JPS5915216A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS5915216A
JPS5915216A JP57124776A JP12477682A JPS5915216A JP S5915216 A JPS5915216 A JP S5915216A JP 57124776 A JP57124776 A JP 57124776A JP 12477682 A JP12477682 A JP 12477682A JP S5915216 A JPS5915216 A JP S5915216A
Authority
JP
Japan
Prior art keywords
optical system
deflection
image
raw data
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57124776A
Other languages
Japanese (ja)
Other versions
JPH0441324B2 (en
Inventor
Takeshi Baba
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57124776A priority Critical patent/JPS5915216A/en
Publication of JPS5915216A publication Critical patent/JPS5915216A/en
Publication of JPH0441324B2 publication Critical patent/JPH0441324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Abstract

PURPOSE:To eliminate the uneven pitch occuring in the inclination of the deflecting reflection surface of a rotary polyhedral mirror by disposing the point where the central rays of the luminuous fluxes emitted from a light source part intersect after the rays pass the 1st condenser optical system and the deflecting reflection surface so as to be optically conjugate within the plane of deflectuion. CONSTITUTION:An image rotator 3 is disposed near the point T where the central rays of luminous fluxes L1, L2, L3 intersect, that is, the center of the exit pupil of the 1st condenser optical system 10. The fluxes L1-L3 are rotated in the disposition and are made incident to the 2nd condenser optical system 11, by which the images thereof are formed near the deflecting reflection surface 5 of a rotary polyhedral mirror 4 and line images B1-B3 are formed. The surface 5 is so disposed as to be conjugate with the exit pupil of the system 10 within the plane of deflection. The images B1-B3 are formed in the same place within the plane of deflection and the defocusing in the mirror image is obviated even if the mirror 4 rotates.

Description

【発明の詳細な説明】 本発明は、複数の光束により同時に複数の走査線を形成
し、これらの走査線ピッチを可変とした光走査装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning device that simultaneously forms a plurality of scanning lines using a plurality of light beams and makes the pitch of these scanning lines variable.

第1図(a)は本出願人による特開昭56−10431
5号公報における3つの光束により3木の走査線を描く
光走査装置を示し、偏向面内の様子を表している。第1
図(b)に示す複数の発光部1a、■b、1cを有する
半導体アレイレーザー1より発した複数の゛光束L1.
 L2、L3は、集光々学系2により集光されイメージ
ローデータ3に入射される。このイメージローデータ3
により配置を回転させられた光束L1、L2、L3は、
回転多面鏡4の偏向反射面5により反射され、結像光学
系6を介して被走査媒体7上にスボッ)St、S2、S
3として結像される。第1図(c)に示すように、結像
されたスポットS1、S2、S3は回転多面鏡4の回転
に伴って被走査媒体7上に複数の走査線A1、A2、A
3を同時に形成する。第1図(d)はイメージローデー
タ3を出射した1自後の光束L1、A2、A3の断面図
であり、Oはイメージローデータ3により回転された光
束Ll、 A2、し3の列と偏向面とのなす回転角であ
る。このとき、βを半導体アレイレーザー1と被走査媒
体7との間の集光々学系2と結像光学系6による合成結
像倍率とすると、走査線A1、A2、A3同志のピッチ
pと発光部]、a、■b、IC同志の間隔dとの間には
、 □p=βd  5irl   ・=(1)なる関係があ
る。この(1)式からも明らかなように、イメージロー
データ3の回転により、光束L1、A2、A3の回転角
θが変るため、走査線AI、A2、A3同志のピッチp
を任意の値に設定することが可能となる。
Figure 1(a) is Japanese Patent Application Laid-Open No. 56-10431 by the present applicant.
This figure shows an optical scanning device that draws three scanning lines using three light beams in Publication No. 5, and shows the state within the deflection plane. 1st
A plurality of light beams L1.
L2 and L3 are focused by the optical focusing system 2 and input into the image raw data 3. This image raw data 3
The luminous fluxes L1, L2, and L3 whose arrangement has been rotated by
St, S2, S are reflected by the deflection reflecting surface 5 of the rotating polygon mirror 4, and are reflected onto the scanned medium 7 via the imaging optical system 6.
It is imaged as 3. As shown in FIG. 1(c), the imaged spots S1, S2, S3 are formed on a plurality of scanning lines A1, A2, A on the scanning medium 7 as the rotating polygon mirror 4 rotates.
3 at the same time. FIG. 1(d) is a cross-sectional view of the light beams L1, A2, and A3 after the image raw data 3 has been emitted, and O is the column of the light beams L1, A2, and A3 rotated by the image raw data 3. This is the rotation angle formed with the deflection surface. At this time, if β is the combined imaging magnification of the condensing optical system 2 and the imaging optical system 6 between the semiconductor array laser 1 and the scanned medium 7, then the pitch p of the scanning lines A1, A2, and A3 is The relationship □p=βd 5irl .=(1) exists between the light emitting section], a, b, and the interval d between the ICs. As is clear from equation (1), the rotation angle θ of the light beams L1, A2, and A3 changes due to the rotation of the image raw data 3, so the pitch p of the scanning lines AI, A2, and A3 is
can be set to any value.

