JPS5915145B2 - Impact resistant thermoplastic resin composition - Google Patents

Impact resistant thermoplastic resin composition

Info

Publication number
JPS5915145B2
JPS5915145B2 JP1978079A JP1978079A JPS5915145B2 JP S5915145 B2 JPS5915145 B2 JP S5915145B2 JP 1978079 A JP1978079 A JP 1978079A JP 1978079 A JP1978079 A JP 1978079A JP S5915145 B2 JPS5915145 B2 JP S5915145B2
Authority
JP
Japan
Prior art keywords
weight
copolymer
resin composition
styrene
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978079A
Other languages
Japanese (ja)
Other versions
JPS55112252A (en
Inventor
朋三 松本
孝 酒井
弘幸 嘉本
利昌 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1978079A priority Critical patent/JPS5915145B2/en
Publication of JPS55112252A publication Critical patent/JPS55112252A/en
Publication of JPS5915145B2 publication Critical patent/JPS5915145B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 10本発明は耐衝撃性熱可塑性樹脂組成物に関するもの
であり、さらに詳しくは成形性、加工性、製品の外観お
よび機械的性質等の改善されたいわゆるABS樹脂の改
良にかかる耐衝撃性熱可塑性樹脂組成物に関するもので
ある。
Detailed Description of the Invention 10 The present invention relates to an impact-resistant thermoplastic resin composition, and more specifically to improvements in so-called ABS resins that have improved moldability, processability, product appearance, mechanical properties, etc. The present invention relates to an impact-resistant thermoplastic resin composition.

15周知のごとくABS樹脂は、射出成形、押出成形な
どの成形加工性に優れた耐衝撃性熱可塑性樹脂であるた
め成形用材料として広範囲に渡つて使用されている。
15 As is well known, ABS resin is an impact-resistant thermoplastic resin with excellent moldability in injection molding, extrusion molding, etc., and is therefore widely used as a molding material.

しかし近年需用家においては、成形品の大型化、クo
薄肉化などその使用状況は複雑化し、また使用目的に応
じて種々品質の要望が強いため、成形加工性、製品の仕
上がり状態はもとより、機械的性質、化学的性質、或は
熱的性質などバランス良く備える必要がある。
However, in recent years, consumers have been increasing the size of molded products and
The usage situation is becoming more complex, such as thinner walls, and there are strong demands for various qualities depending on the purpose of use. We need to be well prepared.

25これらの要求を満足させるには従来の方法では限界
があつた。
25 Conventional methods have limitations in meeting these requirements.

すなわち従来の方法としてはABS樹脂の諸性質の改善
の目的でゴム相のゴム粒子径、グラフト構造とかマトリ
ックス樹脂相の組成、分子量或はABS樹脂としてのゴ
ム質成分30の含有率等を変化させたり、また安定剤、
滑剤、可塑剤などの添加によつて目的とする品質バラン
スを付与せしめていたが、諸性質のレベルを一定以上に
保持しかつ目的としうる性質を改善させるには、これら
の方法のみでは、十分とは言えなか35つた。例えば、
耐衝撃性の向上手段としてゴム質成分を増加すると成形
性や剛性が犠牲になり、一方成ェ63−形性改良を目的
として滑剤や可塑剤を多量添加すると、耐熱性の低下や
プレートアウト等の問題が生じるため十分な解決法には
至らなかつた。
That is, conventional methods involve changing the rubber particle diameter of the rubber phase, the graft structure, the composition of the matrix resin phase, the molecular weight, the content of the rubbery component 30 as the ABS resin, etc. in order to improve the various properties of the ABS resin. or stabilizers,
The desired quality balance has been achieved by adding lubricants, plasticizers, etc., but these methods alone are not sufficient to maintain the level of various properties above a certain level and improve the desired properties. However, there were only 35. for example,
Increasing the rubber component as a means to improve impact resistance sacrifices moldability and rigidity, while adding large amounts of lubricants and plasticizers for the purpose of improving shapeability may result in decreased heat resistance, plate-out, etc. A satisfactory solution could not be reached because of the following problems.

