JPH04101112A - Multi-beam scanning optical system - Google Patents

Multi-beam scanning optical system

Info

Publication number
JPH04101112A
JPH04101112A JP22034090A JP22034090A JPH04101112A JP H04101112 A JPH04101112 A JP H04101112A JP 22034090 A JP22034090 A JP 22034090A JP 22034090 A JP22034090 A JP 22034090A JP H04101112 A JPH04101112 A JP H04101112A
Authority
JP
Japan
Prior art keywords
scanning
scanned
optical system
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22034090A
Other languages
Japanese (ja)
Inventor
Masamichi Tatsuoka
立岡 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22034090A priority Critical patent/JPH04101112A/en
Publication of JPH04101112A publication Critical patent/JPH04101112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To easily adjust scanning intervals of scanning lines on a scanned surface to a desired value and to form an image of high picture quality by providing an adjusting member which can adjust the scanning intervals of the scanning lines on the scanned surface in the path between a light source means and the scanned surface. CONSTITUTION:Plural light beams emitted by the light source means 1 are collimated by an optical means 2 which provides collimating operation into pieces of parallel luminous flux, which are made incident on the reflecting surface of an optical deflector 3. Then the respective light beams which are reflected by the reflecting surface of the optical deflector 3 form beam spots on the scanned surface 5 through an image formation optical system 4 for scanning to form (write) image information on the scanned surface 5 in order. In this case, an adjustment member 2 varies the focal length by varying the interval between two lens groups which are a front group 2a and a rear group 2b to vary the image formation magnification, thereby adjusting the scanning intervals of the scanning lines on the scanned surface (photosensitive medium surface) 5 to the desired value. Consequently, an image of improved picture quality can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマルチビーム走査光学系に関し、特に複数個の
発光部を有する光源手段を用い、該光源手段から放射さ
れた複数の光ビームを回転多面鏡等の光偏向器を介して
被走査面である感光媒体面上に導光して、複数の光ど−
ムで同時に光走査し、例えば画像情報の形成を行うよう
にしたレーザービームプリンタ(LBP)等の装置に好
適なマルチビーム走査光学系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a multi-beam scanning optical system, and more particularly, to a multi-beam scanning optical system that rotates a plurality of light beams emitted from the light source means using a light source means having a plurality of light emitting parts. The light is guided onto the surface of the photosensitive medium, which is the surface to be scanned, through an optical deflector such as a polygon mirror, and a plurality of light beams are
The present invention relates to a multi-beam scanning optical system suitable for a device such as a laser beam printer (LBP) that simultaneously performs optical scanning with a multi-beam beam to form image information, for example.

(従来の技術) 従来より独立的に光変調可能な複数の光ヒ゛−ムで被走
査面である感光媒体面を一括走査するようにした所謂マ
ルチビーム走査光学系か種々と提案されている。
(Prior Art) Various so-called multi-beam scanning optical systems have heretofore been proposed in which the surface of a photosensitive medium, which is a surface to be scanned, is scanned all at once with a plurality of optical beams that can be optically modulated independently.

一般に光ビームで被走査面上を走査して画像を形成する
際、高解像力でしかも良好なる画質を得る為には被走査
面上における光ビームスポット径を小さくする必要があ
る。従って複数の光ど一ムを用いて被走査面上を光走査
する場合には被走査面上で走査方向と直交する方向、即
ち副走査方向の光ビームのスポットを密に形成させる必
要がある。
Generally, when forming an image by scanning a surface to be scanned with a light beam, it is necessary to reduce the diameter of the light beam spot on the surface to be scanned in order to obtain high resolution and good image quality. Therefore, when optically scanning a surface to be scanned using multiple light beams, it is necessary to form a dense spot of the light beam on the surface to be scanned in a direction perpendicular to the scanning direction, that is, in the sub-scanning direction. .

マルチビーム走査光学系においては、多くの場合複数個
の半導体レーザ等を一方向に配置した光源手段を用い、
該光源手段から放射された複数の光ビームを同時に被走
査面上に導光して光走査するようにしている。
In a multi-beam scanning optical system, a light source means in which multiple semiconductor lasers or the like are arranged in one direction is often used.
A plurality of light beams emitted from the light source means are simultaneously guided onto the surface to be scanned for optical scanning.

複数個の半導体レーザを光源手段として用いて光走査す
る場合、発光部(半導体レーザ)の配列方法としては被
走査面上におけるビームスポットの間隔(スポット間隔
)か小さくなるように隣接する発光部の間隔か狭くなる
ように配列する方法かある。
When performing optical scanning using multiple semiconductor lasers as light source means, the method of arranging the light emitting parts (semiconductor lasers) is to arrange adjacent light emitting parts so that the interval (spot interval) between the beam spots on the scanned surface is smaller. Is there a way to arrange them so that the spacing is narrower?

しかしなから隣接する発光部の間隔を狭めて配列するこ
とは製造上、限界があり非常に難かしい。
However, it is very difficult to arrange adjacent light emitting parts with narrower intervals due to manufacturing limitations.

そこで従来より上記の半導体レーザの製造上の欠点を補
い、被走査面を複数の光ビームで同時に光走査するよう
にしたマルチビーム走査光学系か例えば特開昭60−3
3019号公報や特公平1−45065号公報で種々提
案されている。
Therefore, conventional multi-beam scanning optical systems have been developed to compensate for the above-mentioned manufacturing defects of semiconductor lasers and scan the surface to be scanned simultaneously with a plurality of light beams.
Various proposals have been made in Publication No. 3019 and Japanese Patent Publication No. 1-45065.

