JPS5915219A - Light beam scanner - Google Patents

Light beam scanner

Info

Publication number
JPS5915219A
JPS5915219A JP57124790A JP12479082A JPS5915219A JP S5915219 A JPS5915219 A JP S5915219A JP 57124790 A JP57124790 A JP 57124790A JP 12479082 A JP12479082 A JP 12479082A JP S5915219 A JPS5915219 A JP S5915219A
Authority
JP
Japan
Prior art keywords
light
lens
lenses
scanned
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124790A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsunaga
松永 佳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP57124790A priority Critical patent/JPS5915219A/en
Publication of JPS5915219A publication Critical patent/JPS5915219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To converge plural light beams on a surface to be scanned to the points where the spacings between the convergent points of said beams are close to each other and to make a scanner difficult to receive the influence of the errors in positioning the surface to be scanned, feed errors, oscillation, etc. by providing troidal lenses for correcting the inclination of the mirror surface on a rotary polyhedral mirror to each of luminous fluxes. CONSTITUTION:The light emitted from light sources 1a-1c are converged to a horizontal line shape shown by points 4a-4c on the mirror surface of a rotary polyhedral mirror 4 by a cylindrical rod lens 3. Troidal lenses 5a-5c are disposed in such a way that the optical axes are in parallel with each other and run through the points 4a-4c. The convergence of the light from the light sources 1a-1c apart from each other by (d) on the surface to be scanned is accomplished by moving upward or downward the lenses 5a, 5c by the distance epsilon given by epsilon=(f/F)Xd where the focal length of an theta lens 6 is designated as F, and focal length of the lenses 5 as (f). The spacing between the scanning lines is made equal to the inter-dot spacing of a laser printer or the like or made proximate to each other to the extent of not so much larger than said spacing.

Description

【発明の詳細な説明】 本発明は光ビーム走査装置に関し、特に複数の光ビーム
を用いた光ビーム走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light beam scanning device, and more particularly to a light beam scanning device using a plurality of light beams.

光ビー1、走査装置は通常、光源から放射される光を平
行光束にする光学系と、その平行光束を被走査面上に集
光させる光学系とこれら2つの光学系の中間に配置され
た回転多面鏡等よりなり、回転 軸条面鏡を回軸させて光ビーノ、を振らせるようになっ
ている。この種の装置は通常単一の光ビームを用いてい
るので、−回の掃引動作の間に一本の走査線を掃引する
だけであるが、複数の光ビームを用いれば同時に複数本
の走査線を掃引することができ、同一面積を走査するの
に要する掃引動作の回数が単一ビームの場合より少くて
ずみ、回転多面鏡の回転数を低減させることができて、
機械的な振動の減少、運動部分の耐久性の向上等の効果
が得られる。しかし、各走査線は被走査面上で結果的に
隙間を生じないように掃引する必要がある。このため複
数の光ビームによって走査する場合の走査方式に関して
一回目の走査線の間に二回目の走査線を入れるような提
案がなされている。
The optical beam 1 and scanning device are usually arranged between an optical system that converts the light emitted from the light source into a parallel beam, an optical system that focuses the parallel beam onto the surface to be scanned, and an intermediate between these two optical systems. It consists of a rotating polygon mirror, etc., and the optical beano can be swung by rotating the rotating shaft strip mirror. This type of device usually uses a single light beam, so it only sweeps one scanning line during - sweep operations, but if it uses multiple light beams, it can scan multiple lines at the same time. It is possible to sweep a line, the number of sweeping operations required to scan the same area is smaller than in the case of a single beam, and the number of rotations of the rotating polygon mirror can be reduced.
Effects such as reduced mechanical vibration and improved durability of moving parts can be obtained. However, each scan line must be swept across the scanned surface without resulting in any gaps. For this reason, a proposal has been made regarding a scanning method in which scanning is performed using a plurality of light beams, in which a second scanning line is inserted between the first scanning lines.

