JPS59151771A - Electrolyte supply device of fuel cell - Google Patents

Electrolyte supply device of fuel cell

Info

Publication number
JPS59151771A
JPS59151771A JP58025077A JP2507783A JPS59151771A JP S59151771 A JPS59151771 A JP S59151771A JP 58025077 A JP58025077 A JP 58025077A JP 2507783 A JP2507783 A JP 2507783A JP S59151771 A JPS59151771 A JP S59151771A
Authority
JP
Japan
Prior art keywords
long
grooves
electrolyte
matrix
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025077A
Other languages
Japanese (ja)
Inventor
Masao Kumeta
粂田 政男
Kensho Matsuoka
松岡 憲昭
Yuji Sawada
雄治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58025077A priority Critical patent/JPS59151771A/en
Publication of JPS59151771A publication Critical patent/JPS59151771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase the storage amount of electrolyte and improve operation rate of a cell by dividing a gas separating plate and forming a plurality of liquid reserve grooves in the plates. CONSTITUTION:A gas separating plate 2 is divided into a semiplate 21 having hydrogen supply grooves 7 and a semiplate 22 having air supply grooves 6, and a plurality of liquid reserve grooves 11 are formed on the joint flat surface 10 of the semiplate 21 and 22 so as to face then. Long through holes 12 which pass to both ends of each liquid reserve groove 11 are installed on both end seal surfaces 3 of the semiplate 21. The long through holes 12 which are arranged vertically in a stack S are connected each other in each end by a liquid supply hole 13. When liquid supply is required by dry up of a matrix of unit cell 1, electrolyte is poured from a set of liquid supply pipes 14 of the stack S. The electrolyte is supplied to the matrix through the liquid supply hole 13, long through hole 12, liquid reserve grooves 11 and faced long through hole 12.

Description

【発明の詳細な説明】 (イ1 産業上の利用分野 本発明はマトリックス型健料電池における電解液の補給
装置に門するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to an electrolyte replenishment device for a matrix type health battery.

([ff1  従来技術 この種笥、池において燐酸などの酸性電解液は対極間例
えば9気極と氷菓極間に介在するマF9ックス中に保持
されているが、宮池作動中各極背面に流通する高m、(
約180℃ンの反応ガスによってマトリックスが乾燥し
、電池性能7便下させる要因となっている。
([ff1 Prior Art In this type of pot, an acidic electrolyte such as phosphoric acid is held in a matrix interposed between the counter electrodes, for example, between the 9 gas electrode and the frozen electrode. High m, (
The reaction gas at about 180° C. dries the matrix, which is a factor that lowers the battery performance by 7 points.

そのため電池内に電解液の貯蔵部を設けて外部からこの
貯蔵部Z介してマトリックスに電解#を補給する方法が
とられる。
Therefore, a method is adopted in which an electrolyte storage section is provided in the battery and electrolyte # is supplied to the matrix from the outside via this storage section Z.

従来の貯蔵部は、第2図に示すようにスタック(8)の
単位セル(1)間に弁孔する各炭素質ガス分離板(2)
の側辺シール面(3)に穿設した貯液溝(4)として構
成され、且これら貯#溶(4)は、隣接貯液溝間ケ結ぶ
各貫通孔(5)により、スタック18+内で直列的(二
連通されて補液経路を形成していた。
A conventional storage unit has carbonaceous gas separation plates (2) each having a valve hole between unit cells (1) of a stack (8) as shown in Fig. 2.
These storage grooves (4) are connected to the inside of the stack 18+ by through holes (5) connecting adjacent liquid storage grooves. in series (two connected to form a fluid replacement route).

しかしこのような貯液溝(4)だけでは貯蔵電解液量が
限られるので、度々電池の作動!停止して外部より補液
する必要があり稼動率の低下する原因となっていた。
However, since the amount of stored electrolyte is limited with just such a liquid storage groove (4), the battery is often activated! It was necessary to stop the system and replenish the fluid from outside, which caused a decrease in the operating rate.

(/→ 発明の目的 不発9明は電池スタック内の貯蔵電解液tv増大して補
液周期¥延長し、電池稼動率の向上2図ることを目的と
する。
(/→ Purpose of the Invention The object of the invention is to increase the storage electrolyte tv in the battery stack, extend the fluid replacement period, and improve the battery operating rate.