このようにイメージローデータ3の回転により、容易に
精度良く走査線ピッチpを変更することができるが、同
時に形成される複数の走査線A1、A2、A3のピッチ
pを所望の値に設定しても、次の走査により形成される
複数の走査線A1、A2、A3との間のピッチは、回転
多面鏡4の偏向反射面5の倒れに起因してむ′らが生じ
一定値となるとは限らない。
By rotating the image raw data 3 in this way, the scanning line pitch p can be easily and accurately changed. However, the pitch between the plurality of scanning lines A1, A2, and A3 formed by the next scan becomes uneven due to the tilting of the deflection reflection surface 5 of the rotating polygon mirror 4, and if it becomes a constant value. is not limited.

このピッチむらを除去する方法として、第2図に示す特
開昭56−36622号公報の発明のように、光学系に
よって偏向反射面5の倒れの影響を補正する手段か提案
されている。この第2図において、光源を発した光束り
はシリンドリカルレンズ8により偏向面と直交する断面
内において回転多面鏡4の偏向反射面5」二に結像され
、この偏向反射面5により反射された光束りは、例えば
]・−リックレンズを有する結像光学系9により被走査
媒体7上に点状に結像される。このような手段によれば
、偏向反射面5により反射された光束りは、偏向反射面
5の倒れの如何に拘らず常に被走査媒体7上の同一場所
に結像されることになる。
As a method for eliminating this pitch unevenness, a method has been proposed that uses an optical system to correct the influence of the tilting of the deflection/reflection surface 5, as shown in the invention of Japanese Patent Laid-Open No. 56-36622 shown in FIG. In FIG. 2, a beam of light emitted from a light source is imaged by a cylindrical lens 8 on a deflection reflection surface 5'' of a rotating polygon mirror 4 in a cross section perpendicular to the deflection surface, and is reflected by this deflection reflection surface 5. The light beam is imaged as a dot on the scanning medium 7 by an imaging optical system 9 having, for example, a ]-rick lens. According to such a means, the light beam reflected by the deflection reflection surface 5 is always imaged at the same location on the scanned medium 7, regardless of whether or not the deflection reflection surface 5 is tilted.

第3図(a)〜(d)は第1図と第2図にそれぞれ示し
た手段を併用した場合の説明図であり、第3図(a) 
、 (b)は偏向面内の様子を示し、第3図(c) 、
 (d)は偏向面と直交する面内の様子を示している。
FIGS. 3(a) to 3(d) are explanatory views when the means shown in FIGS. 1 and 2 are used together, and FIG. 3(a)
, (b) shows the state in the deflection plane, and Fig. 3 (c),
(d) shows the state in a plane perpendicular to the deflection plane.

この第3図の光走査装頷によれは、先に説明した第1図
、第2図の2つの機能か同時に得られることは明らかで
あるが、また次のような欠点をも有している。
Although it is clear that the optical scanning device shown in FIG. 3 can simultaneously provide the two functions shown in FIGS. 1 and 2 described above, it also has the following drawbacks. There is.

