JPS5848016A - Light scanning optical system - Google Patents

Light scanning optical system

Info

Publication number
JPS5848016A
JPS5848016A JP56146077A JP14607781A JPS5848016A JP S5848016 A JPS5848016 A JP S5848016A JP 56146077 A JP56146077 A JP 56146077A JP 14607781 A JP14607781 A JP 14607781A JP S5848016 A JPS5848016 A JP S5848016A
Authority
JP
Japan
Prior art keywords
pitch
prism
scanning
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56146077A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneko
豊 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP56146077A priority Critical patent/JPS5848016A/en
Publication of JPS5848016A publication Critical patent/JPS5848016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror

Abstract

PURPOSE:To reduce a pitch between scanning lines by simple and small-sized constitution, by constituting so that a pitch between plural laser luminous fluxes is reduced by use of a prism. CONSTITUTION:Luminous fluxes L1-L4 emitted from plural semiconductor lasers 1 which are arrayed linearly at constant intervals are set to parallel luminous fluxes by spherical lenses 3, 4, pass through a triangular prism 5, and a pitch between the luminous fluxes is reduced. Said parallel luminous fluxes pass through 2 cylindrical lenses 6, 7, are deflected by a rotary polyhedral mirror 8, and are allowed to form an image on the surface of a photosensitive drum 10 through an image formation lens 9. Since it is unnecessary to make the rotary polyhedral mirror 8 large-sized, a pitch between the scanning lines is reduced by simple and small-sized constitution.

Description

【発明の詳細な説明】 \ 不発明は、列?なして配設された複数の半導体レーザ出
力部と、これら半導体レーザ出力部より出射したレーザ
光束全偏向するための偏向装置と、偏向てれにレーザ光
束ケ走査面へ導ひく光学手段と?包含して成る元走査元
学系に関する。
[Detailed description of the invention] \ Is non-invention a column? A plurality of semiconductor laser output sections arranged in the same manner, a deflection device for completely deflecting the laser beams emitted from these semiconductor laser output sections, and an optical means for guiding the laser beams to the scanning surface at the deflection end? Concerning an original scanning system comprising:

レーザプリンタの如き光記録装置に用いられる上記形式
の元走査光学組従来より周知であり、この形式の走査光
学系は、複数の半導体レーザ出力部からのレーザ光束に
よって、同時に複数の走査を為すことのできる利点?有
L2ている。その際、分解能を高める目的で、同時に形
成てれる複数の走査線間のピッチ(副走査方向のピッチ
)を小さくする必要がおるが、このように走査線間のピ
ッチ?小はくできるように各半導体レーザ出力部の間の
ピッチケ小さく設定することは、半導体レーザの製造技
術上困難である。かかる観点より、列?なして配置され
た半導体レーザ出力部の配列方同ケ、光学的に見て副走
査方向に対応する方向から傾斜をせる構Fiy、が提案
はネている(特開昭54−15825]号)。この構成
によると、各半導体レーザ出力部間のピッチケ比較的大
きく維持しつつ、走査線間のピッチ?小ざくできる利点
が得らね、る。
The original scanning optical system of the above type used in an optical recording device such as a laser printer is well known, and this type of scanning optical system can perform multiple scans at the same time using laser beams from multiple semiconductor laser output sections. What are the advantages of this? I have L2. At that time, in order to improve resolution, it is necessary to reduce the pitch between multiple scanning lines that are formed simultaneously (pitch in the sub-scanning direction), but is it possible to reduce the pitch between scanning lines like this? It is difficult in terms of semiconductor laser manufacturing technology to set the pitch distance between each semiconductor laser output section to be small so that the distance between the semiconductor laser output sections can be reduced. From this perspective, columns? Similar to the arrangement of the semiconductor laser output section arranged in the same manner, a structure in which it is tilted from the direction corresponding to the sub-scanning direction when viewed optically has been proposed (Japanese Patent Application Laid-Open No. 15825/1982). . According to this configuration, the pitch between each semiconductor laser output section is maintained relatively large, while the pitch between scanning lines is maintained relatively large. You won't get the advantage of being able to make it smaller.

ところがこの提案に係る構成では、複数のレーザ光束に
よる走査の開始位置ケ、例えば遅延回路を用いる等し、
て揃える必要があるため、制御回路の構5y、が複雑と
なる欠点ケ免力ない。1に偏向装置として回転多面鏡に
用いたときには、列rなした複数のレーザ光束が全体的
に傾斜し7ていることに起因して、多面鏡の各ミラーヶ
大きく形成しなけ力ばならない欠点もあつk。
However, in the configuration according to this proposal, the starting position of scanning by multiple laser beams, for example, using a delay circuit, etc.
Since it is necessary to align the control circuit 5y, there is a disadvantage that the structure of the control circuit 5y becomes complicated. 1. When used in a rotating polygon mirror as a deflection device, there is a drawback that each mirror of the polygon mirror must be made large because the plurality of laser beams arranged in a row r are inclined as a whole. Atsuk.