に)発明の構成 本発明は半プレートの接合(二より構成されたガス分離
板もしくは前記半プレートと冷却“プレートの接合によ
り構成された冷却板兼用ガス分離板の前記接合面に、複
数条の液溜溝を形成し、これら液溜溝の両端を前記半プ
レートの両側辺シール面に夫々穿設された貫通長孔に夫
々連通させ、この対向貫通長孔にマトリックスの両側縁
をのぞませたものである。
2) Structure of the Invention The present invention provides a method for joining half plates (a gas separation plate composed of two parts or a gas separation plate serving as a cooling plate and a cooling plate formed by joining the half plate and a cooling plate, in which a plurality of strips are formed on the joint surface Liquid reservoir grooves are formed, and both ends of these liquid reservoir grooves are communicated with through-holes formed in the sealing surfaces on both sides of the half plate, respectively, and both side edges of the matrix are visible through the opposed through-holes. It is something that

―l実施例 本発明の対象とする電池スタック(Slは、第1図及び
第2図に示すよう窒気極(Pi、水累極(Nl及びマト
リックス−)よりなる単位セル(1)と、その両面C二
互に交錯する方向に夫々突気供給溝(6)及び水素供給
溝(7)を夫々有する炭素質ガス分離板(2)とン交互
に積層して構成され、且数単位セル毎に9気通路(8)
を有する冷却板(9)が介挿されている。
-1 Example A battery stack to which the present invention is applied (Sl is a unit cell (1) consisting of a nitrogen electrode (Pi, water electrode (Nl and matrix) as shown in FIGS. 1 and 2), The carbonaceous gas separation plates (2) each having a gas supply groove (6) and a hydrogen supply groove (7) in two intersecting directions are alternately stacked on each other, and several unit cells are stacked on each other. every 9 air passages (8)
A cooling plate (9) having a diameter is inserted.

第6図及び第4図(第6図のX−X線C二よる断面図)
に示す実施例は、ガス分離板(2)乞、水素供給溝(7
)を有する一半プレー)(21)と9気供給溝((31
fL:葡する他生プレート(22)に分割し、これら半
プレート(21)(22)の接合平担面(10)に夫々
対向して複数条の液溜溝(10)’e影形成た場合であ
る。
Figures 6 and 4 (cross-sectional view taken along line X-X line C2 in Figure 6)
In the embodiment shown in FIG.
) with one and a half plays) (21) and nine air supply grooves ((31)
fL: Divided into allogeneic plates (22), and formed a plurality of liquid reservoir grooves (10)'e shadows facing the joint flat surfaces (10) of these half plates (21) and (22), respectively. This is the case.

イブl 一方第5図の他実施は、前記−半プレート(21)と、
冷却板(9)を構成する一半プレート(91)の接合平
担面αQに前記実施例と同様の液溜溝O1lを形成した
場合を示す。この場合9気通路(8)!有する前記−半
プレート(91)は質に9気供給溝(6)を有する他生
プレート(92)C前記実施例における他生プレート(
22)と同様のもの〕の平担面と接合して冷却板兼用の
ガス分離板ン構成する。
On the other hand, the other embodiment of FIG. 5 includes the half plate (21),
A case is shown in which a liquid reservoir groove O1l similar to that of the previous embodiment is formed on the joint flat surface αQ of the one-and-a-half plate (91) constituting the cooling plate (9). In this case, 9 air passages (8)! The above-mentioned half plate (91) having 9 air supply grooves (6) is the allogenous plate (92) C in the above embodiment.
22)] to form a gas separation plate that also serves as a cooling plate.

前記いづれの実施例の場合も一方の反応ガス溝例えば水
素供給*(7)v有する前記−半プレート(21)の両
側シール面(3)には、夫々前記各液溜溝0Dの両端に
連通ずるよう艮通長孔睦が穿設されている。スタック(
Eilの上下方向に配列されたこれら貫通長孔■4はそ
の各−喘において給液孔(131により互C二連通して
いる。この状態は第6図に示すガス分離板(2)の平面
図によって理解されるであろう。
In any of the above embodiments, the sealing surfaces (3) on both sides of the half plate (21) having one reaction gas groove, for example, hydrogen supply *(7)v, are connected to both ends of each of the liquid reservoir grooves 0D, respectively. A long hole has been drilled for communication. stack(
These long through holes (4) arranged in the vertical direction of Eil are in communication with each other through liquid supply holes (131) in each hole. It will be understood by the diagram.

尚液溜溝111Jは前記各実施例のように接合平担面の
夫々に対向して形成し、接合時これらが合体して液溜部
分とする代6月二、接合平担面のいづれか一方に液溜溝
011’&形成してもよい。
The liquid reservoir grooves 111J are formed opposite to each of the flat joining surfaces as in each of the above embodiments, and when joined, these grooves are combined to form a liquid reservoir part. A liquid reservoir groove 011'& may be formed.