(発明か解決しようとする問題点) 第4図は従来のマルチビーム走査光学系において被走査
面を光走査する際の走査面上の説明図である。
(Problems to be Solved by the Invention) FIG. 4 is an explanatory diagram of a scanning surface when optically scanning a scanning surface in a conventional multi-beam scanning optical system.

同図においては不図示の回転多面鏡等の光偏向器からの
光ビームによる走査方向AA′に対して僅かの角度θた
け光源アレイ(発光部を列状に複数個並べた光源手段)
SAの配列方向を傾けている。これにより走査面上にお
ける主走査方向と副走査方向の走査線のピッチ(間隔)
Pを変え被走査面上における複数のビームスポ・ソトを
密に結像させている。
In the figure, a light source array (light source means having a plurality of light emitting parts arranged in a row) at a slight angle θ with respect to the scanning direction AA' by a light beam from a light deflector such as a rotating polygon mirror (not shown) is shown.
The SA arrangement direction is tilted. This allows the pitch (interval) of scanning lines in the main scanning direction and sub-scanning direction on the scanning surface.
By changing P, a plurality of beam spots are densely imaged on the surface to be scanned.

この場合、被走査面上のど・ソチPを鯖度良く維持する
為には光源アレイを傾ける角度θの調整か非常に困難に
なるという問題点かある。即ち、同図において走査方向
AA′に対して光源アレイSAの配列方向BB’とのな
す角度をθとし、光源アレイの発光部の間隔をP。とす
る。又光源アレイから被走査面に至る光路中に配置した
光学部材による被走査面上への副走査方向の結像倍率な
Mとしたとき、被走査面上の走査線の走査間隔Pは p=1Ml−Po sinθ    −−−−(1)で
与えられる。
In this case, there is a problem in that it is very difficult to adjust the angle .theta. at which the light source array is tilted in order to maintain a good degree of accuracy on the surface to be scanned. That is, in the figure, the angle between the scanning direction AA' and the arrangement direction BB' of the light source array SA is θ, and the interval between the light emitting parts of the light source array is P. shall be. Also, when M is the imaging magnification in the sub-scanning direction on the surface to be scanned by the optical member disposed in the optical path from the light source array to the surface to be scanned, the scanning interval P of the scanning lines on the surface to be scanned is p= It is given by 1Ml-Po sinθ ----- (1).

上記(1)式において角度θが例えば製造時に微少角Δ
θだけ誤差か発生すると走査線の走査間隔Pの間隔誤差
ΔPは ΔP= l M l −Pa s i nΔθ  −−
−−(2)となる。
In equation (1) above, the angle θ is, for example, a minute angle Δ during manufacturing.
If an error of θ occurs, the interval error ΔP of the scanning interval P of the scanning line is ΔP= l M l − Pa s in Δθ −−
--(2).

ここで具体的な数値例で示すと例え4f光源アレイの発
光部の間隔P。の値を0.05mm、結像倍率Mを12
.7倍、走査線の間隔誤差ΔPを画像形成の際の許容範
囲である例えば0.005mm以下にしようとする。こ
のとき上記(2)式より角度誤差Δθは約27分以下に
抑える必要かあり、この結果光源アレイの設置の調整か
極めて困難となってくる。
Here, to give a specific numerical example, let's say the interval P between the light emitting parts of a 4f light source array. The value of is 0.05 mm, and the imaging magnification M is 12
.. 7 times, and the scanning line spacing error ΔP is intended to be within the permissible range for image formation, for example, 0.005 mm or less. At this time, according to the above equation (2), it is necessary to suppress the angular error Δθ to about 27 minutes or less, and as a result, it becomes extremely difficult to adjust the installation of the light source array.

又、光源アレイ(光源手段)より放射される光ど−ムか
光偏向器の偏向反射面と平行な方向に複数本あり、光源
アレイより放射される各主光線かコリメーターレンズを
通った後、発散光となるので偏向反射面を大きくしなけ
ればならず、この為光偏向器か大型化になり装置全体の
小型化を図るのか難しいという問題点かある。
In addition, there are multiple light beams emitted from the light source array (light source means) in a direction parallel to the deflection reflection surface of the optical deflector, and each principal ray emitted from the light source array passes through the collimator lens. Since the light is diverging, the deflection and reflection surface must be made large, which makes the optical deflector large, making it difficult to downsize the entire device.

第5、第6図は各々特公平1−45065号公報で提案
されている走査光学系の要部概略図と被走査面を光走査
する様子を示す説明図である。
5 and 6 are a schematic diagram of the main part of the scanning optical system proposed in Japanese Patent Publication No. 1-45065, and an explanatory diagram showing how a surface to be scanned is optically scanned.

同図において51は光源手段であり、2つの発光源(例
えば半導体レーザ)51a、51bを有している。52
は対物レンズ(コリメーターレンズ)、53は回転多面
鏡等の光偏向器、54はf−θ特性を有する走査レンズ
、55は一定速度で回転する被走査面である感光媒体面
を有する回転円筒体である。
In the figure, reference numeral 51 denotes a light source means, which has two light emitting sources (for example, semiconductor lasers) 51a and 51b. 52
53 is an objective lens (collimator lens), 53 is a light deflector such as a rotating polygon mirror, 54 is a scanning lens having f-θ characteristics, and 55 is a rotating cylinder having a photosensitive medium surface which is a surface to be scanned and rotates at a constant speed. It is the body.

1、、fi2は各々発光部51a、51bから放射され
た光ビームが被走査面55a上を光走査する走査線であ
る。
1, fi2 are scanning lines along which the light beams emitted from the light emitting parts 51a and 51b optically scan the surface to be scanned 55a.