不発明の目的は半導体レーザ装置の製造ケ困難とする程
、半導体レーザ出力部のピッチケ小さくせずとも、走査
面上での走査線間のピッチケかなり小さくでキ、シかも
上述した従来の欠点ケ生ずることの々い光走査光学系ケ
提供することである。
The purpose of the invention is to reduce the pitch between the scanning lines on the scanning plane, without making the pitch of the semiconductor laser output section so small as to make it difficult to manufacture the semiconductor laser device, and to solve the problem of the above-mentioned conventional drawbacks. It is an object of the present invention to provide a light scanning optical system that can be used in various ways.

不発明は、プリズムケ用いて複数のレーザ光束間のピッ
チケ縮少する構成ケその特徴とするものであり、以下に
不発明の有利な実施例ケ図面に従って説明する。
The invention is characterized by a structure in which the pitch between a plurality of laser beams is reduced using a prism, and advantageous embodiments of the invention will be described below with reference to the drawings.

第1図は、本発明に係る光走査光学系ケ、レーザプリン
タに適用し穴具体例を示す概略図であり、不発明の理解
のため、先ず第1図の全体的構成?説明する。
FIG. 1 is a schematic diagram showing a specific example of a hole applied to a light scanning optical system according to the present invention and a laser printer.In order to understand the invention, first of all, what is the overall configuration of FIG. 1? explain.

第1図において、】け複数の半導体レーザ出力部(以下
、単に出力部という)2ケ有する半導体レーザ装置ケ示
し、これら出力部2は互いに一定のピッチP、?!−も
って一直線状に配列ゾれでいる。
In FIG. 1, a semiconductor laser device is shown having two plurality of semiconductor laser output sections (hereinafter simply referred to as output sections), and these output sections 2 are arranged at a constant pitch P, ? ! - They are arranged in a straight line.

各出力部2から、成る広がり角Yもって出射しにレーザ
光束Ll s”2 、L3 、L4は、2つの球面レン
ズ3.4によって平行なレーザ光束にされると共に、各
レーザ光束の主光線も平行にてれる。次いでこnらレー
ザ光束は、後述する三角プリズム5と、2つのシリンド
リカルレンズ6.7ケ通過15、引き続き回転多面鏡8
として構成ζ力、穴偏同装置でム表面に各レーザ光束の
ビームスポットs、、s、。
Laser beams Ll s''2, L3, L4 are emitted from each output section 2 with a spread angle Y, and are converted into parallel laser beams by two spherical lenses 3.4, and the principal rays of each laser beam are also These laser beams then pass through a triangular prism 5 and two cylindrical lenses 15, which will be described later, and then a rotating polygon mirror 8.
Constructed as ζ force, the beam spot of each laser beam on the surface of the hole deflector is s,, s,.

83.84(第3図)が結像でね、る。尚、出力部2か
ら出にレーザ光束が、球面レンズ3,4、プリズム5、
シリンドリカルレンズ6.7ケ通る状態ケ明らかにする
ため、第2図(a)に2つのレーザ光束L111’2の
進み方ケ側面図にて、第2図(b)に同じ状態?平面図
にて、そねぞれ模式的に示り、である(第2図(a) 
(bJにおいて2つのレーザ光束IJ1+Tj2のみ?
示したのは、図?わかりやすくするためでろり、第1図
に示す実施例のようにレーザ光束L1乃至L4が4つで
あるときも、その各レーザ光束は第2図(a)(b)と
同様に進むことは当然である)。まに1第1図に示す各
レーザ光束は、2つの球面レンズ3,4ヶ通るので、感
光体ドラム上には、第1のレーザ光束L1によって、第
3図における一番下のビームスポットS、が形成さ力、
同様に第2乃至第4のレーザ光束L2乃至L4によって
、順次S2乃至S4で示すビームスポットが形成される
83.84 (Figure 3) is the image formation. Incidentally, the laser beam coming out from the output section 2 passes through the spherical lenses 3, 4, the prism 5,
In order to clarify the state in which the cylindrical lens 6.7 passes, FIG. 2(a) shows a side view showing how the two laser beams L111'2 travel, and FIG. 2(b) shows the same state? Each side is schematically shown in the plan view (Fig. 2 (a)
(Only two laser beams IJ1+Tj2 at bJ?
Did you show the diagram? For the sake of clarity, even when there are four laser beams L1 to L4 as in the embodiment shown in FIG. 1, each laser beam proceeds in the same way as in FIGS. 2(a) and (b). (Of course) Since each laser beam shown in FIG. 1 passes through two spherical lenses 3 and 4, the bottom beam spot S in FIG. 3 is placed on the photosensitive drum by the first laser beam L1. , the force formed,
Similarly, beam spots indicated by S2 to S4 are sequentially formed by the second to fourth laser beams L2 to L4.