又プレート間の接合方法は各プレートの接合面周辺部に
接着剤例えばグラファイト粉末を含むFE’Pディスパ
ージョンを塗布し、加圧状態で350℃1時間熱処理し
て接着固定する。
The method for joining the plates is to apply an adhesive such as FE'P dispersion containing graphite powder to the periphery of the joining surface of each plate, and heat-treat the plates at 350° C. for 1 hour under pressure to bond and fix them.

対向シール面(3)の各貫通長孔t12J1121はマ
トリックス+Mlの両側縁で覆はれるが、この場合貫通
長孔02にマMlツクスと類似材質の充填物を入れてお
けば、各液溜溝01)から毛、管作用により吸液してマ
トリックス(Mlへの含浸7円滑化することができる。
Each of the long through holes t12J1121 on the opposing seal surface (3) is covered by both sides of the matrix+Ml, but in this case, if the long through holes 02 are filled with a filler made of a similar material to the matrix, each liquid reservoir groove Impregnation into the matrix (Ml) can be facilitated by absorbing liquid from the 01) by hair and tube action.

今マドIJッグス(財)の乾燥により補液Z必要とする
ときは、スタック1B+の一対の給液バイブα4より電
解液!注入すれば、給液孔a3、各貫通長孔(121及
When you need a replacement fluid Z due to the dryness of Mado IJ GGS (foundation), use the electrolyte solution from the pair of fluid supply vibes α4 of Stack 1B +! If it is injected, the liquid supply hole a3 and each through hole (121 and 121).

び各液溜長孔(Illが電解液で満たされ、対向貫通長
孔(12171’介してマトリックス(矧には、その両
側縁から電解液が含浸されるので、補液作業を短時間で
行うことができる。
and each liquid reservoir elongated hole (Ill) is filled with electrolyte, and the matrix is impregnated with electrolyte from both sides of the matrix through the opposing through elongated hole (12171'), so that the liquid replenishment work can be done in a short time. I can do it.

電池作動中これら貯蔵電解液は、マトリックスの乾燥に
応じてマトリックスに補充され長期間に亘り安定した電
池反応が行われる。
During battery operation, these stored electrolytes are replenished into the matrix as the matrix dries, resulting in a stable battery reaction over a long period of time.

(へ)発明の効果 本発明によれば、ガス分離板又は冷却板兼用ガス分離板
を構成する分割プレートの接合面?利用して附加的な液
溜部を形成すると共Cニブレートの対向シール面に夫々
穿設された貫通長孔(二より主液溜部l構成したので、
従来のものに比し電解液の貯蔵量を著しく増大すること
ができると共Cニマトリックスへの電解液含浸は、前記
対向貫通長孔に接するその両側縁からすみやかに行はれ
る。
(F) Effects of the Invention According to the present invention, the joint surfaces of the split plates constituting the gas separation plate or the gas separation plate that also serves as a cooling plate? The main liquid reservoir is formed by using long through holes (two-way main liquid reservoir) formed in the opposing sealing surface of the C nibrate.
The amount of electrolyte stored can be significantly increased compared to the conventional one, and the C matrix is impregnated with electrolyte from both sides of the matrix that are in contact with the opposed long holes.