また、=般的にABS樹脂は射出成形するに際し、樹脂
が狭いゲートから金型キャビテイ一に充填される際、ゲ
ート近傍にフローマークと称される外観不良の現象が発
生しやすいために製品の商品価値を著しく低下させるこ
とがある。すなわち、成形加工時、特に射出成形機を使
用するに際し、樹脂相が低分子量であれば樹脂の良流動
的性質によつて大型製品、薄肉製品を得ることが容易で
あるが、製品の機械的強度が弱く、製品としての実用的
使用状態に耐えられない場合がある。
In addition, when ABS resin is generally injection molded, when the resin is filled into a mold cavity through a narrow gate, a phenomenon called flow marks, which is a defective appearance, tends to occur near the gate, resulting in poor product quality. It may significantly reduce the product value. In other words, during molding, especially when using an injection molding machine, if the resin phase has a low molecular weight, it is easy to obtain large products and thin products due to the resin's good fluidity. It may not be strong enough to withstand practical use as a product.

一方、高分子量の樹脂を用いた場合には、成形性が悪く
目的の製品が成形しにくいために射出成形時の樹脂温度
を上げたり、射出圧力を高くして成形するため樹脂の熱
変色、熱劣化が生じやすく、また高圧成形による製品内
部の残留ひずみに起因する製品の変形、スト−3レスク
ラツク等を起しやすい欠点を有した。
On the other hand, when high molecular weight resin is used, it has poor moldability and is difficult to mold into the desired product, so the resin temperature and injection pressure are increased during injection molding, resulting in thermal discoloration of the resin. It has disadvantages in that it is prone to thermal deterioration, and is also prone to deformation of the product due to residual strain inside the product due to high-pressure molding, and stress cracks.

これらの欠点を改善する目的で、特公昭53−4862
号公報には、ABS樹脂中に高分子量のモノビニル芳香
族単量体と不飽和ニトリル単量体との共重合体樹脂およ
び低分子量の上記共重合体樹脂を配合する方法が提案さ
れている。この方法は低分子量の共重合体と高分子量の
共重合体をブレンドして両者の欠点をカバーすることを
ねらつたものである。この方法によりある程度の成型性
は改善されるが、外観および強度において満足し得るも
のではない。本発明者等は成形性、機械的性質等をバラ
ンスよく備えかつ製品の外観の改善された耐衝撃性熱可
塑性樹脂組成物を開発すべく鋭意検討した結果、効果の
顕著な本発明に到達した。
In order to improve these shortcomings, the Special Publication No. 53-4862
The publication proposes a method of blending a copolymer resin of a high molecular weight monovinyl aromatic monomer and an unsaturated nitrile monomer and a low molecular weight copolymer resin mentioned above into an ABS resin. This method aims at covering the drawbacks of both low molecular weight copolymers and high molecular weight copolymers by blending them together. Although moldability is improved to some extent by this method, the appearance and strength are not satisfactory. The inventors of the present invention have conducted intensive studies to develop an impact-resistant thermoplastic resin composition that has well-balanced moldability, mechanical properties, etc. and improved product appearance, and as a result, they have arrived at the present invention, which is highly effective. .