回転多面鏡8は公知の如く複数のミラー11ケ有1〜、
しかも矢印で示す方向に回転しているので、ミラー11
で反射しに各レーザ光束は矢印A方間に偏向され、感光
体ドラム】0の表面を矢印X方向に主走査でれる。この
ようにして、同時に複数の主走査が行なわね、各出力部
2に個別に入力giる情報信号に応じ左画像がドラム1
0の表面に順次膨面で力でいく。その際各レーザ光束り
、乃至L4により生ぜしめら力る走査線の中心ケ第3図
に符号”l+B2 、B3.B4 k付して示しておく
。尚、以下の説明では、各レーザ光束Ll + L21
 L3 + L4によVそれぞれ行なわれる走査ケ単に
主走査吉称し、同時に行々われる複数の走査全体?指す
ときけ、こカケ群走査と称して、こねら全区別すること
にする。1に記述を簡単にするため、第2図に示した走
査線の中心?、以下の説明では単に走査線と呼ぶことに
する。
As is well known, the rotating polygon mirror 8 includes a plurality of 11 mirrors 1 to 1.
Moreover, since it is rotating in the direction shown by the arrow, the mirror 11
Upon reflection, each laser beam is deflected in the direction of arrow A, and main-scans the surface of the photosensitive drum 0 in the direction of arrow X. In this way, multiple main scans are performed at the same time, and the left image is displayed on the drum 1 according to the information signal input to each output section 2 individually.
Force is applied to the surface of 0 sequentially on the expanding surface. At this time, the centers of the scanning lines generated by each laser beam bundle or L4 are shown in FIG. 3 with the symbols "l + B2, B3. L21
The scans performed by L3 + L4 respectively are simply referred to as main scans, and are all the multiple scans performed simultaneously? When you point it out, we will call it Kake group scanning and distinguish between all the points. 1. To simplify the description, the center of the scanning line shown in FIG. , will be simply referred to as a scanning line in the following explanation.

上述の如く、同時に複数の主走査が行なわれつつ1回の
群走査?終えるが、かかる群走査が回転多面鏡8の回転
に伴い各ミラー11毎に順次行々わfl、 L、かも感
光体ドラム10が副走査方向に回転1−5ているので、
ドラム]0の表面には所定の二次元的な画像が形成され
る。12け、各出力部2への情報信月の入力時期ケ制御
する同期信号ケ生せしめるための光検出器であり、該検
出器]2によって、それ自体公知の形態で、各群走査の
開始位置が揃えら力る。
As mentioned above, multiple main scans are performed simultaneously and one group scan? However, this group scanning is performed sequentially for each mirror 11 as the rotating polygon mirror 8 rotates. Since the photosensitive drum 10 is rotating 1-5 in the sub-scanning direction,
A predetermined two-dimensional image is formed on the surface of the drum]0. 12 is a photodetector for generating a synchronization signal to control the input timing of information signals to each output section 2, and the detector 2 detects the start of each group scan in a manner known per se. Press until the position is aligned.

主走査ないしけ群走査は概ね以上の如く行なわjるが、
その際、高い分解能?得るkめには、感光体ドラム表面
での走査線B、乃至84間のピッチP2ケ所足の小プな
犬きζに定める必要があり、通常、このピッチP2と、
ビームスポットの径dとケはぼ等しくすることが好まし
いとσ力でいる〔尚、本明細書において、ビームスポッ
ト或いはレーザ光束の横断面と言つkさきけ、このスポ
ット又は横断面におけろうt強度分布がガウス分布ケな
しているものと仮定し、その中心の光強度?1としたと
で考えたスポットないしけ横断面ケ意味している〕0き
ころが、先にも説明したように、このように小なる走査
線間のピッチP2に対比させて、半導体レーザ装置1に
おける各出力部2のピッチPt?設定することは製造技
術上難しく、このピッチPt ’r 小ざくすることに
は限度がある。このため、不発明では既述の三角プリズ
ム5が用いらjており、以下にその詳細ケ説明する。
Main scanning and barge group scanning are generally performed as described above.
At that time, high resolution? In order to obtain K, it is necessary to set the pitch P2 between the scanning lines B and 84 on the surface of the photoreceptor drum to a small pitch ζ, and usually, this pitch P2 and
It is preferable that the diameter d of the beam spot is approximately equal to the diameter d of the beam spot. Assuming that the t intensity distribution is a Gaussian distribution, what is the light intensity at the center? As explained earlier, in contrast to the small pitch P2 between scanning lines, the semiconductor laser device Pt of each output section 2 in 1? Setting the pitch Pt'r is difficult due to manufacturing technology, and there is a limit to how small the pitch Pt'r can be. For this reason, the triangular prism 5 described above is used in the present invention, and its details will be explained below.