このように本発明は電池スタック内に貯蔵された多量の
電解液により補液周期り拡大して電池の稼動率を向上す
ると共にマトリックスへの補液時間を短縮し得るなどす
ぐれた効果を発揮する。
As described above, the present invention exhibits excellent effects such as extending the replenishment period by using a large amount of electrolyte stored in the battery stack, improving the operating rate of the battery, and shortening the time required for replenishing the matrix.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電池スタックの斜面図、第2図は従来の補液装
置の要部斜面図、第3図は本発明装置の一実施例を示す
要部斜面図、第4図は第6図のX−X線による断面図、
第5図は本発明装置の他実施例乞示す要部斜面図である
。又第6図は前記両実施例におけるガス分離板の平面図
Z示す。 S・・・電池スタック、1・・・単位セル、(M・・・
マトリックス、N・・・水素極、P・・・窒気極)、2
・・・ガス分離板(21・・・−半プレート、22・・
・他生プレート)、9・・・冷却板(91・・・−半プ
レート、92・・・他生プレート)、3・・・シール面
、6.7・・・反応ガス溝、8・・・9気通路、10・
・・平担背面、11・・・液溜溝、12・・・貫通長孔
、13・・・給液路。 3図 4図
FIG. 1 is a perspective view of a battery stack, FIG. 2 is a perspective view of essential parts of a conventional fluid replacement device, FIG. 3 is a perspective view of essential parts showing an embodiment of the device of the present invention, and FIG. Cross-sectional view taken along the X-X line,
FIG. 5 is a perspective view of essential parts showing another embodiment of the apparatus of the present invention. Further, FIG. 6 shows a plan view Z of the gas separation plate in both of the above embodiments. S...Battery stack, 1...Unit cell, (M...
matrix, N...hydrogen electrode, P...nitrogen electrode), 2
...Gas separation plate (21...-half plate, 22...
・Allogeneic plate), 9...Cooling plate (91...-half plate, 92...Other plate), 3...Sealing surface, 6.7...Reactant gas groove, 8...・9 air passages, 10・
... Flat back surface, 11 ... Liquid reservoir groove, 12 ... Long through hole, 13 ... Liquid supply path. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 ■ 一方の反応ガス溝Z配列した一半プレートと他方の
反応ガス溝ン配列した他生プレートもしくは空気通路を
有する冷却プレートとの各平担背τ 面ン互に接合−なり、前記−半プレートの両側辺シール
面に夫々マトリックスの両側縁をのぞませた貫通長孔を
穿設すると共に、前記平担背面に前記対向貫通長孔と連
通ずる複数条の液溜溝を形成し、前記各プレートの貫通
長孔間を給液孔で連通せしめたこと7特徴とする健料電
池の電解液補給装置。
[Scope of Claims] ■ Each flat back τ surface of one half plate with reactive gas grooves arranged in a Z-array and the other half plate with reactive gas grooves arranged in an array or a cooling plate having an air passage connected to each other. , drilling long through holes in both side sealing surfaces of the half plate, respectively, through which both side edges of the matrix can be seen, and forming a plurality of liquid reservoir grooves in communication with the opposing long holes on the flat back surface. 7. An electrolyte replenishing device for a health battery, characterized in that the long through holes of each plate are connected through a liquid supply hole.
JP58025077A 1983-02-16 1983-02-16 Electrolyte supply device of fuel cell Pending JPS59151771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025077A JPS59151771A (en) 1983-02-16 1983-02-16 Electrolyte supply device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025077A JPS59151771A (en) 1983-02-16 1983-02-16 Electrolyte supply device of fuel cell

Publications (1)

Publication Number Publication Date
JPS59151771A true JPS59151771A (en) 1984-08-30

Family

ID=12155858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025077A Pending JPS59151771A (en) 1983-02-16 1983-02-16 Electrolyte supply device of fuel cell

Country Status (1)

Country Link
JP (1) JPS59151771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155562A (en) * 1986-12-10 1988-06-28 エンバイロンメンタル・エナジー・システムズ・インコーポレイテッド Fuel battery laminate construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155562A (en) * 1986-12-10 1988-06-28 エンバイロンメンタル・エナジー・システムズ・インコーポレイテッド Fuel battery laminate construction
EP0274003A2 (en) * 1986-12-10 1988-07-13 Westinghouse Electric Corporation Improved internal electrolyte supply system for reliable transport throughout fuel cell stack

Similar Documents

Publication Publication Date Title
US3833424A (en) Gas fuel cell battery having bipolar graphite foam electrodes
US4648955A (en) Planar multi-junction electrochemical cell
US3141795A (en) Storage batteries
US4450212A (en) Edge seal for a porous gas distribution plate of a fuel cell
EP0188873A2 (en) Lightweight bipolar metal-gas battery
US4614025A (en) Method for making a lightweight bipolar metal-gas battery
EP0198979B1 (en) Fuel cell assemblies
JPH04229960A (en) Gas-recycle battery for electoro- chemical system
JP2002083614A (en) Fuel cell and its manufacturing method
JPS59151771A (en) Electrolyte supply device of fuel cell
US4751062A (en) Fuel cell with electrolyte matrix assembly
JPS59154772A (en) Fuel cell
JP3046859B2 (en) Phosphoric acid fuel cell
JPH0414469B2 (en)
CA1319171C (en) Dry fuel cell stack assembly
JPS6489154A (en) Fuel cell
JPS6358768A (en) Fuel cell
JPS58150277A (en) Fuel cell
JPS6243071A (en) Electrolyte supplement device for fuel cell
GB2574023A (en) Method of construction of an elongated bipolar plate battery
JPS5810373A (en) Liquid supply device of matrix type fuel cell
JPS6093272U (en) stacked fuel cell
JPS58161266A (en) Matrix type fuel cell
JPS6334859A (en) Fuel cell
JPS6180760A (en) Fuel cell