他方光ビーノ、走査装置の光学系は光源を被走査面上に
拡大投影する光学系であって、100倍程鹿の倍率を有
し、レーザプリンタ等の場合被走査面上の画素(ドツト
)の間隔は100μm位であるから、複数のビームを用
いる場合、複数の光源の間隔は100μmの17100
即ち1μm程度と云うことになり、このように光源間の
距離を近接させて配置することは技術的にきわめて困難
である。複数の光源を近接させて配置する方法として半
導体レーザアレイを用いる方法があるが、この場合でも
発光部の間隔は構造上とか発熱上の制約から100μm
位が限度と考えられている。半導体レーザアレイのよう
な光源を用いたとしても通常の光ビーム走査装置の光学
系を用いていだのでは、同時に掃引される複数の走査線
の間隔は10、m、m程度となって画素間隔100μ〃
zに比し余シにも太き過ぎ、被走査面の位置決め誤差や
送り誤差、振動等の影響を受は易くなる。
On the other hand, the optical system of the optical vino and scanning device is an optical system that enlarges and projects the light source onto the surface to be scanned, and has a magnification of about 100 times. Since the spacing between is about 100 μm, when using multiple beams, the spacing between multiple light sources is 17100 μm (100 μm).
That is, it is about 1 μm, and it is technically extremely difficult to arrange the light sources so close to each other in this way. One method of arranging multiple light sources close to each other is to use a semiconductor laser array, but even in this case, the spacing between the light emitting parts is limited to 100 μm due to structural and heat generation constraints.
is considered to be the limit. Even if a light source such as a semiconductor laser array is used, if the optical system of a normal light beam scanning device is used, the interval between multiple scanning lines that are swept simultaneously is about 10,000 m, which is the pixel interval. 100μ〃
It is also too thick compared to Z, and is easily affected by positioning errors, feeding errors, vibrations, etc. of the surface to be scanned.

本発明は複数の光ビームによって形成される走査線の間
隔をレーザプリンタ等のドツト間隔に等しいかそれより
余り大きくない程度に近接させ得るだめの光学系を提供
することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical system in which the spacing between scanning lines formed by a plurality of light beams can be made close to the dot spacing of a laser printer or the like to the extent that it is equal to or not much larger than the dot spacing. .

以下本発明を実施例によって詳述する。第1図は本発明
の一実施例の斜視図で第2図は同実施例の光学系を真直
に展開した図である。第1図で1は半導体レーザアレイ
で3個の発光部]、a、lb、ICを有し、2はコリメ
ータレンズ、3はシリンドリカルレンズ、4は回転多面
鏡で矢印Xを軸にして回転せしめられるようになってお
り、5a+  5b、5ci夫々トロイダルレンズ、6
ばfθレンズで7は被走査面上に形成される光スポット
の走査軌跡である。この実施例は光源の発光部が3個あ
り、3ビームによって走査を行うもので、従って走査軌
跡7は3本画かれている。単一光束ノ光ビーム走査装置
ではトロイダルレンズ5a〜5Cの所が一個のトロイダ
ルレンズになっており、このトロイダルレンズを光束毎
に独立して設けた所に本発明の特徴がある。そこで説明
の順序としてまず単一光束の光ビーム装置について、第
1図。
The present invention will be explained in detail below with reference to Examples. FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a straightly developed view of the optical system of the embodiment. In Fig. 1, 1 is a semiconductor laser array, which has three light emitting parts], a, lb, and IC, 2 is a collimator lens, 3 is a cylindrical lens, and 4 is a rotating polygon mirror that rotates around the arrow X. 5a + 5b, 5ci each toroidal lens, 6
For example, in the fθ lens, 7 is a scanning locus of a light spot formed on the surface to be scanned. In this embodiment, there are three light emitting parts of the light source, and scanning is performed with three beams, so the scanning locus 7 is drawn with three lines. In the single-beam light beam scanning device, the toroidal lenses 5a to 5C are one toroidal lens, and the present invention is characterized in that this toroidal lens is provided independently for each light beam. Therefore, in the order of explanation, first, FIG. 1 shows a light beam device with a single beam.

第2図を借りて説明する。これは第]図、第2図で光源
1bのみを考え、トロイダルレンズ5a。
This will be explained using Figure 2. This is the toroidal lens 5a considering only the light source 1b in Figures 1 and 2.