すなわち本発明は、ポリブタジエンを主成分とするゴム
質成分に こスチレン、α−メチルスチレンおよびメチ
ルメタクリレートのうちの1種以上とアクリロニトリル
とをグラフト重合させてなるグラフト重合体にしてゴム
質分含量が50重量%を越えて65重量%以下のもの(
4)と、スチレン、α−メチルスチレン 4およびメチ
ルメタクリレートのうちの1種以上とアクリロニトリル
との共重合体(B)とを配合してなる樹脂組成物にして
、該樹脂組成物中のゴム質分含量が3〜45重量%、(
4)のグラフト率が25〜70%、CA)/(B)の重
量比率が5/95〜80/20であり、(B)は低分子
量共重合体(B−1)と高分子量共重合体(B−2)と
からなり、(B−1)と(B−2)のメチルエチルケト
ン溶液の30℃での極限粘度はそれぞれ(B−1)=0
.4〜0.6、(B−2)=0.6〜1.1であり、さ
らに(B−1)/(B−2)の重量比率が90/10〜
30/70であることを特徴とする耐衝撃性熱可塑性樹
脂組成物を提供するものである。本発明の対象とする樹
脂のグラフト重合体Aとは、ブタジエンを主成分とする
ゴム質重合体にスチレン、d−メチルスチレンおよびメ
チルメタクリレートのうちの1種以上とアクリロニトリ
ルとをグラフト重合せしめてなるグラフト重合体であり
、スチレン、α−メチルスチレンおよびメチルメタクリ
レートのうちの1種以上の中で好ましいのは、スチレン
単独、スチレン/α−メチレン、スチレン/メチルメタ
クリレート、スチレン/α−メチルスチレン/メチルメ
タクリレートである。
That is, the present invention provides a graft polymer obtained by graft polymerizing acrylonitrile and one or more of styrene, α-methylstyrene, and methyl methacrylate to a rubber component whose main component is polybutadiene, and the rubber component content is reduced. More than 50% by weight and less than 65% by weight (
4) and a copolymer (B) of acrylonitrile with one or more of styrene, α-methylstyrene 4, and methyl methacrylate, and the rubbery substance in the resin composition The content is 3-45% by weight, (
The grafting ratio of 4) is 25 to 70%, the weight ratio of CA)/(B) is 5/95 to 80/20, and (B) is a low molecular weight copolymer (B-1) and a high molecular weight copolymer. The intrinsic viscosity of the methyl ethyl ketone solutions of (B-1) and (B-2) at 30°C is (B-1) = 0.
.. 4 to 0.6, (B-2) = 0.6 to 1.1, and the weight ratio of (B-1)/(B-2) is 90/10 to
The present invention provides an impact-resistant thermoplastic resin composition characterized by having a hardness of 30/70. The graft polymer A of the resin targeted by the present invention is obtained by graft polymerizing one or more of styrene, d-methylstyrene, and methyl methacrylate and acrylonitrile to a rubbery polymer containing butadiene as a main component. Among the graft polymers, styrene alone, styrene/α-methylene, styrene/methyl methacrylate, and styrene/α-methylstyrene/methyl are preferred among one or more of styrene, α-methylstyrene, and methyl methacrylate. It is methacrylate.

また、該グラフト重合体は、その他に耐熱性、耐薬品性
などの改良のため、これらの単量体の一部を他の単量体
に置き換えても良い。さらに、該グラフト重合体は、ゴ
ム質成分としてポリブタジエンの他のブタジエン−スチ
レン共重合体、ブタジエン−アクリロニトリル共重合体
等ブタジエンを主成分とするゴム質重合体を用いても良
い。
In addition, in the graft polymer, some of these monomers may be replaced with other monomers in order to improve heat resistance, chemical resistance, and the like. Further, in the graft polymer, a rubbery polymer containing butadiene as a main component, such as a butadiene-styrene copolymer, a butadiene-acrylonitrile copolymer, etc. other than polybutadiene, may be used as a rubbery component.