(1)式におびて、通常り走査線ピ・ンチpを細かくす
るため、pはβdに比して相当に小さいことが要求され
る。即ち、θは小さい角度となり、イメージローデータ
3を出射後の光束Ll、し2、A3は殆ど偏向面内を進
行するため、第3図(b) 、 (c)に示すように、
シリンドリカルレンズ8によって偏向反射面5に形成さ
れる複数の線像B1.82、B3が互いに離れた位置と
なる。このため、第3図(b)に示すように回転多面鏡
4が回転したとき、偏向反射面5による線像81. B
2、B3の鏡像Bl’、B2’ 、 B3’が結像光学
系9の光軸方向に移動し、偏向面と直交する面内で第3
図(d)に示すようにデフォーカスを生ずることになり
、被走査媒体7上の周辺部で特に結像性能が悪化する。
In equation (1), p is required to be considerably smaller than βd in order to make the scanning line pinch p finer. That is, θ is a small angle, and the light beams Ll, 2, and A3 after emitting image raw data 3 mostly travel within the deflection plane, so as shown in FIGS. 3(b) and 3(c),
A plurality of line images B1, 82 and B3 formed on the deflection reflection surface 5 by the cylindrical lens 8 are located at positions apart from each other. Therefore, when the rotating polygon mirror 4 rotates as shown in FIG. 3(b), the line image 81. B
2. The mirror images Bl', B2', and B3' of B3 move in the optical axis direction of the imaging optical system 9, and the third
As shown in FIG. 3(d), defocus occurs, and the imaging performance deteriorates particularly in the periphery of the scanned medium 7.

この現象はシリンドリカルレンズ8をイメージローデー
タ3よりも半導体アレイレーザー1側に配しても同様に
現れる。
This phenomenon appears similarly even if the cylindrical lens 8 is placed closer to the semiconductor array laser 1 than the image raw data 3.

本発明の目的は、上述の欠点を改良し、イメージローデ
ータの回転により走査線ピッチの変更が可能で、しかも
回転多面鏡の偏向反射面の倒れに起因するピッチむらを
除去した光走査媒体を提供することにあり、その要旨は
、光束を走査すべき被走査媒体と、列状に並んだ複数の
発光部を有する光源部と、該光源部より発した複数の光
束を線状にそれぞれ結像する第1光学系と、該第1光学
系による線像の近傍に偏向反射面を有する偏向器と、該
偏向器により偏向された光束を前記被走査媒体にそれぞ
れ結像する第2光学系とを備え、前記第1光学系は、光
・i部側より順次に第1の集光々学系、イメージローデ
ータ、第2の集光々学系とを有し、前記光源部から発す
る複数光束のそれぞれの中心光線が第1の集光々学系を
通過後に交わる点の近傍に前記イメージローデータを配
置し、前記第2の集光々学系を前記交点と偏向器の偏向
反射面とを偏向面内において光学的に共役とするように
配置し、前記イメージローデータを回転Sせることによ
り、前記被走査媒体に結像する複数の光束の間隔を変え
るようにしたことを特徴とするものである。
An object of the present invention is to improve the above-mentioned drawbacks, to provide an optical scanning medium that allows the scanning line pitch to be changed by rotating image raw data, and that eliminates the pitch unevenness caused by the tilting of the deflection reflection surface of the rotating polygon mirror. The gist thereof is to provide a scanning medium to be scanned with a light beam, a light source section having a plurality of light emitting sections arranged in a row, and a method of linearly connecting the plurality of light beams emitted from the light source section. a first optical system for imaging, a deflector having a deflection reflecting surface near the line image formed by the first optical system, and a second optical system for respectively forming an image of the light beam deflected by the deflector on the scanned medium. The first optical system includes a first condensing optical system, an image raw data, and a second condensing optical system in order from the light/i section side, and the light emitted from the light source section. The image raw data is arranged near a point where the center rays of each of the plurality of light beams intersect after passing through the first focusing optical system, and the second focusing optical system is connected to the intersection point and the deflection reflection of the deflector. The image raw data is arranged so as to be optically conjugate with the surface in the deflection plane, and the image raw data is rotated S to change the intervals of the plurality of light beams that are imaged on the scanned medium. That is.

以下に本発明を第4図以下に図示の実施例に基づいて詳
細に説明する。ただし、第1図〜第3図と同一の符号は
同一の郵相を示している。
The present invention will be explained in detail below based on the embodiments shown in FIG. 4 and below. However, the same reference numerals as in FIGS. 1 to 3 indicate the same postage.

第4図において、半導体アレイレーザー1を発した複数
の光束L1、L2、L3は、順次に第1の集光々学系1
0、イメージローデータ3、第2の集光々学系11、回
転多面鏡4、結像光学系9を経由して被走査媒体7に入
用するようになっている。
In FIG. 4, a plurality of light beams L1, L2, L3 emitted from the semiconductor array laser 1 are sequentially transferred to the first condensing optical system 1.
0, the image raw data 3, the second condensing optical system 11, the rotating polygon mirror 4, and the imaging optical system 9 to enter the scanned medium 7.