5Cを除去したものと同じである。そこで更にシリンド
リカルレンズ3及びトロイダルレンズ5b等がない場合
を考える。光源1bから放射された光はコリメータレン
ズ2で平行光束となり、回転多面鏡4で反射され、fθ
レンズ6によって被走査面上に収束せられる。回転多面
鏡4の回転軸Xカ光源1b、  コリメータレンズ2.
  fθレンズ6を通る光軸に対して正確に直角であり
、回転多面鏡の各面が正確にll1lIIXと平行であ
る場合に1は、このような7リンドリカルレンズ3.ト
ロイダルレンズ5b等がなくても正確に走査を行うこと
ができる。しかし工作上及び組立上の誤差及び機構−り
の隙間等のだめ回転多面鏡の各面が第1図で光軸を含む
面に対して正確に垂直でなく、面部に傾きが異ると、回
転多面鏡の各面部に被走査面上の集光点の走査軌跡が上
下変位(〜、等間隔の正しい走査が行われない。そこで
第1図で光軸を含む水平面(走査線7と平行)内では屈
折力を持たず、垂直面内で収束作用を持つ7リノトリカ
ルレンズ3と水平面内には屈折力を持たず垂直面内で収
束作用をもつと共に円筒レンズを彎曲させた形状のトロ
イダルレンズ51)とによって回転多面鏡の鏡面の傾き
の補正(倒れ角補正)を行なう。トロイダルレンズ5b
は垂直面内の焦点がfθレンズ6の光軸と回転多面鏡4
の鏡面との交点に近い位置に設定しである。この交点は
回転多面□鏡4の回転によって多少移動するが、はソ定
点とみなすと吉ができ、トロイダルレンズ5bの焦点は
この交点の移動範囲内の平均的な位置に合せである。そ
してシリンドリカルレンズ3によって形成されている集
光線はトロイダルレンズ5bの焦点位置を含んでいる。
It is the same as the one with 5C removed. Therefore, consider a case where the cylindrical lens 3, the toroidal lens 5b, etc. are not provided. The light emitted from the light source 1b becomes a parallel beam of light by the collimator lens 2, is reflected by the rotating polygon mirror 4, and is reflected by fθ
The light is focused onto the surface to be scanned by the lens 6. Rotation axis X of rotating polygon mirror 4; light source 1b; collimator lens 2.
1 is exactly perpendicular to the optical axis passing through the fθ lens 6, and each face of the rotating polygon mirror is exactly parallel to ll1lIIX. Scanning can be performed accurately even without the toroidal lens 5b or the like. However, due to manufacturing and assembly errors and gaps in the mechanism, each surface of the rotating polygon mirror is not exactly perpendicular to the plane containing the optical axis in Figure 1, and if the planes have different inclinations, the rotation On each surface of the polygon mirror, the scanning locus of the focal point on the surface to be scanned is vertically displaced (~, and accurate scanning at equal intervals is not performed. Therefore, in Fig. 1, the horizontal plane containing the optical axis (parallel to scanning line 7) A 7-linotrical lens 3 that has no refractive power in the inner plane and has a convergence effect in the vertical plane, and a toroidal lens that has a shape that is a curved cylindrical lens and has no refractive power in the horizontal plane but has a convergence effect in the vertical plane. The lens 51) corrects the inclination of the mirror surface of the rotating polygon mirror (inclination angle correction). toroidal lens 5b
The focal point in the vertical plane is the optical axis of the fθ lens 6 and the rotating polygon mirror 4.
It is set at a position close to the intersection with the mirror surface. Although this point of intersection moves somewhat due to the rotation of the rotating polygon mirror 4, it is convenient to consider it as a fixed point, and the focus of the toroidal lens 5b is set at an average position within the movement range of this point of intersection. The condensing line formed by the cylindrical lens 3 includes the focal position of the toroidal lens 5b.