今、発光部51a、51bからの光ビームの副走査方向
の発光部の間隔をP。、対物レンズ52と走査レンズ5
4の合成系による副走査方向の結像倍率なM、被走査面
上での隣り合った走査線の走査間隔なP、被走査面上で
の同一の発光部からの光ビームが光走査する走査線の走
査間隔なΔとしたとき Δ=N−P      ・・・・・・・・・・・・・・
・・(3)p= l M l ・Pa / (nN+ 
1 )・−−−−−(4)となる。但しNは発光部の数
、nは1以上の整数なる関係を有することにより複数の
走査線が互いに重なり合う(オーバーラツプ)ことなく
、かつ記録された隣り合う走査線(IL+ 、 jQz
 )の間隔が等間隔となるようにしている。
Now, the interval between the light emitting parts in the sub-scanning direction of the light beams from the light emitting parts 51a and 51b is P. , objective lens 52 and scanning lens 5
4, the imaging magnification in the sub-scanning direction by the synthesis system, M, the scanning interval of adjacent scanning lines on the scanned surface, P, and the light beam from the same light emitting unit on the scanned surface performs optical scanning. When Δ is the scanning interval of the scanning line, Δ=NP-P ・・・・・・・・・・・・・・・
...(3) p= l M l ・Pa / (nN+
1)・------(4). However, N is the number of light emitting parts, and n is an integer of 1 or more, so that multiple scanning lines do not overlap each other (overlap) and adjacent scanning lines (IL+, jQz
) are arranged at equal intervals.

第6図は前記(3) 、 (4)式を満足したときの被
走査面上の光走査の走査線の様子を示している。
FIG. 6 shows the state of the scanning line of optical scanning on the surface to be scanned when the above-mentioned formulas (3) and (4) are satisfied.

第5図に示した従来の走査光学系においては、前述した
ように光源アレイが製造上の問題により光源アレイの発
光部のピッチに誤差が生じたり、又走査光学系を構成す
るコリメーターレンズや走査レンズの焦点距離が製造上
の問題により誤差が生して設定値から外れることがある
。そうすると例えば前記第6図に示した被走査面上での
走査線(ビームスポットの結像点)la′−1と1b′
1との走査間隔Pに誤差が生じ均一な走査間隔が得られ
なくなり、この為画像のムラが生じるという問題点が生
じてくる。
In the conventional scanning optical system shown in FIG. 5, as mentioned above, the light source array has manufacturing problems that cause errors in the pitch of the light emitting parts of the light source array, and the collimator lens that constitutes the scanning optical system. The focal length of the scanning lens may deviate from the set value due to errors in manufacturing. Then, for example, the scanning lines (beam spot imaging points) la'-1 and 1b' on the scanned surface shown in FIG.
1, an error occurs in the scanning interval P, making it impossible to obtain a uniform scanning interval, resulting in the problem of unevenness of the image.

例えば前述した数値例で示すと光源アレイの発光部の間
隔P。を0.05mm、結像倍率Mを12.7倍とし、
走査線1a −1と走査線lb′−1の間隔誤差ΔPを
画像形成の際の許容範囲である0、005mm以下にし
ようとすると光源アレイの発光部の間隔の誤差を0.4
μm以下に抑える必要がある。
For example, in the numerical example mentioned above, the interval P between the light emitting parts of the light source array. is 0.05 mm, the imaging magnification M is 12.7 times,
In order to reduce the interval error ΔP between the scanning line 1a-1 and the scanning line lb'-1 to 0.005 mm or less, which is the permissible range for image formation, the error in the interval between the light emitting parts of the light source array must be 0.4 mm.
It is necessary to keep it below μm.

又、結像倍率の誤差も0.8%以下に抑える必要かあり
、この為均−な走査間隔で光走査を行うのか非常に難し
くなってくるという問題点が生じてくる。
Furthermore, it is necessary to suppress the error in the imaging magnification to 0.8% or less, which poses the problem that it becomes extremely difficult to perform optical scanning at even scanning intervals.

本発明は従来の問題点を解決する為に光源手段と被走査
面との間の光路中に該被走査面上での走査線の走査間隔
(スポット間隔)を調整することかできる調整部材を設
け、該調整部材により結像倍率、特に副走査方向の結像
倍率を可変とすることにより、被走査面上での走査線の
走査間隔を所望の値に容易に調整することができ、高画
質の画像形成を可能としたマルチビーム走査光学系の提
供を目的とする。
In order to solve the conventional problems, the present invention includes an adjustment member in the optical path between the light source means and the surface to be scanned, which can adjust the scanning interval (spot interval) of the scanning lines on the surface to be scanned. By making the imaging magnification, especially the imaging magnification in the sub-scanning direction, variable using the adjustment member, the scanning interval of the scanning lines on the surface to be scanned can be easily adjusted to a desired value, and the The purpose of this invention is to provide a multi-beam scanning optical system that enables high-quality image formation.

(問題点を解決するための手段) 本発明のマルチビーム走査光学系は、独立に光変調が可
能な複数の発光部を有する光源手段から放射された複数
の光ビームを光学手段により光偏向器に導光し、該光偏
向器で偏向された光ビームを結像光学系により被走査面
上に導光し、該複数の光ど一ムて同時に該被走査面上を
光走査するマルチビーム走査光学系において、該複数の
発光部は該被走査面上の光ビームの走査方向と直交する
方向に配列されており、該光学手段又は結像光学系は該
複数の光ビームによる該被走査面上での走査線の走査間
隔を調整する調整部材を有していることを特徴としてい
る。
(Means for Solving the Problems) The multi-beam scanning optical system of the present invention uses optical means to deflect a plurality of light beams emitted from a light source means having a plurality of light emitting parts capable of independently modulating light. A multi-beam in which a light beam deflected by the optical deflector is guided onto the surface to be scanned by an imaging optical system, and the plurality of beams simultaneously scan the surface to be scanned. In the scanning optical system, the plurality of light emitting parts are arranged in a direction perpendicular to the scanning direction of the light beam on the surface to be scanned, and the optical means or the imaging optical system is arranged in a direction perpendicular to the scanning direction of the light beam on the surface to be scanned. It is characterized by having an adjustment member that adjusts the scanning interval of the scanning lines on the surface.

