感に変化するように、第2の正特性磁器のキユリ
ー温度は、第1の正特性磁器のキユリー温度と同
じか、好ましくは5〜15℃低い温度とすることが
望ましい。また水晶振動子の温度は、通常80℃以
下であることが好ましいので、正特性磁器のキユ
リー温度は80℃以下、より好ましくは60℃以下と
することが望ましい。
The Curie temperatures of the first positive characteristic porcelain and the second positive characteristic porcelain may be the same or different, and should be selected appropriately so that the temperature of the crystal oscillator is not susceptible to changes in ambient temperature. However, preferably, the Curie temperature of the second positive characteristic porcelain is the same as that of the first positive characteristic porcelain, so that the resistance of the second positive characteristic porcelain changes sensitively to changes in ambient temperature. , preferably 5 to 15° C. lower. Furthermore, since the temperature of the crystal resonator is usually preferably 80°C or lower, it is desirable that the Curie temperature of the positive characteristic porcelain be 80°C or lower, more preferably 60°C or lower.

容器の材料は金属にこだわることはなく、例え
ば第1図において容器3の底部4を金属とし、蓋
部10を樹脂製にするとか、容器の底部をセラミ
ツクとし、蓋部10を樹脂製とするとか、容器3
の全体を樹脂あるいはセラミツクで構成してもよ
く、さらに容器3の全体又は一部に保温性のよい
材料11を組合せて用いてもよい。また保温のた
め、容器をジユワー瓶(魔法瓶)のような構造と
してもよい。また、使用温度域の低温側において
は、電圧印加後、電流の安定した状態で第1の正
特性磁器の抵抗を第2の正特性磁器の抵抗より大
きくしやすくするため、容器の熱容量を水晶振動
子の熱容量より大きくすることが好ましいので、
第2の正特性磁器に熱容量を大きくするためのヒ
ート・シンクを附加してもよい。
The material of the container is not limited to metal; for example, in FIG. 1, the bottom 4 of the container 3 is made of metal and the lid 10 is made of resin, or the bottom of the container is made of ceramic and the lid 10 is made of resin. Or container 3
The entire container 3 may be made of resin or ceramic, and the entire container 3 or a portion thereof may be combined with a material 11 having good heat retention properties. In addition, the container may have a structure similar to a thermos flask for heat retention. In addition, on the low temperature side of the operating temperature range, in order to make it easier to make the resistance of the first positive characteristic porcelain larger than the resistance of the second positive characteristic porcelain when the current is stable after voltage is applied, the heat capacity of the container is increased by crystallization. It is preferable to make it larger than the heat capacity of the vibrator, so
A heat sink may be added to the second positive characteristic porcelain to increase its heat capacity.

(実施例) 次に各種の実施例について述べる。(Example) Next, various embodiments will be described.

実施例 1 HC−45/Uの水晶振動子に直径6mm、厚さ1
mm、25℃の抵抗値20Ω、キユリー温度30℃の第1
の正特性磁器を導電性接着材で接着し、これを10
×15×15mmの金属性容器に収納し、金属性容器の
内側底面に同じ大きさ、同じ抵抗、同じキユリー
温度の第2の正特性磁器を導電性接着材で取りつ
け、第1の正特性磁器と第2の正特性磁器を直列
に接続し、容器外面を厚さ2mmの発泡シリコンゴ
ムで保温して13.5Vの電圧を印加し、周囲温度−
30℃から+60℃まで変化させ、その特性を測定し
たところ、第4図a,b,cに示すように、低温
では第1の正特性磁器の抵抗が第2の正特性磁器
の7倍で、+60℃では0.9倍となり、水晶振動子の
温度は6℃±2℃、すなわち温度ゲイン22.5、振
動周波数は0.3ppm以下と極めて安定であつた。
このときの消費電力は−30℃で0.4W、+60℃で
0.06Wと非常に少ないものであつた。
Example 1 HC-45/U crystal resonator with a diameter of 6 mm and a thickness of 1
mm, resistance value 20Ω at 25℃, 1st at Curie temperature 30℃
of positive characteristic porcelain is glued with conductive adhesive, and this is
A second positive characteristic porcelain of the same size, the same resistance, and the same Curie temperature is attached to the inner bottom of the metal container with a conductive adhesive, and then the first positive characteristic porcelain is and a second positive characteristic porcelain are connected in series, the outer surface of the container is insulated with foamed silicone rubber with a thickness of 2 mm, a voltage of 13.5 V is applied, and the ambient temperature is -
When the temperature was varied from 30℃ to +60℃ and its characteristics were measured, the resistance of the first positive characteristic porcelain was seven times that of the second positive characteristic porcelain at low temperatures, as shown in Figure 4 a, b, and c. , 0.9 times at +60°C, the temperature of the crystal resonator was 6°C ± 2°C, that is, the temperature gain was 22.5, and the vibration frequency was extremely stable at 0.3 ppm or less.
The power consumption at this time is 0.4W at -30℃ and 0.4W at +60℃.
The power was very low at 0.06W.