そして、光束L1、L2、L3は第1の集光々学系1゜
によりコリメートされた後に、イメージローデータ3に
入射する。このとき、イメージローデータ3は複数光束
L1、L2、L3のそれぞれの中心光線の交点T、即ち
第1の集光々学系ioの射出瞳の中心近傍に配されてい
る。この交点Tは半導体アレイレーザーlのように互い
に平行な複数光束を発することのできる光源にあっては
、第1の集光々学系10の焦点に一致する。イメージロ
ーデータ3を通過した光束L1、l+2、L3は、第1
図(d)に示したように配置を回転され、第2の集光々
学系IJに入射する。この光束L1. L2、し3は第
2の集光々学系11により偏向面と直交する断面内にお
いて、回転多面鏡4の偏向反射面5の近傍に結像されで
複数の線像旧、B2、B3を形成し、偏向反射面5は第
1の集光々学系1oの射出瞳と偏向面内において共役に
なるように配置されている。従って、これらの線像日1
、B2、B3は偏向面内においては同一場所に形成され
、回転多面鏡4が回転しても鏡像Bl’ 、 82’ 
、 83′にデフォーカスを生ずることはない。このよ
うに形成された線像B1、B2、B3は結像光学系9を
介して被走査媒体7上に結像されることになる。
The light beams L1, L2, and L3 are collimated by the first optical condenser system 1° and then enter the image raw data 3. At this time, the image raw data 3 is arranged near the intersection T of the center rays of the plurality of light beams L1, L2, and L3, that is, near the center of the exit pupil of the first converging optical system io. This intersection point T coincides with the focal point of the first focusing optical system 10 in the case of a light source capable of emitting a plurality of mutually parallel light beams, such as a semiconductor array laser l. The light fluxes L1, l+2, and L3 that have passed through the image raw data 3 are the first
The arrangement is rotated as shown in Figure (d), and the light enters the second optical focusing system IJ. This luminous flux L1. L2 and B3 are imaged near the deflection reflection surface 5 of the rotating polygon mirror 4 in a cross section perpendicular to the deflection surface by the second converging optical system 11, and a plurality of line images B2 and B3 are formed. The deflection reflection surface 5 is arranged so as to be conjugate with the exit pupil of the first condensing optical system 1o in the deflection plane. Therefore, these line image days 1
, B2, and B3 are formed at the same location in the deflection plane, and even when the rotating polygon mirror 4 rotates, the mirror images Bl', 82'
, 83' will not be defocused. The line images B1, B2, and B3 thus formed are imaged onto the scanned medium 7 via the imaging optical system 9.

第5図は第2の集光々学系11の好適な一実施例を示し
、(a)は偏向面内、(b)は偏向面と直交する面内を
図示している。この第2の集光々学系11はシリンドリ
カルレンズ12と球面レンズ13から成り、シリンドリ
カルレンズ12は偏向面内に正のパワーを有し、その物
体側焦点はイメージローデータ3内の光束L1. L2
、L3の交点Tと一致している。球面レンズ13は正の
パワーを有し、シリンドリカルレンズ12の像側に配置
されており、その物体側焦点はシリンドリカルレンズ1
2の像側焦点と一致してこの像側焦点は偏向反射面5上
に存在している。
FIG. 5 shows a preferred embodiment of the second condensing optical system 11, in which (a) shows the inside of the deflection plane, and (b) shows the inside of the plane orthogonal to the deflection plane. This second condensing optical system 11 consists of a cylindrical lens 12 and a spherical lens 13. The cylindrical lens 12 has a positive power in the deflection plane, and its object-side focal point is the light beam L1. L2
, L3 coincides with the intersection T. The spherical lens 13 has positive power and is arranged on the image side of the cylindrical lens 12, and its object side focal point is on the cylindrical lens 1.
This image-side focus coincides with the image-side focus of No. 2 and is located on the deflection/reflection surface 5.