(実施例) 第1図は本発明の第1実施例の光学系の要部概略図であ
る。
(Embodiment) FIG. 1 is a schematic diagram of the main parts of an optical system according to a first embodiment of the present invention.

同図において1は光源手段であり、複数の発光部1a、
lb(本実施例では2つ)を有しており、例えば複数の
半導体レーザ等より成っている。本実施例での各々の発
光部1a、1bは光ビームの走査方向と直交する方向、
即ち副走査方向に列状に配列されている。
In the figure, 1 is a light source means, which includes a plurality of light emitting parts 1a,
lb (two in this embodiment), and is made up of, for example, a plurality of semiconductor lasers. In this embodiment, each of the light emitting parts 1a and 1b is arranged in a direction perpendicular to the scanning direction of the light beam,
That is, they are arranged in rows in the sub-scanning direction.

2は光学手段であり、光源手段1と後述する光偏向器3
との間の光路中に設けられてあり、光源手段1からの光
束を後述する光偏向器3に導入している。本実施例では
光学手段2は調整部材を兼ねている。(以下光学手段2
を「調整部材2」ともいう。)調整部材2は前群2aと
後群2bの2つのレンズ群より成っており、光源手段1
から放射された複数の光ビームを平行光束とするコリメ
ーターレンズの作用を有している。
2 is an optical means, which includes a light source means 1 and a light deflector 3 to be described later.
It is provided in the optical path between the light source means 1 and introduces the light beam from the light source means 1 into the optical deflector 3, which will be described later. In this embodiment, the optical means 2 also serves as an adjustment member. (Hereinafter, optical means 2
is also referred to as "adjustment member 2." ) The adjustment member 2 consists of two lens groups, a front group 2a and a rear group 2b, and the light source means 1
It has the function of a collimator lens that converts a plurality of light beams emitted from the lens into parallel light beams.

又、調整部材2は前群2aと後群2bの2つのレンズ群
間隔を相対的に変化させることにより焦点距離を可変と
し、結像倍率を可変とし、被走査面(感光媒体面)5上
で走査線の走査間隔が所望の値に調整できるようにして
いる。
Further, the adjustment member 2 makes the focal length variable and the imaging magnification variable by relatively changing the distance between the two lens groups, the front group 2a and the rear group 2b, and the adjustment member 2 makes the focal length variable and the imaging magnification variable. The scanning interval of the scanning lines can be adjusted to a desired value.

3は回転多面鏡等より成る光偏向器であり、矢印a方向
に一定速度で回転している。4はf−θ特性を有する走
査用の結像光学系であり、一部にアナ干フィックレンズ
(アナモフィック光学系)を含んでいる。5は被走査面
である感光媒体面であり、矢印す方向へ一定速度で移動
している。
Reference numeral 3 denotes an optical deflector made of a rotating polygon mirror or the like, which rotates at a constant speed in the direction of arrow a. Reference numeral 4 denotes a scanning imaging optical system having f-θ characteristics, and includes an anamorphic lens (anamorphic optical system) in part. Reference numeral 5 denotes a photosensitive medium surface which is a surface to be scanned, and is moving at a constant speed in the direction of the arrow.

1□、 IL2は各々発光部1a、lbから放射された
光ビームが被走査面5上を光走査する走査線であり、P
はこのときの走査線ILI、I!、2の走査間隔(スポ
ット間隔)を示している。
1□ and IL2 are scanning lines in which the light beams emitted from the light emitting units 1a and lb scan the scanned surface 5, respectively, and P
are the scanning lines ILI and I! at this time. , 2 scanning intervals (spot intervals) are shown.

本実施例においては光源手段1から放射された複数の光
ビームはコリメーター作用をする光学手段2によって各
々平行光束とされ光偏向器3の反射面に入射する。そし
て光偏向器3の反射面によって反射された各々の光ビー
ムは走査用の結像光学系4によって被走査面5上にそれ
ぞれビームスポット径を形成し、これにより該被走査面
5上に画像情報の形成(書込み)を順次行っている。
In this embodiment, a plurality of light beams emitted from a light source means 1 are each converted into parallel beams by an optical means 2 which acts as a collimator, and are incident on a reflecting surface of a light deflector 3. Each of the light beams reflected by the reflective surface of the optical deflector 3 forms a beam spot diameter on the scanned surface 5 by the scanning imaging optical system 4, thereby forming an image on the scanned surface 5. Information is formed (written) sequentially.

本実施例においては一定速度で矢印す方向へ移動する被
走査面5上を複数の光ビームで同時に光走査する際のビ
ームスポットが隣接する走査線を走査するのではなく所
定の距離たけ離れた走査線を光走査し、かつこれ等のビ
ームスポットが同の走査線を二度以上走査しないように
構成している。
In this embodiment, when the surface to be scanned 5, which moves at a constant speed in the direction indicated by the arrow, is simultaneously scanned by a plurality of light beams, the beam spots do not scan adjacent scanning lines, but are separated by a predetermined distance. The scanning line is optically scanned, and the beam spot is configured not to scan the same scanning line more than once.

次に本実施例の各要素の特長を具体的な数値例を用いて
説明する。
Next, the features of each element of this embodiment will be explained using specific numerical examples.