なお、同じ構造で第2の正特性磁器を用いず第
1の正特性磁器のみとした場合には水晶振動子の
温度は、第4図bに点線で示すように70℃±5
℃、すなわち温度ゲインは9と小さいものであつ
て、また第4図cに点線で示すように振動周波数
は1.5ppmと大きく変化した。
If the same structure is used but only the first positive characteristic porcelain is used without using the second positive characteristic porcelain, the temperature of the crystal resonator will be 70℃±5 as shown by the dotted line in Figure 4b.
℃, that is, the temperature gain was as small as 9, and the vibration frequency changed greatly, as shown by the dotted line in FIG. 4c, as much as 1.5 ppm.

実施例 2 HC−45/Uの水晶振動子に直径8mm、厚さ1
mmで25℃の抵抗20Ω、キユリー温度35℃の第1の
正特性磁器をハンダ付し、これを10×15×20mmの
金属性容器に収納し、金属性容器の外底面に同じ
大きさ、同じキユリー温度で25℃の抵抗40Ωの第
2の正特性磁器をハンダ付し、第1の正特性磁器
と第2の正特性磁器を電気的に直列に接続して
13.5Vの電圧を印加し、周囲温度−30℃から+60
℃までその特性を測定したところ水晶振動子の温
度は65+5 -2℃すなわち温度ゲイン約13と良好であつ
た。
Example 2 HC-45/U crystal resonator with a diameter of 8 mm and a thickness of 1
Solder the first positive characteristic porcelain with a resistance of 20Ω at 25°C in mm and a Curie temperature of 35°C, store it in a metal container of 10 x 15 x 20 mm, and place a piece of the same size on the outer bottom of the metal container. A second positive characteristic porcelain with a resistance of 40 Ω at the same Curie temperature of 25°C is soldered, and the first positive characteristic porcelain and the second positive characteristic porcelain are electrically connected in series.
Apply 13.5V voltage, ambient temperature from -30℃ to +60℃
When its characteristics were measured up to ℃, the temperature of the crystal resonator was 65 +5 -2 ℃, or a temperature gain of about 13, which was good.

なお同じ構造で、第1の正特性磁器と第2の正
特性磁器を電気的に並列に接続した場合には75℃
+10 -5℃と中心温度が大きくずれるとともに、温度
ゲイン6と小さくなつた。
If the same structure is used, but the first positive characteristic porcelain and the second positive characteristic porcelain are electrically connected in parallel, the temperature will be 75℃.
The center temperature deviated significantly to +10 -5 ℃, and the temperature gain decreased to 6.

実施例 3 HC−45/Uの水晶振動子に第3図に示すよう
に直径8mm、厚さ1mm、25℃の抵抗20Ω、キユリ
ー温度30℃の第1の正特性磁器を導電性接着材で
取りつけ、これを10×15×20mmの金属性容器に収
納し、金属性容器の内底面に同じ大きさ、同じキ
ユリー温度、同じ抵抗の2ケの第2の正特性磁器
を2ケ重ねて導電性接着材で取りつけ、全部で3
ケの正特性磁器を電気的に直列に接続し、水晶振
動子と第2の正特性磁器の間に2mmの空間を設け
た。13.5Vの電圧を印加して周囲温度−30℃から
+60℃まで変化し、その特性を測定したところ、
水晶振動子の温度は63℃±3℃、すなわち温度ゲ
インは15と極めて優れたものであつた。
Example 3 As shown in Fig. 3, a first positive characteristic porcelain with a diameter of 8 mm, a thickness of 1 mm, a resistance of 20Ω at 25°C, and a Curie temperature of 30°C was attached to an HC-45/U crystal resonator using a conductive adhesive. This is then placed in a metal container of 10 x 15 x 20 mm, and two pieces of second positive characteristic porcelain of the same size, the same Curie temperature, and the same resistance are stacked on the inner bottom of the metal container to make it conductive. Attach with adhesive, total of 3
The positive characteristic porcelains were electrically connected in series, and a space of 2 mm was provided between the crystal resonator and the second positive characteristic porcelain. When applying a voltage of 13.5V and changing the ambient temperature from -30℃ to +60℃, we measured the characteristics.
The temperature of the crystal resonator was 63°C±3°C, that is, the temperature gain was 15, which was extremely excellent.