先ず説明の便宜上、第1図に示すように感光体ドラム表
面における主走査X方向px軸とし、このx!1ilI
]に直交する副走査方間ケy軸と定める。そし、て、第
1図に明示するように、半導体レーザ装置1及び他の光
学素子の位置においても、上記XV軸にそわぞね光学的
に対応でせて、xymケ定める(この場合、各位置にお
けるZY軸の方向け、あくまでも感光体ドラム表面での
xy軸方向に光学的に対応σせて定めkものであって、
各位置でのxy軸方向が必ずしも空間的に一致するもの
で々いことは第1図からも明らかである)。このように
方向ケ定ぬkとき、半導体レーザ装置]の各出力部2の
配列方向はy軸方向に一致し、回転多面鏡の回転軸線は
V軸に一致する。そして、本発明に係る三角プリズム5
は、こわに入射する各レーザ光束のV軸方向のピッチケ
縮少し7得るような状態に配置σれでいる。即ち、第1
図、特に第4図に示すように、レーザ光束り、乃至り、
が入射するプリズム第1屈折面13と、レーザ光束が射
出するブII スム第2屈折面14とが、プリズム5の
側面15 K対し直角ケなしているときには、この側面
15がV2平而に対し5て平行と々るように、三角プリ
ズム5ケ配置すわばよい(z軸は、第1屈折面13の位
置における、X軸とV軸とに直交する方向とする)。
First, for convenience of explanation, let us assume that the px axis is in the main scanning X direction on the surface of the photoreceptor drum as shown in FIG. 1ilI
] is defined as the sub-scanning direction key y-axis. Then, as clearly shown in FIG. 1, the positions of the semiconductor laser device 1 and other optical elements are also determined by optically corresponding to the The direction of the ZY axis at the position is determined by optically corresponding σ to the xy axis direction on the surface of the photoreceptor drum,
It is clear from FIG. 1 that the x and y axis directions at each position do not necessarily have to coincide spatially). In this way, when the direction is not determined, the arrangement direction of each output section 2 of the semiconductor laser device coincides with the y-axis direction, and the rotation axis of the rotating polygon mirror coincides with the V-axis. And the triangular prism 5 according to the present invention
are arranged in such a manner that the pitch of each laser beam incident on the beam is reduced by 7 in the V-axis direction. That is, the first
As shown in the figures, particularly in Fig. 4, the laser beam flux,
When the first refracting surface 13 of the prism on which the laser beam enters and the second refracting surface 14 of the prism from which the laser beam exits are at right angles to the side surface 15K of the prism 5, this side surface 15 is relative to the V2 plane. It is sufficient to arrange five triangular prisms so that the prisms extend parallel to each other (the z-axis is a direction perpendicular to the X-axis and the V-axis at the position of the first refracting surface 13).

プリズム5ケこのように配置すれば、第4図に示す如く
、プリズム5ケ出射するレーザ光束L1乃至L4のピッ
チを、プリズム5に入射するレー宛束のピッチよりも小
芒くすることが可能である。詳述すれば、互いに隣接す
る2つのレーザ光束の主光ねぞ力α、?+とし、プリズ
ムの第1屈折面13へのレーザ光束の入射角kis こ
の第1屈折面13からの射出角ki’とすれは、次の関
係が得らねる。
If the five prisms are arranged in this way, the pitch of the laser beams L1 to L4 emitted from the five prisms can be made smaller than the pitch of the laser beams incident on the prism 5, as shown in FIG. It is. To be more specific, the principal optical power α, ? of two adjacent laser beams? +, the incident angle kis of the laser beam onto the first refracting surface 13 of the prism, the exit angle ki' from the first refracting surface 13, and the following relationship cannot be obtained.

〔但し11.: r −5in−t (3111’j−
)であり、t*偏角’iδとすれば、δ=t−α+5i
n= [n5in (α−1′)〕である〕0従って、
プリズム5の位置?適宜設定することにより(即ちプリ
ズム5の側面15’?yz平面に対[7平行に保ちつつ
、該プリズム5ヶ適宜回転するこきによって)、ピッチ
P4とP3との比ケ所望する大きさに定め、ピッチP4
より小なる所定の太き芒のピッチP3(i”得ることが
できる。そしてこのようにレーザ光束のピッチケ縮少す
ることがr″きれば、半導体レーザ]の出力部2のピッ
チP、の大きさにかかわらず感光体ドラム10上の各走
査線B、乃至84間のピッチP21!−所望する大きさ
に足めることかできる。
[However, 11. : r -5in-t (3111'j-
), and if t*deflection 'iδ, then δ=t-α+5i
n= [n5in (α-1′)]]0 Therefore,
Prism 5 position? By setting the pitches P4 and P3 appropriately (i.e., by appropriately rotating the 5 prisms while keeping them parallel to the side surface 15'?yz plane of the prism 5), the ratio of the pitches P4 and P3 can be set to a desired size. , pitch P4
A smaller predetermined thick awn pitch P3 (i" can be obtained. If the pitch of the laser beam can be reduced in this way r", then the pitch P of the output section 2 of the semiconductor laser) Regardless, the pitch P21 between each scanning line B to 84 on the photosensitive drum 10 can be added to a desired size.