このような第2の集光々学系11により、線像旧、B2
、B3の形成と、第1の集光々学系10と第2の集光々
学系11を併せた光学系の射出瞳を、偏向反射面5上に
同時に形成することが可能となる。また、2つの正の球
面レンズを含むアフォーカルレンズ系に、偏向面と直交
する断面内で正のパワーを持つシリンドリカルレンズを
挿入して第2の集光々学系11としてもよい。更には、
第4図とは逆に第1の集光々学系10に線像旧、B2、
B3を形成する機能を持たせることも可能である。
With such a second condensing optical system 11, the line image old, B2
, B3 and the exit pupil of the optical system combining the first condensing collinear system 10 and the second condensing collinear system 11 can be simultaneously formed on the deflection/reflection surface 5. Alternatively, the second condensing optical system 11 may be formed by inserting a cylindrical lens having positive power in a cross section orthogonal to the deflection surface into an afocal lens system including two positive spherical lenses. Furthermore,
Contrary to FIG. 4, the line image old, B2,
It is also possible to provide the function of forming B3.

第6図においては、第1の集光々学系10は偏向面と直
交する面内で正のパワーを持つ球面レンズ14と、正の
パワーを有するシリンドリカルレンズ15とから成り、
第2の集光々学系11の正の球面レンズ12.13は、
第5図(a)と同様に第1の集光々学系10の射出瞳を
偏向反射面5上に結像している。偏向面内の様子を示す
第6図(a)は第5図(a)と同様の作用を示し、偏向
面と直交する面内を示す第6図(b)においては、第1
の集光々学系11の偏向面内における射出瞳上にシリン
ドリカルレンズ15により光束L1、し2、L3を偏向
面と直交する面内で結像させることにより、偏向反射面
上に線像B1、B2、B3を形成することができる。な
お、ここで第1の集光々学系10或いは第2の集光々学
系11からの射出光束は必ずしもコリメートされている
必要はない。
In FIG. 6, the first condensing optical system 10 is composed of a spherical lens 14 having a positive power in a plane orthogonal to the deflection plane, and a cylindrical lens 15 having a positive power.
The positive spherical lens 12.13 of the second condensing optical system 11 is
As in FIG. 5(a), the exit pupil of the first condensing optical system 10 is imaged onto the deflection/reflection surface 5. FIG. 6(a) showing the inside of the deflection plane shows the same effect as FIG. 5(a), and FIG. 6(b) showing the inside of the plane perpendicular to the deflection plane shows
By focusing the light beams L1, L2, and L3 on the exit pupil in the deflection plane of the condensing optical system 11 using the cylindrical lens 15 in a plane orthogonal to the deflection plane, a line image B1 is formed on the deflection reflection plane. , B2, and B3 can be formed. Incidentally, here, the light flux emitted from the first condensing collinear system 10 or the second collimating optical system 11 does not necessarily need to be collimated.

第1の集光々学系10の射出瞳近くにイメージローデー
タ3を配することは、単にイメージローデータ3を小型
化するだけでなく、次のような応用が可能になる。即ち
、第7図(a)はイメージローデータ3の斜視図であり
、その底面17には第7図(b)に示すように、中央部
で吸収率の高くなるような濃度フィルタ18を接着させ
ることによって、ガウス分布を持つレーザー光束の強度
分布を均一化し、被走査媒体7」二での解像力を高める
ことができる。また、第8図のように一次元のフレネル
レンズ19をイメージローテーク3の底面17に接着し
、シリン1トリ力ルレンズ作用をも持たせれば線像形成
手段として用いることもできる。
Placing the image raw data 3 near the exit pupil of the first condensing optical system 10 not only makes the image raw data 3 smaller, but also enables the following applications. That is, FIG. 7(a) is a perspective view of the image raw data 3, and as shown in FIG. 7(b), a density filter 18 is glued to the bottom surface 17 so that the absorption rate is high in the center. By doing so, the intensity distribution of the laser beam having a Gaussian distribution can be made uniform, and the resolution of the scanned medium 7'' can be improved. Further, as shown in FIG. 8, if a one-dimensional Fresnel lens 19 is bonded to the bottom surface 17 of the image rotary lens 3 to have a cylindrical triple lens function, it can also be used as a line image forming means.