実施例 4 HC−43/Uの水晶振動子の両面に第2図に示
すように直径8mm、厚さ1mm、25℃の抵抗30Ω、
キユリー温度35℃の第1の正特性磁器を各1ケ導
電性接着材で取りつけ、この全体をシリコン製の
熱収縮チユーブで覆い、これを15×20×20mmの金
属性容器に収納し、金属性容器に直径10mm、厚さ
1mm、25℃の抵抗10Ω、キユリー温度30℃の第2
の正特性磁器をハンダ付し、2ケの第1の正特性
磁器は電気的に並列接続とし、第1の正特性磁器
と第2の正特性磁器を電気的に直列接続とし、
13.5Vの電圧を印加して周囲温度−30℃から+60
℃で、その特性を測定したところ水晶振動子の温
度は66±3℃、すなわち温度ゲイン15と極めて優
れたものであつた。
Example 4 On both sides of the HC-43/U crystal resonator, as shown in Figure 2, a resistor of 30 Ω, 8 mm in diameter, 1 mm in thickness, and at 25°C, was placed.
One piece of the first positive characteristic porcelain with a Curie temperature of 35°C is attached using conductive adhesive, the whole is covered with a silicone heat shrink tube, this is stored in a 15 x 20 x 20 mm metal container, and the metal The secondary container has a diameter of 10 mm, a thickness of 1 mm, a resistance of 10 Ω at 25°C, and a Curie temperature of 30°C.
positive characteristic porcelains are soldered, the two first positive characteristic porcelains are electrically connected in parallel, the first positive characteristic porcelain and the second positive characteristic porcelain are electrically connected in series,
By applying a voltage of 13.5V, the ambient temperature ranges from -30℃ to +60℃.
When its characteristics were measured at ℃, the temperature of the crystal resonator was 66±3℃, that is, the temperature gain was 15, which was extremely excellent.