上記構成によれば、三角プリズムを用いてレーザ光束の
ピッチを縮少するので、従来の提案に係る構成のように
半導体レーザ装置における出力部の配列方向?y軸に対
して傾斜ブせずとも、感光体ドラム上での走査線間ピッ
チP2ヶ所望する小ざな犬きをに設定することができる
。従って各レーザ光束”I +”2 +”fi +”4
によって感光体ドラム上に形成されるビームスポットの
位置ケ、第3図に示す如くy軸方向(副走査方向)に揃
えることができる。このため遅延回路の如き複雑な手段
?用いて各群走査におけるそれぞねの主走査の開始位置
ケ揃えるような必要は全くない。換言すれば、1回の群
走査が行なわ力るとき、複数のレーザ光束り、 、L2
.L5.L、のそれぞれケ個別に光検出器12によって
検出して各主走査の開始位置ケ揃える如き制御ケ行なう
必要はなく、】つのレーザ光束によって光走査7行なう
際[]検出器ケ用いて行なわわているそれ自体周知な走
査開始制御と全く同様な方法に従い、左検出器】2によ
る光検知によって各群走査の開始位置?揃えるだけで充
分である。
According to the above configuration, since the pitch of the laser beam is reduced using the triangular prism, it is possible to reduce the pitch of the laser beam in the arrangement direction of the output section in the semiconductor laser device, unlike the configuration related to the conventional proposal. It is possible to set the pitch P2 between scanning lines on the photoreceptor drum to a desired small pitch without tilting the scanning line with respect to the y-axis. Therefore, each laser beam “I +”2 +”fi +”4
Accordingly, the positions of the beam spots formed on the photosensitive drum can be aligned in the y-axis direction (sub-scanning direction) as shown in FIG. Is this a complicated method like a delay circuit? There is no need to align the start positions of the main scans in each group scan using this method. In other words, when one group scan is performed, a plurality of laser beams, , L2
.. L5. It is not necessary to perform control such as detecting each of L individually by the photodetector 12 and aligning the start positions of each main scan, but it is possible to perform seven optical scans using the [] detector 12 with the [ ] laser beam. The start position of each group scan is determined by light detection by the left detector 2, in exactly the same manner as the scan start control which is well known per se. It is enough just to arrange them.

こわに反し、出力部2の配列方間ku軸方向に対し6て
傾斜させることによりレーザ光束のピッチケ縮めるよう
にすれば、感光体ドラム上には第5図に示す如くy軸方
向に対し傾斜し2てビームスポットが形成きれるので、
各主走査の開始位置ケ揃えるべく複雑な回路が必要とな
る。のみならず、出力部2の配列方向?傾ければ、そわ
に対応σせてシリンドリカルレンズ6.7も傾斜ζせる
必要があり、これらレンズ6.7の位置決めが面倒とな
らざるに得ないが、第1図に示した構成ではこのような
必要は全くなく、従って光学系の構成ケ簡単にすること
ができる。′=!り従来のように回転多面鏡のミラーの
大きさを特に大型化する必要もない0 以上、本発明の有利な実施例?説明L−fc7”、本発
明は上記構成に限定さ力ず、各種改変できることは当然
である。例えば第1図に示す実施例では、レーザ光束全
平行光とし、且つ各レーザ光束の主光線ケ平行な状態[
L−てから、これ?プリズム5に入射させるようにし2
kが、第6図に図式的に示す如く、発散するレーザ光束
?そのま筐プリズム5に入射させることも可能でろる。
Contrary to this, if the pitch of the laser beam is reduced by tilting the arrangement of the output section 2 at an angle of 6 with respect to the ku-axis direction, the pitch of the laser beam can be reduced, as shown in FIG. Then, the beam spot can be formed,
A complicated circuit is required to align the start positions of each main scan. Not only the arrangement direction of output section 2? If it is tilted, the cylindrical lens 6.7 must also be tilted ζ to accommodate the stiffness, which makes positioning the lenses 6.7 troublesome. This is not necessary at all, and therefore the configuration of the optical system can be simplified. ′=! Therefore, there is no need to particularly increase the size of the rotating polygon mirror as in the prior art.Are there any advantageous embodiments of the present invention? Description L-fc7'', the present invention is not limited to the above configuration, and it goes without saying that various modifications can be made. For example, in the embodiment shown in FIG. Parallel state [
L-After that, this? Make it incident on prism 5 2
k is the diverging laser beam as shown schematically in Figure 6? It is also possible to make the light directly enter the housing prism 5.