グラフト重合体囚におけるこれらのゴム質成分の含有量
は50重量%を越えて65重量%以下であり、乳化液状
で重合したラテツクスを凝固、乾燥して得られる。グラ
フト重合体(4)のグラフト率は25〜70%である。
グラフト率が25%未満であると耐衝撃性が劣り、また
70%を越えると耐衝撃性は飽和するばかりでなく流動
性が悪くなり成形性が低下する。本発明における共重合
体樹脂Q3)とは、スチレン、d−メチルスチレンおよ
びメチルスチレンのうちの1種以上の好ましくは65〜
80重量%とアクリロニトリルの好ましくは20〜35
重量%から成るものである。
The content of these rubbery components in the graft polymer is more than 50% by weight and less than 65% by weight, and is obtained by coagulating and drying a latex polymerized in the form of an emulsion liquid. The grafting ratio of the graft polymer (4) is 25 to 70%.
If the grafting ratio is less than 25%, the impact resistance will be poor, and if it exceeds 70%, the impact resistance will not only be saturated but also the fluidity will deteriorate and the moldability will decrease. The copolymer resin Q3) in the present invention refers to one or more of styrene, d-methylstyrene, and methylstyrene, preferably 65 to
80% by weight and preferably 20-35% of acrylonitrile
% by weight.

そして、グラフト重合体囚と共重合体(8)の重量比率
は、(A)/旧)=5/95〜80/20である。(A
)A匂が5/95未満であると耐衝撃性に劣り、また囚
/(B)が80/20を越えると成形品の外観が悪くな
り流動性も劣る。本発明の共重合体(8)は、低分子量
共重合体(B−1)と高分子量共重合体(B−2)の混
合物であるものをいう。これら共重合体のメチルエチル
ケトン溶液の30℃での極限粘度ωは、各々0.4〜0
.6、0.6〜1.1の範囲であり、使用する共重合体
(B1)と(B−2)のω差は0.1〜0.6のものを
混合したものが外観改善上より効果的である。ここで共
重合体(B−1)と(B−2)の重量比率は(B−1)
:(B−2)−90:10〜30:70である。その理
由は以下によるものである。(1)高分子量共重合体の
み、或は、高分子量分子量共重合体の混合比率が上記範
囲を越えた場合は、機械的強度は向上するが成形加工性
が著しく低下する。(2)また高分子量重合体が、上記
比率を下回る場合には本発明における特徴を十分満さな
い。
The weight ratio of the graft polymer and the copolymer (8) is (A)/old)=5/95 to 80/20. (A
) If the A ratio is less than 5/95, the impact resistance will be poor, and if the ratio (B) exceeds 80/20, the appearance of the molded product will be poor and the fluidity will be poor. The copolymer (8) of the present invention is a mixture of a low molecular weight copolymer (B-1) and a high molecular weight copolymer (B-2). The intrinsic viscosity ω of the methyl ethyl ketone solution of these copolymers at 30°C is 0.4 to 0, respectively.
.. 6. The ω difference between copolymers (B1) and (B-2) used is in the range of 0.6 to 1.1, and a mixture of copolymers (B1) and (B-2) of 0.1 to 0.6 is better for improving the appearance. Effective. Here, the weight ratio of copolymers (B-1) and (B-2) is (B-1)
:(B-2)-90:10 to 30:70. The reason is as follows. (1) If only the high molecular weight copolymer or the mixing ratio of the high molecular weight copolymer exceeds the above range, the mechanical strength will be improved but the moldability will be significantly reduced. (2) Furthermore, when the high molecular weight polymer is below the above ratio, the characteristics of the present invention are not fully satisfied.

これら共重合体の製造方法は懸濁重合、塊状重合、乳化
重合法等、現在知られているいずれの方法によつても良
く、グラフト重合体囚と共重合体(B−1)と(B−2
)の混合方法は一般的に知られている方法、例えば押出
機、加熱ロール、ペンシェル型ミキサー等により混合で
きる。最終的に得られる耐衝撃性熱可塑性樹脂中のゴム
質成分は3〜45重量%の範囲に入るように配合するが
、ABS樹脂としての品質上のバランス、例えば剛性一
耐衝撃性、耐衝撃性一耐熱性等からは、6〜30重量%
のものが好ましい。
The method for producing these copolymers may be any currently known method such as suspension polymerization, bulk polymerization, or emulsion polymerization. -2
) can be mixed using generally known methods such as an extruder, heated roll, pen shell mixer, etc. The rubber component in the final impact-resistant thermoplastic resin is blended in a range of 3 to 45% by weight, but the quality balance as an ABS resin, such as rigidity - impact resistance, impact resistance. From the viewpoint of properties, heat resistance, etc., it is 6 to 30% by weight.
Preferably.