今、被走査面上で画素密度400 d p i (do
t/1nch)の解像度を持つ画像を形成しようとする
と、その為には解像力に相当する走査線1゜12の走査
間隔Pを63.5μm (25,4mm/400 )の
整数倍になるように各光学要素を設定する必要うかある
。例えば基準値として光源アレイ1の発光部1a、lb
の間隔P。を0.05mm、調整部材2の焦点距離の設
定値を10mm、結像光学系4の焦点距離の設定値を1
27mmとする。そうすると副走査方向の結像倍率Mは
12.7倍となるので、被走査面上での走査線f、と走
査線I12との走査間隔PはP=1Ml・Poより0.
635mm (635μm)となる。
Now, the pixel density on the scanned surface is 400 d p i (do
To form an image with a resolution of t/1 nch), the scanning interval P of 1°12 scanning lines, which corresponds to the resolving power, must be an integral multiple of 63.5 μm (25.4 mm/400). Is there a need to configure each optical element? For example, as a reference value, the light emitting parts 1a, lb of the light source array 1
The interval P. 0.05 mm, the setting value of the focal length of the adjustment member 2 is 10 mm, and the setting value of the focal length of the imaging optical system 4 is 1.
The length shall be 27 mm. Then, the imaging magnification M in the sub-scanning direction becomes 12.7 times, so the scanning interval P between the scanning line f and the scanning line I12 on the scanned surface is 0.0.
It becomes 635mm (635μm).

これは画素密度400dpiの解像度を持つ画像を形成
する為の前述した走査間隔63.5μmの整数倍(10
倍)となる。
This is an integral multiple (10
times).

しかしながらこのとき光源アレイ1の製造誤差により光
源アレイ1の各々の発光部の間隔が例えば0.052m
mとズしたとき、そのままの各光学要素の設定値では走
査線x、、n2の走査間隔PはP=0.6604mm 
(660,4μm)となり、画素密度400dp iの
画像の解像力に相当する走査間隔63.5μmの整数倍
から25.4μmたけズして、この結果画像ムラか生じ
てしまう。
However, at this time, due to manufacturing errors of the light source array 1, the interval between each light emitting part of the light source array 1 is, for example, 0.052 m.
m, the scanning interval P of scanning lines x, , n2 is P = 0.6604 mm with the setting values of each optical element as they are.
(660.4 μm), which is a 25.4 μm deviation from an integral multiple of the scanning interval of 63.5 μm, which corresponds to the resolution of an image with a pixel density of 400 dpi, resulting in image unevenness.

そこで本実施例においては上記の走査間隔Pのズレな補
正する為に調整部材2を構成する前群2aと後群2bを
光軸上相対的に移動させ、即ちレンズ群間隔を適宜変化
させて、該調整部材2の焦点距離を変えている。
Therefore, in this embodiment, in order to correct the above-mentioned deviation in the scanning interval P, the front group 2a and the rear group 2b that constitute the adjustment member 2 are moved relatively on the optical axis, that is, the interval between the lens groups is changed as appropriate. , the focal length of the adjustment member 2 is changed.

これにより調整部材2の焦点距離の設定値を10.4m
mと変更することで、結像倍率Mを12.21倍として
いる。この結果、走査間隔PはP=1Ml・P、よりP
ro、635mm(635μm)となる。このようにし
て前述した解像力に相当する走査間隔63.5μmの整
数倍を維持するようにしている。
As a result, the set value of the focal length of the adjustment member 2 is set to 10.4 m.
By changing to m, the imaging magnification M is set to 12.21 times. As a result, the scanning interval P is P=1Ml・P, so P
ro, 635 mm (635 μm). In this way, an integral multiple of the scanning interval of 63.5 μm, which corresponds to the above-mentioned resolution, is maintained.

又、走査用の結像光学系4が製造上の誤差により、焦点
距離の値が例えば1%変化したとき、前述と同様に調整
部材2を構成する前群2aと後群2bのレンズ群間隔を
相対的に変化させることによって、該調整部材2の焦点
距離を設定値より1%前後変化させている。これにより
常に同一の結像倍率が得られるように維持している。
Furthermore, when the focal length of the scanning imaging optical system 4 changes by, for example, 1% due to manufacturing errors, the distance between the front group 2a and the rear group 2b that constitute the adjustment member 2 changes as described above. By relatively changing the focal length of the adjustment member 2, the focal length of the adjustment member 2 is changed by about 1% from the set value. This maintains the same imaging magnification at all times.

このようにして本実施例においては被走査面上での走査
線の走査間隔Pを前述したように各光学要素が製造上誤
差により変化しても調整部材により常に一定(本実施例
においては予め設定した解像力に相当する走査間隔63
.5μmの整数倍)となるように調整している。これに
より被走査面上で図中矢印すに示す如く送り方向に対し
等間隔なピッチの走査線の形成を可能とし、走査線幅の
ムラ、即ち画像のムラを防止している。
In this way, in this embodiment, the scanning interval P of the scanning lines on the surface to be scanned is always kept constant by the adjusting member even if each optical element changes due to manufacturing errors as described above (in this embodiment, Scanning interval 63 corresponding to the set resolution
.. The diameter is adjusted to be an integral multiple of 5 μm). This makes it possible to form scanning lines on the surface to be scanned at equal pitches in the feeding direction as shown by the arrows in the figure, thereby preventing unevenness in the width of the scanning lines, that is, unevenness in the image.

第2図は本発明の第2実施例の要部斜視図である。同図
では面倒れ補正光学系(副走査断面において偏向反射面
と被走査面とが共役関係にある系)に本発明を適用した
ときを示している。同図において第1図に示した要素と
同一要素には同符番な付している。
FIG. 2 is a perspective view of essential parts of a second embodiment of the present invention. This figure shows the case where the present invention is applied to a surface tilt correction optical system (a system in which the deflection reflection surface and the surface to be scanned are in a conjugate relationship in the sub-scanning section). In this figure, the same elements as those shown in FIG. 1 are given the same reference numerals.