このように本発明に係る光走査装置によれば、イメージ
ローテークの回転により容易に複数の光束から成る走査
線ピッチを変更できると共に、回転多面鏡の加工誤差に
起因する偏向反射面の倒れなどによるピッチむらも除去
することができ、良好な光走査が可能となる。
As described above, according to the optical scanning device according to the present invention, it is possible to easily change the scanning line pitch consisting of a plurality of light beams by rotating the image low-take, and it is also possible to easily change the pitch of the scanning line made up of a plurality of light beams, and also to prevent the tilting of the deflecting reflection surface due to processing errors of the rotating polygon mirror. It is also possible to remove pitch unevenness due to the above, and it is possible to perform good optical scanning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は走査線のピッチを可変とする従
来装置の説明図、第2図は偏向反射面の倒れによる走査
線のピッチむらを除去する従来装置の構成図、第3図(
a)〜(d)は第1図、第2図を合成した光走査装置の
説明図、第4図以下は本発明に係る光走査装置の実施例
を示し、第4図はその基本構成図、第5図(a′) 、
 (b)及び第6図(a)、(b)はそれぞれ実施例の
説明図、第7図(a)は底面に濃度フィルタを設けたイ
メージローデータノ斜視図、(b)は濃度フィルタの平
面図、第8図は底面にフレネルレンズを設けたイメージ
ローテークの斜視図である。 符号lは半導体アレイレーザー、1a、lb、1cは発
光部、2は集光々学系、3はイメージローテーク、4は
回転多面鏡、5は偏向反射面、7は被走査媒体、9は結
像光学系、10は第1の集光々学系、11は第2の集光
々学系、18は濃度フィルタ、19はフレネルレンズ、
Ll、 L2.’L3は光束、Sl、 B2、B3はス
ポット、A1、A2、A3は走査線、B1.82、B3
は線像、Bl′、 B2’ 、 83’は鏡像である。 特許出願人   キャノン株式会社
Figures 1 (a) to (d) are explanatory diagrams of a conventional device that makes the pitch of scanning lines variable; Figure 3 (
a) to (d) are explanatory diagrams of an optical scanning device combining FIG. 1 and FIG. 2, and FIG. 4 and the following show embodiments of the optical scanning device according to the present invention, and FIG. , Figure 5(a'),
(b) and FIGS. 6(a) and (b) are explanatory diagrams of the embodiment, respectively. FIG. 7(a) is a perspective view of an image raw data unit with a density filter provided on the bottom surface, and (b) is a perspective view of an image loader with a density filter installed on the bottom. The plan view and FIG. 8 are perspective views of an image low-take in which a Fresnel lens is provided on the bottom surface. Symbol l is a semiconductor array laser, 1a, lb, and 1c are light emitting parts, 2 is a condensing optical system, 3 is an image low take, 4 is a rotating polygon mirror, 5 is a deflection reflection surface, 7 is a scanned medium, and 9 is a Imaging optical system, 10 is a first condensing optical system, 11 is a second condensing optical system, 18 is a concentration filter, 19 is a Fresnel lens,
Ll, L2. 'L3 is the luminous flux, Sl, B2, B3 are spots, A1, A2, A3 are scanning lines, B1.82, B3
is a line image, and Bl', B2', and 83' are mirror images. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 光束を走査すべき被走査媒体と、列状に並んだ複
数の発光部を有する光源81)と、該光源部より発した
複数の光束を線状にそれぞれ結像する第1光学系と、該
第1光学系による線像の近傍に偏向反射面を有する偏向
器と、該偏向器により偏向された光束を前記被走査媒体
にそれぞれ結像する第2光学系とを(#Nえ、前記第1
光学系は、光源部側より順次に第1の集光々学系、イメ
ージローデータ、第2の集光々学系とを有し、前記光源
部から発する複数光束のそれぞれの中心光線が第1の集
光々学系を通過後に交わる点の近傍に前記イメージロー
データを配置し、前記第2の集光々学系を前記交点と偏
向器の偏向反射面とを偏向面内において光学的に共役と
するように配置し、前記イメージローデータを回転させ
ることにより、前記被走査媒体に結像する複数の光束の
間隔を変えるようにしたことを特徴とする光走査装置。
1. A scanned medium to be scanned with a light beam, a light source 81) having a plurality of light emitting sections arranged in a row, and a first optical system that forms linear images of the plurality of light beams emitted from the light source sections. , a deflector having a deflection reflecting surface near the line image formed by the first optical system, and a second optical system that focuses the light beam deflected by the deflector on the scanning medium, respectively (#N, Said first
The optical system includes a first focusing optical system, an image raw data system, and a second focusing optical system sequentially from the light source side, and the center ray of each of the plurality of light beams emitted from the light source section is The image raw data is arranged near a point where the image data intersects after passing through the first focusing optical system, and the second focusing optical system is optically positioned between the intersection point and the deflection reflection surface of the deflector within the deflection plane. An optical scanning device characterized in that the plurality of light beams are arranged so as to be conjugate to each other, and by rotating the image raw data, the intervals between the plurality of light beams that are imaged on the scanned medium are changed.
JP57124776A 1982-07-17 1982-07-17 Optical scanner Granted JPS5915216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124776A JPS5915216A (en) 1982-07-17 1982-07-17 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124776A JPS5915216A (en) 1982-07-17 1982-07-17 Optical scanner