また必要に応じて安定剤、滑剤、或は帯電防止剤などを
添加することも可能である。本発明によつて得られた耐
衝撃性熱可塑性樹脂は成形加工性、機械的性質に優れ、
またフローマークの改良効果による製品の外観が改善さ
れた樹脂組成物である。
Further, it is also possible to add a stabilizer, a lubricant, an antistatic agent, etc. as necessary. The impact-resistant thermoplastic resin obtained by the present invention has excellent moldability and mechanical properties,
Furthermore, the resin composition has an improved appearance due to the flow mark improvement effect.

以下実施例によつて本発明を記述するが、本発明は該実
施例に限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.

実施例 1〜4、比較例 1〜4 (1)グラフト重合体(4) 以下の処方でグラフト重合体を乳化重合で得た。Examples 1-4, Comparative Examples 1-4 (1) Graft polymer (4) A graft polymer was obtained by emulsion polymerization using the following formulation.

仕込量は全て重量部数を示す。〔仕込組成〕 スチレン、アクリロニトリルおよびT−DMは予め混合
しておき、ポリブタジエンラテツクス、過硫酸カリウム
、オレイン酸カリウム、純水を含む反応器中に10部A
時間の速度で添加して攪拌しながら反応させた。
All amounts shown are parts by weight. [Preparation composition] Styrene, acrylonitrile, and T-DM were mixed in advance, and 10 parts of A were placed in a reactor containing polybutadiene latex, potassium persulfate, potassium oleate, and pure water.
The mixture was added at a rate of 1 hour and reacted with stirring.

重合率は98%であつた。ここに得られたグラフト共重
合体ラテツクスを硫酸酸性温水浴中で凝固せしめ水洗乾
燥してグラフト重合体粉末を得た。
The polymerization rate was 98%. The graft copolymer latex thus obtained was coagulated in a sulfuric acid hot water bath, washed with water and dried to obtain a graft polymer powder.

また、該グラフト重合体のグラフト率は60%であつた
。なお、グラフト率は次の方法で測定した。
Moreover, the grafting rate of the graft polymer was 60%. In addition, the grafting rate was measured by the following method.

上記粉末を減圧乾燥した後、1.0gr精秤し、アセト
ン100CC加え、室温で1週間放置溶解する。溶解後
遠心分離により不溶分を分け、減圧乾燥し、秤量する。
く計算〉 (2)共重合体樹脂B) 以下の仕込組成で反応器に仕込み攪拌しながら2時間で
110℃まで昇温させ後130℃で0.5時間ストリツ
ピングを行なつた。
After drying the above powder under reduced pressure, 1.0gr was accurately weighed, 100cc of acetone was added, and the mixture was left to dissolve at room temperature for one week. After dissolution, insoluble matter is separated by centrifugation, dried under reduced pressure, and weighed.
Calculation> (2) Copolymer Resin B) The following charge composition was charged into a reactor and heated to 110°C over 2 hours with stirring, followed by stripping at 130°C for 0.5 hour.

得たビーズは水洗、乾燥して使用した。ここでT−DM
の添加量と得られた共重合体の極限粘度ωの関係は表−
1のと?りであつた。
The obtained beads were washed with water and dried before use. Here T-DM
The relationship between the amount of addition and the intrinsic viscosity ω of the obtained copolymer is shown in Table-
1? It was hot.

(3)評価 前記(1)で得られたグラフト重合体粉末と前記※※(
2)で得られた共重合体ビーズを用いてゴム質成分が2
0重量%になるように配合した。
(3) Evaluation The graft polymer powder obtained in (1) above and the above ※※(
Using the copolymer beads obtained in 2), the rubbery component is
It was blended so that it was 0% by weight.