従って回転多面鏡の面の傾きの変化で反射光が上下に振
れても、その振れはシリンドリカルレンズ3の焦点付近
を中心に振れているので、トロイダルレンズ5を透過し
た光はfθレンズ6の光軸と平行な光束になって、fθ
レンズ6への入射点の高さが変化するだけである。fθ
レンズ6は光軸に平行な光を被走査面に収束させるので
、fθレンス6への入射点の高さが変化しても被走査面
上の集光点の位置は動かない。これが倒れ角補正の作用
である。昼 以−]二で単一光束の光ビーム走査装置の説明を終り、
多光束の場合について説明する。図の実施例では光源ば
la、:]、b、lcの3個あり、1bから放射された
光については上に説明した。la。
Therefore, even if the reflected light swings up and down due to changes in the inclination of the surface of the rotating polygon mirror, the swing is centered around the focal point of the cylindrical lens 3, so the light that has passed through the toroidal lens 5 is the light from the fθ lens 6. The light flux becomes parallel to the axis, and fθ
Only the height of the point of incidence on the lens 6 changes. fθ
Since the lens 6 converges light parallel to the optical axis onto the surface to be scanned, even if the height of the point of incidence on the fθ lens 6 changes, the position of the focal point on the surface to be scanned does not change. This is the effect of tilt angle correction. After noon, we finished the explanation of the single beam light beam scanning device at 2.
The case of multiple luminous fluxes will be explained. In the illustrated embodiment, there are three light sources: la, :], b, and lc, and the light emitted from 1b has been described above. la.

ICから出だ光ば7リンドルカルレンズ3によって回転
多面鏡4の鏡面上で夫々第2図に点4a。
The light beams 7 emitted from the IC are formed by the Lindorcal lens 3 on the mirror surface of the rotating polygon mirror 4, respectively, at points 4a in FIG.

4Cで示される水平線状に収束される。これら4a・、
4b、4cで表わされる3本の水平線の間の距離は光源
1a、]、b、lc間の距離にシリンドリカルレンズ3
の焦点距離とコリメータレンズ2の焦点距離の比を掛け
だ大きさに拡大されている。
It is converged into a horizontal line indicated by 4C. These 4a...
The distance between the three horizontal lines represented by 4b and 4c is the distance between the light sources 1a, ], b, lc and the cylindrical lens 3.
and the focal length of the collimator lens 2.

実施例ではシリンドリカルレンズ3の焦点距離は50m
m、コリメータレンズの焦点距離は57nmで、光源1
a、、lb、la間の距離は0.4mmであるので、回
転多面鏡4」−での集光点(水平線)間の距離は4mm
であり、回転多面鏡4の高さは4 m、 mの2倍に長
手の余裕を見て10〜12 m mあれば充分である。
In the example, the focal length of the cylindrical lens 3 is 50 m.
m, the focal length of the collimator lens is 57 nm, and the light source 1
Since the distance between a, lb, and la is 0.4 mm, the distance between the condensing points (horizontal line) on the rotating polygon mirror 4'' is 4 mm.
Therefore, it is sufficient that the height of the rotating polygon mirror 4 is 4 m, or 10 to 12 mm, taking into account twice the length of m.

とべてトロイダルレンズ5a、5b、5cは同じ形とし
、夫々の光軸が互に平行で、かつ点4a、4b、4cを
通るように配置しである場合を考えると、光源1aから
出て回転多面鏡4上で4aに水平線状に収束した光束は
トロイダルレンズ5aによってfθレンズ6の光軸と平
行な平行光束となる。同様にして光源1Cから出た光も
トロイダルレンズ5Cによってfθレンズ6の光軸と平
行な光束となる。fθレンズ6は光軸に平行な光束を被
走査面上で一点に収束させるものであるから、結局3個
の光源1a、lb、ICから出た光は全て被走査面上で
一点に収束せしめられることになる。
Assuming that the toroidal lenses 5a, 5b, and 5c have the same shape and are arranged so that their optical axes are parallel to each other and pass through the points 4a, 4b, and 4c, the toroidal lenses 5a, 5b, and 5c emerge from the light source 1a and rotate. The light beam converged horizontally on the polygon mirror 4 a is turned into a parallel light beam parallel to the optical axis of the fθ lens 6 by the toroidal lens 5 a. Similarly, the light emitted from the light source 1C also becomes a light beam parallel to the optical axis of the fθ lens 6 by the toroidal lens 5C. Since the fθ lens 6 converges the light beam parallel to the optical axis to one point on the scanned surface, all the lights emitted from the three light sources 1a, lb, and IC are ultimately converged to one point on the scanned surface. It will be done.