22は固定焦点距離のコリメーターレンズである。27
は調整部材であり、線像形成素子より成フている。
22 is a collimator lens with a fixed focal length. 27
is an adjustment member, which is made up of a line image forming element.

本実施例においては調整部材27は負レンズ27aと正
レンズ27bの2枚のシリンドリカルレンズより成って
おり、該シリンドリカルレンズは副走査方向にのみ屈折
力を有しており、これにより光源アレイ1からの光束よ
り線像を形成している。
In this embodiment, the adjustment member 27 is composed of two cylindrical lenses, a negative lens 27a and a positive lens 27b, and the cylindrical lens has refractive power only in the sub-scanning direction. A line image is formed from the light beam.

調整部材27は負レンズ27aと正レンズ27bを光軸
上相対的に移動させレンズ間隔を適宜変化させると共に
各レンズ全体を光軸上移動させて副走査方向の焦点距離
を変化させている。これにより光源アレイ1からの光束
に基づく線像な光偏向器3の偏向面3a近傍に常に結像
させるようにしている。
The adjusting member 27 moves the negative lens 27a and the positive lens 27b relative to each other on the optical axis to appropriately change the lens interval, and also moves each lens as a whole on the optical axis to change the focal length in the sub-scanning direction. Thereby, a linear image based on the light beam from the light source array 1 is always formed near the deflection surface 3a of the optical deflector 3.

20は走査用の結像光学系であり、アナモフィック光学
系を有している。即ち結像光学系20は球面レンズ20
aとトーリックレンズ20bより成っており、主走査面
内と副走査面内では互いに焦点距離が異なり、該主走査
面内においてはf−θ特性を満たし、副走査面内では偏
向面3aと被走査面5aとを共役関係となるようにして
いる。
20 is an imaging optical system for scanning, and has an anamorphic optical system. That is, the imaging optical system 20 includes a spherical lens 20
a and a toric lens 20b, which have different focal lengths in the main scanning plane and in the sub-scanning plane, and satisfy the f-θ characteristic in the main scanning plane, and the deflection surface 3a and the toric lens 20b in the sub-scanning plane. It is arranged to have a conjugate relationship with the scanning plane 5a.

本実施例においては光源手段!より放射された複数の光
ビームはコリメーターレンズ22によって平行光束とさ
れ線像形成用の調整部材27に入射する。調整部材27
を構成する負レンズ27aと正レンズ27bの2枚のシ
リンドリカルレンズは主走査断面に関しては屈折力を有
していない為に入射した平行光束のうち主走査断面内に
おいては光ど−ムはそのまま平行光束の状態で進む。
In this embodiment, the light source means! The plurality of light beams emitted from the collimator lens 22 are made into parallel light beams and are incident on an adjusting member 27 for forming a line image. Adjustment member 27
The two cylindrical lenses, the negative lens 27a and the positive lens 27b, which make up the main scanning section do not have refractive power in the main scanning cross section, so the optical dome remains parallel within the main scanning cross section of the incident parallel light beam. Proceed in a state of luminous flux.

方、調整部材27は副走査断面に関しては屈折力な有し
ている為に入射した平行光束は副走査断面内において集
束されて光偏向器3の偏向反射面3aにほぼ線像として
結像される。
On the other hand, since the adjusting member 27 has a refractive power in the sub-scanning section, the incident parallel light beam is focused in the sub-scanning section and is imaged on the deflection reflection surface 3a of the optical deflector 3 as a substantially line image. Ru.

モして該光偏向器3の偏向反射面3aによって反射され
た各々の光ビームは結像光学系2oによって被走査面5
a上にそれぞれビームスポットを形成し、該被走査面5
a上に画像情報の形成(書込み)を順次行っている。
Each light beam reflected by the deflection reflecting surface 3a of the optical deflector 3 is directed to the scanned surface 5 by the imaging optical system 2o.
A beam spot is formed on each surface 5 to be scanned.
Image information is sequentially formed (written) on a.

本実施例においては調整部材27を構成する負レンズ2
7aと正レンズ27bのレンズ間隔を相対的に変化させ
ることにより、該調整部材27の焦点距離を変化させ、
副走査方向の結像倍率を可変としている。
In this embodiment, the negative lens 2 constituting the adjustment member 27 is
By relatively changing the lens distance between 7a and the positive lens 27b, the focal length of the adjustment member 27 is changed,
The imaging magnification in the sub-scanning direction is variable.

これにより前述した第1実施例と同様に光源アレイ1の
発光部1a、lbのピッチ(間隔)が製造上の誤差によ
り変化したり、又コリメーターレンズ22あるいは走査
用の結像光学系20の焦点距離が製造上の誤差により変
化しても調整部材27の焦点距離を適宜変化させること
により走査線Il、、12の走査間隔か被走査面上で予
め設定した解像力に相当する値の整数倍になるように調
整している。
As a result, as in the first embodiment described above, the pitch (interval) between the light emitting parts 1a and 1b of the light source array 1 may change due to manufacturing errors, or the collimator lens 22 or the scanning imaging optical system 20 may change. Even if the focal length changes due to manufacturing errors, by appropriately changing the focal length of the adjustment member 27, the scanning interval of the scanning lines I1, , 12 can be adjusted by an integral multiple of the value corresponding to the preset resolution on the scanned surface. It is adjusted so that

第3図は本発明の第3実施例の要部斜視図であり、前述
の第2図に示した第2実施例と同様に面倒れ補正光学系
に適用したときを示している。同図に右いて第1、第2
図に示した要素と同一要素には同符番を付している。
FIG. 3 is a perspective view of a main part of a third embodiment of the present invention, and shows the case where it is applied to a surface tilt correction optical system like the second embodiment shown in FIG. 2 described above. 1st and 2nd on the right in the same figure
Elements that are the same as those shown in the figures are given the same reference numerals.