(発明の効果) 以上詳記したように、本発明は周囲温度が低い
ときに、水晶振動子と伝熱的に取りつけられた第
1の正特性磁器が水晶振動子を直接加熱し、周囲
温度が高くなるにつれて第1の正特性磁器と電気
的に直列に接続された第2の正特性磁器が第1の
正特性磁器の熱による容器内温度と周囲温度とを
感知してその抵抗を増加させて、第1の正特性磁
器が直接水晶振動子を加熱する電力を減少させ
て、水晶振動子の温度上昇を抑制するように作用
するので、周囲温度が大きく変化しても水晶振動
子の温度変化は極めて小さく、その温度ゲインを
容易に10以上とすることができるとともに、水晶
振動子および第1の正特性磁器と第2の正特性磁
器とが直接に接触していないので、周囲温度が変
化した時に水晶振動子の温度にヒステリシスが生
じたり、製造時の正特性磁器の抵抗値のばらつき
で温度ゲインが十分大きくならなかつたりという
恐れがない、簡単な構造で、小型、安価かつ従来
にない大きな温度ゲインの温度補償付水晶振動子
を提供するものであつて、産業上有用である。
(Effects of the Invention) As described in detail above, the present invention provides that when the ambient temperature is low, the first positive characteristic porcelain that is thermally attached to the crystal oscillator directly heats the crystal oscillator, and As the temperature increases, the second positive characteristic porcelain electrically connected in series with the first positive characteristic porcelain senses the temperature inside the container and the ambient temperature due to the heat of the first positive characteristic porcelain, and increases its resistance. The first positive characteristic porcelain reduces the electric power that directly heats the crystal oscillator and acts to suppress the temperature rise of the crystal oscillator, so even if the ambient temperature changes significantly, the crystal oscillator remains stable. Temperature changes are extremely small, and the temperature gain can easily be 10 or more, and since the crystal resonator and the first positive characteristic porcelain and the second positive characteristic porcelain are not in direct contact, the ambient temperature It has a simple structure, is small, inexpensive, and has a simple structure that eliminates the risk of hysteresis occurring in the temperature of the crystal resonator when the The present invention provides a temperature-compensated crystal resonator with a large temperature gain not found in other countries, and is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を説明するための一具体
例の模式断面図、第2図、第3図は本発明の別の
具体例を説明するための模式断面図、第4図は本
発明の一実施例の性能を示す図である。 1……水晶振動子、2,2′……第1の正特性
磁器、3……容器、4……容器底部、5,5′…
…第2の正特性磁器、6……接続線、7,7′…
…水晶振動子の端子、8……正特性磁器の端子、
9……正特性磁器の端子、10……蓋部、11…
…保温材。
FIG. 1 is a schematic cross-sectional view of one specific example for explaining the structure of the present invention, FIGS. 2 and 3 are schematic cross-sectional views for explaining another specific example of the present invention, and FIG. FIG. 3 is a diagram showing the performance of an embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Crystal resonator, 2, 2'... First positive characteristic porcelain, 3... Container, 4... Bottom of container, 5, 5'...
...Second positive characteristic porcelain, 6... Connection wire, 7, 7'...
...Terminal of crystal resonator, 8...Terminal of positive characteristic porcelain,
9...Terminal of positive characteristic porcelain, 10...Lid part, 11...
...Heat insulation material.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶振動子に、第1の正特性磁器を伝熱的に
取りつけ、これを収納する容器に第2の正特性磁
器を伝熱的に取りつけ、第1の正特性磁器と第2
の正特性磁器とを水晶振動子を介して電気的に直
列に接続し、第1の正特性磁器と第2の正特性磁
器とは、直接に接触しないように互に離間して構
成し、水晶振動子の端子と正特性磁器の端子とを
それぞれ容器底部と絶縁して外部に導出して水晶
振動子を容器内に固定したことを特徴とする温度
補償付水晶振動子。
1. A first positive characteristic porcelain is thermally attached to a crystal oscillator, a second positive characteristic porcelain is thermally attached to a container for storing it, and the first positive characteristic porcelain and the second positive characteristic porcelain are attached.
positive characteristic porcelain are electrically connected in series via a crystal oscillator, and the first positive characteristic porcelain and the second positive characteristic porcelain are configured to be spaced apart from each other so as not to be in direct contact with each other, 1. A temperature-compensated crystal resonator, characterized in that the crystal resonator is fixed in a container by insulating the terminals of the crystal resonator and the terminals of the positive characteristic porcelain from the bottom of the container and leading them to the outside.
JP2692183A 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation Granted JPS59153317A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2692183A JPS59153317A (en) 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation
US06/520,598 US4443732A (en) 1983-02-22 1983-08-05 Temperature-compensated crystal resonator unit
DE8383107854T DE3382033D1 (en) 1983-02-22 1983-08-09 TEMPERATURE COMPENSATED CRYSTAL VIBRATION ARRANGEMENT.
EP83107854A EP0116680B1 (en) 1983-02-22 1983-08-09 A temperature-compensated crystal resonator unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2692183A JPS59153317A (en) 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation

Publications (2)

Publication Number Publication Date
JPS59153317A JPS59153317A (en) 1984-09-01
JPH0344450B2 true JPH0344450B2 (en) 1991-07-08

Family

ID=12206646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2692183A Granted JPS59153317A (en) 1983-02-22 1983-02-22 Crystal oscillator with temperature compensation

Country Status (1)

Country Link
JP (1) JPS59153317A (en)

Also Published As

Publication number Publication date
JPS59153317A (en) 1984-09-01

Similar Documents

Publication Publication Date Title
US3914727A (en) Positive-temperature-coefficient-resistor package
US4241370A (en) Thermal relays particularly for starting single-phase asynchronous motors
JP2002524947A (en) Low power and compact heater for piezo electric devices
JP2779619B2 (en) Crystal oscillator
JPS6318817B2 (en)
JPH0344450B2 (en)
JPH11135304A (en) Ntc thermistor and current limiter circuit
EP0116680B1 (en) A temperature-compensated crystal resonator unit
JPH0514470Y2 (en)
RU167515U1 (en) QUARTZ RESONATOR-THERMOSTAT
JPH0226884B2 (en)
JP3265837B2 (en) Surface mount thermistor
JPH0548106Y2 (en)
JPS5850630Y2 (en) heating element device
JPS5813609Y2 (en) Atsudenshindoushinoondosouchi
JPH0530264Y2 (en)
JPS5910712Y2 (en) Heating element device using positive temperature coefficient thermistor
JPS5824502Y2 (en) Atsudenjikikyyoushinshi
JPS6244570Y2 (en)
JPH01195706A (en) Piezoelectric-oscillator
JP2591361Y2 (en) Chip type piezoelectric components
JPS6015343Y2 (en) Support structure of piezoelectric transformer
JPS5933194Y2 (en) Heating element device using positive temperature coefficient thermistor
JPH04348501A (en) Constant-temperature heating element
JPH062826U (en) Surface acoustic wave device