所で本発明の目的は複数の光源から出た光を一点に収束
させることではなく、互に近接した点に収束させること
である。被走査面上での2つの集光点間の距離をd、 
 fθレンズ6の焦点距離をFとすると、fθレンズ6
の光軸からdだけ離れた点に収束する光は光軸に対して
角度ψ−d / Fだけ傾いてfθレンズに入射する平
行光束である。
However, the purpose of the present invention is not to converge the light emitted from a plurality of light sources to one point, but to converge them to points close to each other. The distance between the two focal points on the scanned surface is d,
If the focal length of the fθ lens 6 is F, then the fθ lens 6
The light that converges at a point d away from the optical axis is a parallel beam of light that enters the fθ lens at an angle ψ−d/F with respect to the optical axis.

従って光源1a、lb、lcから出た光を被走査面上で
互にdたけ離して収束させるにはトロイダルレンズ5a
、5b、  5cの焦点距離をfとするとψ−ε/fで
与えられる距離εだけl・ロイダルレンズ5 a、5c
を前述した位置より上下に移動させれ・°ばよい。実施
例でばfθレンズ6の焦点距離F=500mm、)I:
lイダルレンズ5a〜5Cの焦点距離f =’ 55 
m、 mでd = l OO/1 mとするとε= (
f / F ) X d = 0. Ol 1 m、 
mとなる。実際にトロイダルレンズ5a、5cの位置を
調整するには微動ねじを用いた周知の微調整機構を用い
ればよい。
Therefore, in order to converge the lights emitted from the light sources 1a, lb, and lc on the surface to be scanned at a distance d from each other, the toroidal lens 5a
, 5b, 5c, the distance ε given by ψ-ε/f is l.Loidal lens 5a, 5c
It is only necessary to move it up or down from the above-mentioned position. In the example, the focal length F of the fθ lens 6 is 500 mm, )I:
l Focal length f of Idal lenses 5a to 5C =' 55
m, m and d = l OO/1 m, then ε= (
f / F ) X d = 0. Ol 1 m,
m. To actually adjust the positions of the toroidal lenses 5a and 5c, a well-known fine adjustment mechanism using fine adjustment screws may be used.

本発明によるときはトロイダルレンズが使用する光束の
数と同数用いられるので、−・個のトロイダルレンズの
高さが小さくなるので光源から出た光の利用率について
考察しておく。光源は半導体レーザアレイで各発光部間
の距離は0.4 m、 yn、半導体レーザからの発光
の広りは第1図で水平方向(走査方向)に50°、垂直
方向に30°9程度、コリメータレンズ2は焦点距離5
0mm、、NA=lで、コリメータレンズ出射光の光束
断面は水平方向の幅4.2 rn m、垂直方向の太さ
2.6rnmとなる。トロイダルレンズは焦点距離55
 m mであるので、トロイダルレンズに入射する所で
の光束の太さは垂直方向が2.6 X 55 / 50
= 2.9 m mであり、各トロイダルレンズは高さ
が3m、mあれば充分である。他方各トロイダルレンズ
中心間の距離は、回転多面鏡4上の集光点第2図4a、
4b、4cの間隔が夫々4.mmにεを加えた値で1、
εは前述した所により0.01mm前後の値であるから
、3個のトロイダルレンズは互に干渉することなく楽に
納めることができる。
According to the present invention, since the same number of toroidal lenses are used as the number of light beams used, the height of the -. toroidal lenses becomes smaller, so let us consider the utilization rate of the light emitted from the light source. The light source is a semiconductor laser array, and the distance between each light emitting part is 0.4 m, yn, and the spread of light emitted from the semiconductor laser is approximately 50° in the horizontal direction (scanning direction) and 30°9 in the vertical direction as shown in Figure 1. , the collimator lens 2 has a focal length of 5
0 mm, NA=l, the beam cross section of the light emitted from the collimator lens has a horizontal width of 4.2 rn m and a vertical thickness of 2.6 rnm. Toroidal lens has a focal length of 55
mm, so the thickness of the luminous flux at the point where it enters the toroidal lens is 2.6 x 55/50 in the vertical direction.
= 2.9 mm, and each toroidal lens has a height of 3 m, which is sufficient if the height is 3 m. On the other hand, the distance between the centers of each toroidal lens is the focal point on the rotating polygon mirror 4 in FIG. 2 4a,
The distance between 4b and 4c is 4. The value of mm plus ε is 1,
Since ε has a value of around 0.01 mm as described above, the three toroidal lenses can be easily accommodated without interfering with each other.