ただ、このようにした場合には、第6図から判るように
、各レーザ光束I’S 、L2の周辺光線18.19の
プリズム5への入射角G+’2、従って出射角’3+’
4が互いに異なってし1い(’+ ”’:’t + ’
sへi4)、プリズム5ヶ出射しにレーザ光束の横断面
形状が変形し、まに各レーザ光束LH,L2におけるプ
リズム5内での光路長に差に生じ、プリズム5内射し2
女各レーザ光束の横断面形状(寸法)がそれぞね変って
しまい、感光体ドラム上に同一形状のビームスポットケ
生じさせることができなくなる恐れがある。その点、第
1図に示す構成ではプリズム5ケ出射する外レーザ光束
の横断面形状は全て一足しており、従って感光体ドラム
上のビームスポットの形態も全て一定することになり、
その意味では第6図に示す構成よりも、第1図に示す構
成の方が優れていると言える。また三角プリズムとして
は、第1図に示す形態以外の適宜な形のプリズム、例え
ば第7図に示すη口きプリズム5を用いることもできる
However, in this case, as can be seen from FIG. 6, the incident angle of the peripheral rays 18 and 19 of each laser beam I'S and L2 on the prism 5 is G+'2, and therefore the output angle is '3+'.
4 are different from each other ('+ ”': 't + '
To s i4), the cross-sectional shape of the laser beam is deformed when the laser beam is emitted from the five prisms, and a difference occurs in the optical path length within the prism 5 in each laser beam LH, L2.
The cross-sectional shape (dimensions) of each laser beam will change, and there is a possibility that it will not be possible to produce a beam spot of the same shape on the photoreceptor drum. In this regard, in the configuration shown in FIG. 1, the cross-sectional shapes of the external laser beams emitted from the five prisms are all the same, and therefore the shapes of the beam spots on the photoreceptor drum are also all constant.
In this sense, it can be said that the configuration shown in FIG. 1 is superior to the configuration shown in FIG. 6. Further, as the triangular prism, a prism having an appropriate shape other than the one shown in FIG. 1, for example, the η-shaped prism 5 shown in FIG. 7, can also be used.

そして、プリズム5へのレーザ光束の入射角も適宜設定
でき、第7図はこの入射角が00である場合?示してい
る。1′fcプリズム5け、出力部2から感光体ドラム
101での適宜な位置に設けることが可能であるが、偏
向装置以降にこのプリズム?設けねば、レーザ光束の偏
向き共にプリズム?移動σせなくてはならなくなり、こ
のように構成することは容易でないため、出力部2と、
偏向装置との間にプリズム5内置すべきである。またプ
リズムの数は1つに限らず、必要に応じて複数のプリズ
ム?用いることもできる。
The angle of incidence of the laser beam onto the prism 5 can also be set appropriately, and FIG. 7 shows the case where this angle of incidence is 00? It shows. It is possible to provide five 1'fc prisms at appropriate positions from the output section 2 to the photoreceptor drum 101, but are these prisms installed after the deflection device? Do I need to install a prism to deflect the laser beam? Since it is not easy to configure in this way, the output section 2 and
A prism 5 should be placed between the deflection device and the deflection device. Also, the number of prisms is not limited to one, but multiple prisms as necessary? It can also be used.

更に当業者にとって自明々範囲で第1図に示す構成ケ適
宜改変できる。例えば、第1図に示し、にシリンドリカ
ルレンズ6.7は、レーザ光束の横断面形状ケ整形し、
所望する形態のビームスポット?感光体ドラム上に結像
ζせる作用ケなすものであるが、かかるレンズ6.7以
外の適宜な光束形状整形手段、例えばホログラムレンズ
又はプリズム等ケ用いてもよいし、場合によってはこの
ような光束形状整形手段ケ省略することもできる(尚、
第1図には、参考のため、光路中の各装置I乃至■にお
ける、1つのレーザ光束の横断面形状?、符号20,2
1.21付して示しであるが、これからも判るように、
図示したシリンドリカルレンズ6.7によっては、レー
ザ光束の横断面形状はX軸方向にのみ縮められ、その際
、プリズム5により縮められにレーザ光束間のピッチが
シリンドリカルレンズ6 、7ILよって拡大き4るこ
とはない)。
Furthermore, the configuration shown in FIG. 1 can be modified as appropriate within the scope obvious to those skilled in the art. For example, as shown in FIG. 1, the cylindrical lens 6.7 shapes the cross-sectional shape of the laser beam,
Beam spot of desired shape? Although the function is to form an image on the photosensitive drum, an appropriate light beam shape shaping means other than the lens 6.7, such as a hologram lens or a prism, may be used, and in some cases, such a light beam shape shaping means may be used. It is also possible to omit the beam shape shaping means (in addition,
For reference, FIG. 1 shows the cross-sectional shape of one laser beam in each device I to (2) in the optical path. , code 20,2
1.21 is attached, and as you can see,
The cross-sectional shape of the laser beam is reduced only in the X-axis direction by the illustrated cylindrical lens 6.7, and in this case, the pitch between the laser beams is enlarged by the cylindrical lenses 6, 7IL while being reduced by the prism 5. Never).