Publications (2)

Publication Number Publication Date
JPS5915216A true JPS5915216A (en) 1984-01-26
JPH0441324B2 JPH0441324B2 (en) 1992-07-08

Family

ID=14893826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124776A Granted JPS5915216A (en) 1982-07-17 1982-07-17 Optical scanner

Country Status (1)

Country Link
JP (1) JPS5915216A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192030A (en) * 1984-10-11 1986-05-10 Nippon Telegr & Teleph Corp <Ntt> Acceleration circuit
US5194981A (en) * 1988-10-21 1993-03-16 Asahi Kogaku Kogyo Kabushiki Kaisha Light scanning apparatus
US5194982A (en) * 1989-03-17 1993-03-16 Asahi Kogaku Kogyo Kabushiki Kaisha Scanning optical system
JP2007108766A (en) * 2006-11-06 2007-04-26 Toshiba Corp Multibeam exposure apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123701A (en) * 1976-03-03 1977-10-18 Crosfield Electronics Ltd Image recording system
JPS5669610A (en) * 1979-11-13 1981-06-11 Canon Inc Scanning optical system having array light source
JPS56104315A (en) * 1980-01-24 1981-08-20 Canon Inc Beam recorder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123701A (en) * 1976-03-03 1977-10-18 Crosfield Electronics Ltd Image recording system
JPS5669610A (en) * 1979-11-13 1981-06-11 Canon Inc Scanning optical system having array light source
JPS56104315A (en) * 1980-01-24 1981-08-20 Canon Inc Beam recorder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192030A (en) * 1984-10-11 1986-05-10 Nippon Telegr & Teleph Corp <Ntt> Acceleration circuit
US5194981A (en) * 1988-10-21 1993-03-16 Asahi Kogaku Kogyo Kabushiki Kaisha Light scanning apparatus
US5194982A (en) * 1989-03-17 1993-03-16 Asahi Kogaku Kogyo Kabushiki Kaisha Scanning optical system
JP2007108766A (en) * 2006-11-06 2007-04-26 Toshiba Corp Multibeam exposure apparatus

Also Published As

Publication number Publication date
JPH0441324B2 (en) 1992-07-08

Similar Documents

Publication Publication Date Title
US4199219A (en) Device for scanning an object with a light beam
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
EP0627643B1 (en) Laser scanning optical system using axicon
JP3330617B2 (en) Optical scanning device
CA1087006A (en) Optical system for rotating mirror line scanning apparatus
GB2065914A (en) Optical scanning apparatus having light
CN1025371C (en) Retrofocus objective lens and optical scanning device provided with such lens
US5013108A (en) Optical scanning device and mirror correction system for use in such a device
JPH0815156A (en) Laser scan optical system and laser scan optical apparatus
EP0526846B1 (en) Plural-beam scanning optical apparatus
JPH02115814A (en) Light beam scanning device
US4571021A (en) Plural-beam scanning apparatus
US4565421A (en) Plural-beam scanning apparatus
JPS5915216A (en) Optical scanner
JPS5815767B2 (en) Hikari Bee Musou Saho Seiko Gakukei
JPH09138363A (en) Multibeam scanner
JPS595882B2 (en) Optical device for correcting surface sagging of polyhedral rotating mirror
JP3450579B2 (en) Scanning optical system and image forming apparatus having the same
JPH063616A (en) Polygon scanner
JPS6411926B2 (en)
JP3206947B2 (en) Scanning optical device
JPH0543090B2 (en)
JP2001133711A (en) Multibeam scanning optical system and recorder using the same
JPH09274139A (en) Confocal optical device
JPS5848016A (en) Light scanning optical system