第3図は半導体レーザアレイの構成の一例を示す。a、
a、’等は半導体レーザで、bはp形りラッド層、Cは
活性層(レーザ発光部)、dはn形りラッド層、eはn
形基板でに、  k”等は光導波溝、gは各レーザa、
a’等を電気的に絶縁するだめの溝である。
FIG. 3 shows an example of the configuration of a semiconductor laser array. a,
a, ', etc. are semiconductor lasers, b is a p-type rad layer, C is an active layer (laser emitting part), d is an n-type rad layer, and e is an n-type rad layer.
shape substrate, k” etc. are optical waveguide grooves, g is each laser a,
This is a groove that electrically insulates a', etc.

本発明装置は上述したような構成で、回転多面鏡の鏡面
の傾きの補正のだめの光学系の一部であるトロイダルレ
ンズを各光束毎に設けて、名トロイダルレンズの位置の
調整によって被走査面上での複数の光ビームの収束点の
間隔を調節するようにしたので、倒れ角補■ヒと複数の
尤ビーノ、による走査線間隔の調節とが同じ光学系によ
って行われ、走査線間隔の調整のだめのトロイダルレン
ズの位置の調整計が比較的大きい(実施例では走査線間
隔調節量の約1/10)ので調整か容易であると云う特
徴を有する。
The device of the present invention has the above-described configuration, and a toroidal lens, which is a part of the optical system for correcting the inclination of the mirror surface of the rotating polygon mirror, is provided for each light beam, and the scanned surface is adjusted by adjusting the position of the toroidal lens. Since the interval between the convergence points of the plurality of light beams is adjusted above, the scanning line interval adjustment using the tilt angle compensation and the plurality of correction binos are performed by the same optical system, and the scanning line interval can be adjusted. Since the adjustment meter for the position of the toroidal lens of the adjustment stopper is relatively large (about 1/10 of the amount of adjustment of the scanning line interval in the embodiment), the adjustment is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第]−図は本発明の一実施例装置の斜視図、第2図は同
しく光路を真直に展開した側面図、第3図は半導体レー
ザーアレイの側面図である。 la、lb、lc・・・光源、2・・・コリメータレン
ズ、3・・・シリンドリカルレンズ、4・・・走査装置
の回転多面鏡、5a、  5b、  5C・・・トロイ
ダルレンズ、7・・・被走査面上の走査線。 代理人 弁理士  縣   浩  介
Fig. 2 is a perspective view of an apparatus according to an embodiment of the present invention, Fig. 2 is a side view of the optical path developed in a straight line, and Fig. 3 is a side view of a semiconductor laser array. la, lb, lc... light source, 2... collimator lens, 3... cylindrical lens, 4... rotating polygon mirror of scanning device, 5a, 5b, 5C... toroidal lens, 7... Scan line on the scanned surface. Agent Patent Attorney Kosuke Agata

Claims (2)

【特許請求の範囲】[Claims] (1)走査方向と垂直に配列した複数の光ビームを発生
する光源と、これら複数の光ビームを振らせて走査を行
わぜる走査装置と、この走査装置の前後に配置された光
ビームの走査方向と平行な方向とそれに垂直な方向とで
屈折力が異り、走査装置−入射する光束を夫々走査方向
と平行な線状に収束させ、走査装置から出射する光束を
再び平行光束に戻す光学要素を有し、走査装置から出射
する光束を再び平行光束に戻す上記光学要素が各党び一
ム毎に設けられていることを特徴とする光ビーム走査装
置。
(1) A light source that generates multiple light beams arranged perpendicular to the scanning direction, a scanning device that swings these multiple light beams to perform scanning, and a light beam that is placed before and after the scanning device. The refractive power is different in the direction parallel to the scanning direction and the direction perpendicular to it, and the light beams entering the scanning device are respectively converged into lines parallel to the scanning direction, and the light beams exiting from the scanning device are returned to parallel light beams. 1. A light beam scanning device comprising an optical element, wherein the optical element for returning a light beam emitted from the scanning device to a parallel light beam is provided in each group.
(2)走査装置から出射する光束を平行光束に戻す各光
ビーム毎の光学要素が走査方向と直角の方向に位置調節
可能に設けられていることを特徴とする特許請求の範囲
第」項記載の光ビーム走査装置。
(2) The optical element for each light beam that returns the light beam emitted from the scanning device into a parallel light beam is provided so that its position can be adjusted in a direction perpendicular to the scanning direction. optical beam scanning device.
JP57124790A 1982-07-16 1982-07-16 Light beam scanner Pending JPS5915219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124790A JPS5915219A (en) 1982-07-16 1982-07-16 Light beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124790A JPS5915219A (en) 1982-07-16 1982-07-16 Light beam scanner