1も回転多面鏡8ではなくホログラムスキャナー、AO
累子又はガルバノミラ−φλら成る偏量装置ケ用い左党
学系、レーザ光束の光路中にビームコンプレッサ又はビ
ームエクスパンダ等ケ介在はせ′fc光学系、或いはベ
ルト状々いしはシート状の感光体ケ有する大学系にも、
本発明ケ有利に適用することが可能である。出力部2の
数も、4つに限らず適宜な数に定めることかできること
も当然である。
1 is also a hologram scanner, AO instead of a rotating polygon mirror 8.
A left-handed optical system using a polarizing device consisting of a resistor or a galvano mirror φλ, a beam compressor or a beam expander, etc. interposed in the optical path of the laser beam, or a fc optical system, or a belt-like or sheet-like photoreceptor. Even in universities that have
The present invention can be advantageously applied. It goes without saying that the number of output units 2 is not limited to four, but can be set to an appropriate number.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る走査丸字系ケ含むレーザ7’ I
Iンタの概略斜視図、第2図(a)はレーザ光束の進行
状態?説明する説明側面図、第2図(b)は第2図(a
)の平面図、第3図は感光体ドラム上に結像されるピー
ムスポツトケ模式化して示す説明図、第4図はプリズム
ケ用いてレープ光束のピッチケ縮める状態ケ示す説明図
、第5図は従来の走査光学系によって、感光体ドラム上
に結像さね、にビームスボッ[7示す説明図、第6図は
発散するレーザ光束全プリズムに入射式せに状態全説明
する説明図、第7図は、他の形態のプリズム?示す説明
図である。 2・・・出力部 5・・・プリズム Ll乃至L4・・レーザ光束 P3.P、・・・ピッチ 手続補正書(自発〕 昭和57年12月17日 特許庁長官  若 杉 和 夫 殿 1事件の表示 昭和56年特許願第146077号 2発明の名称 光走査光学系 3補正をする者 事件との関係  特許出願人 住所 東京都大田区中馬込1丁目3番6号名称 (67
4)株式会社リコー 4代理人 〒105 住所 東京都港区西新橋1丁目9番9号中銀第5ヒル3
階Ta (501)4887番(1)明細書の特許請求
の範囲の欄 (2)明細書の発明の詳細な説明の欄 6補正の内容 (1)%許請求の範囲を別紙の通りに補正する。 (2)  明細書第2頁8行の1包含」を「具備」と補
正する。 (3)  同第3頁末行、第8頁下から2行、第10頁
9行及び第1O頁15行の「縮少」を1縮小」と補正す
る。 (4)同第4頁13行乃至14行の「されると共に・・
平行にされる。」を「される。」と補正する。 (5)  同第9頁12行乃至13行及び第12頁16
行乃至17行の「主光線」を「中心を通る光線」と補正
する。 別紙 [2特許請求の範囲 (1)列をなして配設された複数の半導体レーザ出力部
と、これら半導体レーザ出力部より出射したレーザ光束
を偏向するための偏向装置と、偏向されたレーザ光束を
走査面へ導ひく光学手段とを具備する光走査光学系にお
いて、前記半導体レーザ出力部と偏向装置との間にプリ
ズムを設けたこと、及び複数の半導体レーザ出力部から
出射して前記プリズムに入射するレーザ光束間のピッチ
よりも、該プリズムを出射するレーザ光束間のピンチを
小さくし得るように、該プリズムを位置決めしたことを
特徴とする前記光走査光学系。 (2)  レーザ光束を平行光束とする光学素子を具備
し、該光学素子によって平行にされたレーザ光束が入射
し得る位置に、前記プリズムを配置したことを特徴とす
る特許請求の範囲第1項に記載の光走査光学系。」
FIG. 1 shows a laser 7'I including a scanning round type laser according to the present invention.
A schematic perspective view of the interface, Figure 2 (a) shows the progress state of the laser beam? The explanatory side view, FIG. 2(b), is the same as FIG. 2(a).
), FIG. 3 is an explanatory diagram schematically showing the beam spot formed on the photoreceptor drum, FIG. 4 is an explanatory diagram showing the state in which the pitch of the leopard beam is reduced using the prism, and FIG. 5 is an explanatory diagram showing the conventional beam spot. The scanning optical system forms an image on the photoreceptor drum, and the beam is focused on the drum. Other forms of prism? FIG. 2... Output section 5... Prisms Ll to L4... Laser beam P3. P... Pitch procedure amendment (voluntary) December 17, 1980 Director of the Japan Patent Office Kazuo Wakasugi 1 Display of the case 1983 Patent Application No. 146077 2 Name of the invention Light scanning optical system 3 Correction Relationship with the case of the person who filed the patent application Address of the patent applicant: 1-3-6 Nakamagome, Ota-ku, Tokyo Name (67
4) Ricoh Co., Ltd. 4 Agent 105 Address 3, Chugin 5th Hill, 1-9-9 Nishi-Shinbashi, Minato-ku, Tokyo
Floor Ta (501) No. 4887 (1) Claims column of the specification (2) Detailed explanation of the invention column 6 Contents of amendment (1) Percentage The scope of claims is amended as per the attached sheet. do. (2) ``1 inclusion'' on page 2, line 8 of the specification is amended to ``equipment.'' (3) "Reduction" in the last line of page 3, 2 lines from the bottom of page 8, line 9 of page 10, and line 15 of page 10 will be corrected to "reduction by 1". (4) On page 4, lines 13 and 14, “As it happens...
made parallel. ” is corrected to “will be.” (5) Page 9, lines 12 to 13 and page 12, line 16
Correct the "principal ray" in rows to rows 17 to "ray passing through the center." Attachment [2 Claims (1) A plurality of semiconductor laser output sections arranged in a row, a deflection device for deflecting laser beams emitted from these semiconductor laser output sections, and a deflected laser beam In the optical scanning optical system, a prism is provided between the semiconductor laser output section and the deflection device, and a plurality of semiconductor laser output sections emit light to the prism. The optical scanning optical system is characterized in that the prism is positioned so that the pinch between the laser beams exiting the prism can be made smaller than the pitch between the laser beams entering the prism. (2) Claim 1, characterized in that the prism is provided with an optical element that converts the laser beam into a parallel beam, and the prism is arranged at a position where the laser beam made parallel by the optical element can be incident. The optical scanning optical system described in . ”