本実施例において37は線像形成素子であり、固定焦点
距離のレンズより構成している。そしてコリメーターレ
ンズ22と線像形成素子37との間の光路中に調整部材
としてアダプターレンズ31を付加して構成している。
In this embodiment, 37 is a line image forming element, which is composed of a fixed focal length lens. An adapter lens 31 is added as an adjustment member in the optical path between the collimator lens 22 and the line image forming element 37.

この点が第2図に示した第2実施例と異なっており、そ
の他の構成は略同じである。
This point is different from the second embodiment shown in FIG. 2, and the other configurations are substantially the same.

本実施例においては前述したように各光学要素の製造上
の問題により被走査面上での走査線42、、第2の走査
間隔に誤差が生じたとき、アダプターレンズ31を光軸
上適切に移動させることにより、副走査方向の結像倍率
を変化させて走査線f、、A2の走査間隔が常に等間隔
となるように調整している。即ち複数のビームスポット
が被走査面上で予め設定した解像力に相当する走査間隔
の整数倍になるように常に維持している。
In this embodiment, as described above, when an error occurs in the scanning line 42 or the second scanning interval on the scanned surface due to manufacturing problems of each optical element, the adapter lens 31 is adjusted appropriately on the optical axis. By moving it, the imaging magnification in the sub-scanning direction is changed, and the scanning intervals of the scanning lines f, . . . A2 are adjusted to be always at equal intervals. That is, the plurality of beam spots are always maintained at an integral multiple of the scanning interval corresponding to a preset resolution on the surface to be scanned.

尚、本実施例においてアダプターレンズ31を用いて副
走査方向の結像倍率を可変とする際、主走査方向の結像
位置が僅かながら移動してくる。
In this embodiment, when the adapter lens 31 is used to vary the imaging magnification in the sub-scanning direction, the imaging position in the main-scanning direction moves slightly.

しかしながら一般には走査用の結像光学系2oとして主
走査方向の焦点深度が深いものを用いている為に、その
焦点深度の範囲内でアダプターレンズを光軸上移動させ
ることができる。
However, since the imaging optical system 2o for scanning generally has a deep focal depth in the main scanning direction, the adapter lens can be moved along the optical axis within the range of the focal depth.

尚、以上の各実施例において調整部材を光源手段と光偏
向器との間の光路中に設けたが、該調整部材を被走査面
と光偏向器との間の光路中に設けて副走査方向の結像倍
率を可変としても本発明は前述の実施例と同様に適用す
ることかできる。
In each of the above embodiments, the adjustment member was provided in the optical path between the light source means and the optical deflector, but the adjustment member was provided in the optical path between the surface to be scanned and the optical deflector to perform sub-scanning. Even if the imaging magnification in the direction is variable, the present invention can be applied in the same manner as in the above-described embodiments.

(発明の効果) 本発明によれば前述したように光源手段と被走査面との
間の光路中に被走査面上での走査線の走査間隔を調整す
る調整部材を設けて、該調整部材により結像倍率、特に
副走査方向の結像倍率を可変とすることにより、複数の
ビームスポットか被走査面上で予め設定した解像力に相
当する走査間隔の整数倍を常に雑持し、これにより画質
の向上を図った画像形成ができるマルチビーム走査光学
系を達成することができる。
(Effects of the Invention) According to the present invention, as described above, an adjustment member for adjusting the scanning interval of the scanning lines on the surface to be scanned is provided in the optical path between the light source means and the surface to be scanned, and the adjustment member By making the imaging magnification, especially the imaging magnification in the sub-scanning direction, variable, multiple beam spots or integral multiples of the scanning interval corresponding to the preset resolution are always kept on the scanned surface. A multi-beam scanning optical system capable of forming images with improved image quality can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の要部概略図、第2.第3
図は各々本発明を面倒れ補正光学系に適用したときの第
2.第3実施例の要部斜視図、第4図は従来のマルチビ
ーム走査光学系において被走査面を光走査する際の走査
面上の説明図、第5図は従来の走査光学系の要部概略図
、第6図は第5図の走査光学系において被走査面を光走
査する様子を示す説明図である。 図中、1は光源手段、la、lbは発光部、2.27.
31は調整部材、3は光偏向器、4は結像光学系、20
はアナ干フィック光学系、5は被走査面、22はコリメ
ーターレンズ、37は線像形成素子、20aは球面レン
ズ、20bはトーリックレンズ、Its、12は走査線
である。 第 図 第 図 d 第 図 16′−6
FIG. 1 is a schematic diagram of the main parts of the first embodiment of the present invention, and FIG. Third
The figures each show the second example when the present invention is applied to a surface tilt correction optical system. A perspective view of the main parts of the third embodiment, FIG. 4 is an explanatory diagram of the scanning surface when the surface to be scanned is optically scanned in a conventional multi-beam scanning optical system, and FIG. 5 is a main part of the conventional scanning optical system. The schematic diagram, FIG. 6, is an explanatory diagram showing how the surface to be scanned is optically scanned in the scanning optical system of FIG. 5. In the figure, 1 is a light source means, la and lb are light emitting parts, 2.27.
31 is an adjustment member, 3 is an optical deflector, 4 is an imaging optical system, 20
5 is an analog optical system, 5 is a scanned surface, 22 is a collimator lens, 37 is a line image forming element, 20a is a spherical lens, 20b is a toric lens, and 12 is a scanning line. Figure Figure d Figure 16'-6

Claims (3)