この際AS・1とAS・2の混合比率は90:10〜3
0:70でブレンドした。さらにエチレンビスステアロ
アミドを1重量部添加してペンシェル型ミキサーで均一
に混合したのち押出機でペレツト化し評価用サンプルと
した。該ペレツトを用いて以下の項目の評価を行なつた
At this time, the mixing ratio of AS・1 and AS・2 is 90:10~3
Blended at 0:70. Furthermore, 1 part by weight of ethylene bisstearamide was added and mixed uniformly with a pen shell mixer, and then pelletized with an extruder to prepare a sample for evaluation. The pellets were used to evaluate the following items.

その結果を表−2に示す。表−2から以下のことが言え
る。
The results are shown in Table-2. From Table 2, the following can be said.

本発明品は、機械的強度と流動性のバランスに優れ、か
つフローマークが著しく改善されたものである。
The product of the present invention has an excellent balance between mechanical strength and fluidity, and has significantly improved flow marks.

実施例 5、比較例 5〜9 (1)グラフト共重合体(A) 実施例1〜4に使用したと同じもの。Example 5, Comparative Examples 5 to 9 (1) Graft copolymer (A) Same as used in Examples 1-4.

(2)共重合体樹脂(B) 以下の処方で反応器に仕込み攪拌しながら2時間で11
0℃まで昇温させ、のち130℃で0.5時間ストリツ
ピングを行なつた。
(2) Copolymer resin (B) The following formulation was charged into a reactor and 11
The temperature was raised to 0°C, and then stripping was performed at 130°C for 0.5 hour.

得たビーズは水洗、乾燥して使用した。〔仕込処方(重
量部数)〕 添加したT−DMと得られた共重合体樹脂の〔η〕の関
係は表−3の通りであつた。
The obtained beads were washed with water and dried before use. [Preparation recipe (parts by weight)] Table 3 shows the relationship between the added T-DM and [η] of the obtained copolymer resin.

(3)評価 実施例1〜4と同様に、ゴム質成分が20重量%になる
様にグラフト共重合体と共重合樹脂を調合し、さらにエ
チレンビスステアロアミド1重量部を加え、ペンシェル
型ミキサーで混合したのち押出機でペレツト化した。
(3) In the same manner as Evaluation Examples 1 to 4, the graft copolymer and copolymer resin were mixed so that the rubbery component was 20% by weight, and 1 part by weight of ethylene bisstearamide was added to form a pen shell. After mixing with a mixer, the mixture was pelletized with an extruder.

該ペレツトの測定結果を表−4に示す。表4の結果から
本発明品は機械的強さと流動性の均衡のとれたものであ
るがAS・3の如く、 一般的なASより低分子量側にシフトしたものをブレン
ドすると化学的性質が低下するため、特に成形品を塗装
仕上げする場合は、クレージンク、クラツク等が発生し
やすい欠陥を有する。
The measurement results for the pellets are shown in Table 4. From the results in Table 4, the product of the present invention has a well-balanced mechanical strength and fluidity, but when blended with a material that has a lower molecular weight than general AS, such as AS-3, the chemical properties deteriorate. Therefore, especially when painting a molded product, it has defects such as crazing and cracks.

実施例 6〜9、比較例 10〜12 (1)グラフト共重合体A 下記仕込処方でグラフト重合体を乳化重合で得た。Examples 6-9, Comparative Examples 10-12 (1) Graft copolymer A A graft polymer was obtained by emulsion polymerization using the following formulation.

スチレンとアクリロニトリルとT−DMは予め混合して
おきPBDラテツクス、過硫酸カリウム、ラウリン酸ナ
トリウム、純水を含む反応器中に10部/時間の速度で
添加して攪拌しな 冫がら反応させた。
Styrene, acrylonitrile, and T-DM were mixed in advance and added to a reactor containing PBD latex, potassium persulfate, sodium laurate, and pure water at a rate of 10 parts/hour, and reacted with stirring. .