Claims (2)

【特許請求の範囲】[Claims] (1)  列ケなして配設さネタ複数の半導体レーザ出
力部と、これら半導体レーザ出力部より出射したレーザ
光束全偏向するための偏向装置と、偏向ざ九たレーザ光
束ケ走査面へ導ひく光学手段と?包含して成る光走査光
学系において、 前記半導体レーザ出力部と偏向装置との間にプリズムケ
設けたこと、及び複数の半導体レーザ出力部から出射し
て前記プリズムに入射するレーザ光束間のピッチよりも
、該プリズムケ出射するレーザ光束間のピッチケ小ゾく
し得るように、該プリズム?位置決めしkことケ特徴と
する前記光走査光学系。
(1) A plurality of semiconductor laser output units arranged in a row, a deflection device for completely deflecting the laser beams emitted from these semiconductor laser output units, and a deflection angle for guiding the laser beams to the scanning plane. With optical means? In the optical scanning optical system, a prism is provided between the semiconductor laser output section and the deflection device, and the pitch between the laser beams emitted from the plurality of semiconductor laser output sections and incident on the prism is , the prism is designed so that the pitch between the emitted laser beams can be reduced. The light scanning optical system is characterized by positioning.
(2)  レーザ光束?平行光束とする光学素子?包含
し、該光学素子によって平行にされんレーザ光束が入射
し得る位置に、前記プリズムケ配置したこと?特徴とす
る特許請求の範囲第1項に記載の元走査元学系。
(2) Laser beam? Optical element for parallel light flux? Is the prism placed at a position where the laser beam can be incident without being parallelized by the optical element? The original scanning system according to claim 1, characterized in that:
JP56146077A 1981-09-18 1981-09-18 Light scanning optical system Pending JPS5848016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146077A JPS5848016A (en) 1981-09-18 1981-09-18 Light scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146077A JPS5848016A (en) 1981-09-18 1981-09-18 Light scanning optical system

Publications (1)

Publication Number Publication Date
JPS5848016A true JPS5848016A (en) 1983-03-19

Family

ID=15399582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146077A Pending JPS5848016A (en) 1981-09-18 1981-09-18 Light scanning optical system

Country Status (1)

Country Link
JP (1) JPS5848016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213917A (en) * 1984-04-10 1985-10-26 Konishiroku Photo Ind Co Ltd Picture recorder
JP2006162731A (en) * 2004-12-03 2006-06-22 Seiko Epson Corp Light source device and image display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645814B2 (en) * 1977-04-15 1981-10-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645814B2 (en) * 1977-04-15 1981-10-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213917A (en) * 1984-04-10 1985-10-26 Konishiroku Photo Ind Co Ltd Picture recorder
JP2006162731A (en) * 2004-12-03 2006-06-22 Seiko Epson Corp Light source device and image display device

Similar Documents

Publication Publication Date Title
US6366384B1 (en) Multi-beam scanning method, apparatus and multi-beam light source device achieving improved scanning line pitch using large light emitting points interval
JPH11314407A (en) Laser printer using multiple sets of lasers with multiple wavelengths
EP0813090A2 (en) Optical scanning device
US6141118A (en) Optical scanning device
JPS63304222A (en) Laser light source device
US4323307A (en) Light beam scanning apparatus
US4999648A (en) Non-contact optical print head for image writing apparatus
KR19980019037A (en) A multi-beam scanning apparatus (MULTI-BEAM SCANNING APPARATUS WITH CONTROLLED SCAN LINE BOW)
JP3315610B2 (en) Scanning optical device
JP3197804B2 (en) Multi-beam scanner
JPH09281420A (en) Laser beam scanning optical device
JPS5848016A (en) Light scanning optical system
US6101018A (en) Light beam scanning optical apparatus
JPH07111509B2 (en) Optical scanning device
CN113126460A (en) Laser scanning unit
US5381259A (en) Raster output scanner (ROS) using an overfilled polygon design with minimized optical path length
JPH0618802A (en) Optical scanning device
JPS5915216A (en) Optical scanner
JPH04101112A (en) Multi-beam scanning optical system
JPH0527195A (en) Scanning optical system
JP2000292722A (en) Multi-beam optical scanner
JP3937305B2 (en) Optical recording device
JP2002189181A (en) Scanning optical device
JPS5852613A (en) Optical system for light scanning
JPH09274151A (en) Multibeam scanning optical device