Publications (1)

Publication Number Publication Date
JPS5915219A true JPS5915219A (en) 1984-01-26

Family

ID=14894182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124790A Pending JPS5915219A (en) 1982-07-16 1982-07-16 Light beam scanner

Country Status (1)

Country Link
JP (1) JPS5915219A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128919A (en) * 1984-07-20 1986-02-08 Fuji Xerox Co Ltd Laser beam scanning device
WO1986005940A1 (en) * 1985-04-02 1986-10-09 Eastman Kodak Company Multi-format laser printer embodying a method for changing output image sizes
JPS62254115A (en) * 1986-04-28 1987-11-05 Fuji Xerox Co Ltd Light beam scanning device
JPS6476020A (en) * 1987-09-18 1989-03-22 Toshiba Corp Optical device for image forming device
JPH01134416A (en) * 1987-11-20 1989-05-26 Canon Inc Optical scanning device
US5465265A (en) * 1992-06-24 1995-11-07 Fuji Xerox Co., Ltd. Multi-beam laser light source and multi-beam semiconductor laser array
US5485194A (en) * 1991-11-20 1996-01-16 Canon Kabushiki Kaisha Optical scanning apparatus
US5608716A (en) * 1992-09-14 1997-03-04 Canon Kabushiki Kaisha Optical recording/reproducing apparatus including a semiconductor laser having a plurality of radiative portions having different physical characteristics

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128919A (en) * 1984-07-20 1986-02-08 Fuji Xerox Co Ltd Laser beam scanning device
WO1986005940A1 (en) * 1985-04-02 1986-10-09 Eastman Kodak Company Multi-format laser printer embodying a method for changing output image sizes
JPS62254115A (en) * 1986-04-28 1987-11-05 Fuji Xerox Co Ltd Light beam scanning device
JPS6476020A (en) * 1987-09-18 1989-03-22 Toshiba Corp Optical device for image forming device
JPH01134416A (en) * 1987-11-20 1989-05-26 Canon Inc Optical scanning device
US5485194A (en) * 1991-11-20 1996-01-16 Canon Kabushiki Kaisha Optical scanning apparatus
US5465265A (en) * 1992-06-24 1995-11-07 Fuji Xerox Co., Ltd. Multi-beam laser light source and multi-beam semiconductor laser array
US5608716A (en) * 1992-09-14 1997-03-04 Canon Kabushiki Kaisha Optical recording/reproducing apparatus including a semiconductor laser having a plurality of radiative portions having different physical characteristics

Similar Documents

Publication Publication Date Title
EP0093583B1 (en) Apparatus for scanning a plane with light beams
JPS5915219A (en) Light beam scanner
US4571021A (en) Plural-beam scanning apparatus
JPH0664251B2 (en) Rotating mirror scanner
JPH0582905A (en) Light source unit
JP3463054B2 (en) Multi-beam scanner
JP3707508B2 (en) Optical scanning device
JPS595882B2 (en) Optical device for correcting surface sagging of polyhedral rotating mirror
JPS5915218A (en) Light beam scanner
JP2548928B2 (en) Multi-beam scanning optical device
JP3355903B2 (en) Optical scanning device
JPS6411926B2 (en)
JPS61126528A (en) Photoscanning device
JP2537277B2 (en) Scanning optics
JPH08304722A (en) Multibeam scanning optical device
JP2003057582A (en) Multibeam light emitting device
JP3922382B2 (en) Optical scanning device
JPS5837616A (en) Optical beam scanner
JPH09274151A (en) Multibeam scanning optical device
JP3206947B2 (en) Scanning optical device
JPH07181412A (en) Multibeam scanner
JPH04184313A (en) Scanning optical device
JPH0495915A (en) Laser scanner
JPS59147317A (en) Photoscanner
JPH0343709A (en) Light beam scanner