【特許請求の範囲】[Claims] (1)独立に光変調が可能な複数の発光部を有する光源
手段から放射された複数の光ビームを光学手段により光
偏向器に導光し、該光偏向器で偏向された光ビームを結
像光学系により被走査面上に導光し、該複数の光ビーム
で同時に該被走査面上を光走査するマルチビーム走査光
学系において、該複数の発光部は該被走査面上の光ビー
ムの走査方向と直交する方向に配列されており、該光学
手段又は結像光学系は該複数の光ビームによる該被走査
面上での走査線の走査間隔を調整する調整部材を有して
いることを特徴とするマルチビーム走査光学系。
(1) A plurality of light beams emitted from a light source means having a plurality of light emitting parts capable of independently modulating light is guided to an optical deflector by an optical means, and the light beams deflected by the optical deflector are combined. In a multi-beam scanning optical system in which light is guided onto a surface to be scanned by an imaging optical system and the surface to be scanned is simultaneously scanned with the plurality of light beams, the plurality of light emitting parts are configured to guide the light beams on the surface to be scanned. are arranged in a direction perpendicular to the scanning direction, and the optical means or imaging optical system has an adjusting member that adjusts the scanning interval of the scanning lines on the surface to be scanned by the plurality of light beams. A multi-beam scanning optical system characterized by:
(2)前記光学手段は調整部材を有しており、該調整部
材は光ビームの走査方向と垂直な方向にのみ屈折力を有
する線像形成素子を有しており、前記結像光学系はアナ
モフィック光学系を有していることを特徴とする請求項
1記載のマルチビーム走査光学系。
(2) The optical means has an adjustment member, the adjustment member has a line image forming element having refractive power only in a direction perpendicular to the scanning direction of the light beam, and the imaging optical system The multi-beam scanning optical system according to claim 1, characterized in that it has an anamorphic optical system.
(3)前記光学手段は調整部材を有しており、該調整部
材は焦点距離可変のコリメーターレンズより成っており
、かつ該光学手段は光ビームの走査方向と垂直な方向に
のみ屈折力を有する線像形成素子を有しており、前記結
像光学系はアナモフィック光学系を有していることを特
徴とする請求項1記載のマルチビーム走査光学系。
(3) The optical means has an adjustment member, the adjustment member is made of a collimator lens with a variable focal length, and the optical means has refractive power only in a direction perpendicular to the scanning direction of the light beam. 2. The multi-beam scanning optical system according to claim 1, further comprising a line image forming element having a linear image forming element, and wherein said imaging optical system has an anamorphic optical system.
JP22034090A 1990-08-21 1990-08-21 Multi-beam scanning optical system Pending JPH04101112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22034090A JPH04101112A (en) 1990-08-21 1990-08-21 Multi-beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22034090A JPH04101112A (en) 1990-08-21 1990-08-21 Multi-beam scanning optical system

Publications (1)

Publication Number Publication Date
JPH04101112A true JPH04101112A (en) 1992-04-02

Family

ID=16749616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22034090A Pending JPH04101112A (en) 1990-08-21 1990-08-21 Multi-beam scanning optical system

Country Status (1)

Country Link
JP (1) JPH04101112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227564A (en) * 1999-02-05 2000-08-15 Minolta Co Ltd Multi-beam scanning optical device
US6753991B2 (en) 2002-02-01 2004-06-22 Hitachi Printing Solutions, Ltd. Optical recording apparatus
US8456502B2 (en) 2010-03-11 2013-06-04 Ricoh Company, Ltd. Optical scanner and image forming apparatus using the same
US8675034B2 (en) 2011-01-06 2014-03-18 Ricoh Company, Limited Optical scanning apparatus and image forming apparatus
US8913098B2 (en) 2010-08-19 2014-12-16 Ricoh Company, Limited Optical scanning device and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227564A (en) * 1999-02-05 2000-08-15 Minolta Co Ltd Multi-beam scanning optical device
US6753991B2 (en) 2002-02-01 2004-06-22 Hitachi Printing Solutions, Ltd. Optical recording apparatus
US8456502B2 (en) 2010-03-11 2013-06-04 Ricoh Company, Ltd. Optical scanner and image forming apparatus using the same
US8913098B2 (en) 2010-08-19 2014-12-16 Ricoh Company, Limited Optical scanning device and image forming apparatus
US8675034B2 (en) 2011-01-06 2014-03-18 Ricoh Company, Limited Optical scanning apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
KR100266095B1 (en) Scanning optical apparatus
JPH0114562B2 (en)
JPH10197821A (en) Scanning optical instrument
JPH0933850A (en) Optical scanner
JP3549666B2 (en) Multi-beam writing optical system
US6268877B1 (en) Scanning optical device featuring optical system image magnifications in main and subscanning directions within a prescribed range
JPH04101112A (en) Multi-beam scanning optical system
JP3197804B2 (en) Multi-beam scanner
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
US6108115A (en) Scanning optical system
JPH07111509B2 (en) Optical scanning device
JP2005338865A (en) Scanning optical apparatus and laser beam printer having the same
JPH08248345A (en) Optical scanner
US6819461B2 (en) Multibeam light source and multibeam scanner
JPH0618802A (en) Optical scanning device
JP2811988B2 (en) Optical scanning device in image forming apparatus
JP2657381B2 (en) Light flux adjusting method for scanning optical device
JPH10246860A (en) Multi-beam scanning optical device
JP3455485B2 (en) Optical scanning light source device and optical scanning device using the same
JPS62194215A (en) Light beam scanning device
JP2716428B2 (en) Surface tilt correction scanning optical system
JPH08234126A (en) Raster scanning optical system
JPH09274151A (en) Multibeam scanning optical device
JPH06202020A (en) Multi-beam scanning optical device
JP2001159741A (en) Optical scanner