反応終了後重合率を測定したところ97%であつた。After the reaction was completed, the polymerization rate was measured and found to be 97%.

ここに得られたグラフト重合体ラテツクスにエチレンビ
スステアロアミドの微粉(平※均粒子径約10μ)の水
スラリー(スラリ濃度42重量%)をグラフト重合体に
5重量部添加してかき混ぜ硫酸々性温水浴中で凝固せし
め、水洗・乾燥してグラフト重合体粉末を得た。該グラ
フト重合体のグラフト率は41%であつた。).)共重
合体樹脂(B)以下の処方で実施例1〜4と同様な方法
で共重合体を得た。
To the graft polymer latex obtained here, 5 parts by weight of an aqueous slurry (slurry concentration 42% by weight) of fine powder of ethylene bisstearamide (average particle diameter of approximately 10μ) was added to the graft polymer, stirred, and mixed with sulfuric acid. The mixture was coagulated in a hot water bath, washed with water, and dried to obtain a graft polymer powder. The grafting rate of the graft polymer was 41%. ). ) Copolymer resin (B) A copolymer was obtained in the same manner as in Examples 1 to 4 using the following formulation.

〔仕込処方(重量部数)〕[Preparation recipe (weight parts)]

ここで得られた共重合体(AS−6)の〔aはは、0.
66であつた。
In the copolymer (AS-6) obtained here, [a is 0.
It was 66.

S)評価 上記で得たAS−6、および実施例1〜4で得たAS−
1、AS−2とゴム質分60重量%のグラフト重合体を
用いて、ゴム質成分が10重量%になるように配合しペ
レタイズを行なつた。
S) Evaluation AS-6 obtained above and AS- obtained in Examples 1 to 4
1. AS-2 and a graft polymer with a rubbery content of 60% by weight were blended so that the rubbery content was 10% by weight and pelletized.

なお、配合時のAS−1、AS−2およびAS−6のブ
レンド比率およびペレツトの測定結果を表−5に記す。
表−5は、一般的なASの〔aレベル品 (AS・1・・・・・・(ト)−0.52)をベースに
し、それより高ωのAS−6(0.66)とAS−2(
0.81)をそれぞれブレンド使用した結果であるが、
各々のASを単独使用した場合に較べて1フローマーク
改良効果が顕著である。
The blend ratio of AS-1, AS-2 and AS-6 during blending and the measurement results of pellets are shown in Table 5.
Table 5 is based on a general AS [A level product (AS・1...(G)-0.52), and a higher ω AS-6 (0.66). AS-2(
This is the result of using a blend of 0.81).
The 1-flow mark improvement effect is remarkable compared to when each AS is used alone.

2物性バランス、特に衝撃強さと流動性のバランスが優
れた樹脂組成物といえる。
It can be said that the resin composition has an excellent balance of two physical properties, especially the balance of impact strength and fluidity.

実施例 10〜12、比較例 13〜15ポリブタジエ
ン、スチレン、アクリロニトリルの仕込み比を変える以
外は実施例1〜4と同じようにしてグラフト重合体を得
た。
Examples 10 to 12, Comparative Examples 13 to 15 Graft polymers were obtained in the same manner as Examples 1 to 4 except that the charging ratios of polybutadiene, styrene, and acrylonitrile were changed.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリブタジエンを主成分とするゴム質成分にスチレ
ン、α−メチルスチレンおよびメチルメタクリレートの
うちの1種以上とアクリロニトリルとをグラフト重合さ
せてなるグラフト重合体にしてゴム質分含量が50重量
%を越えて65重量%以下のもの(A)と、スチレン、
α−メチルスチレンおよびメチルメタクリレートのうち
の1種以上とアクリロニトリルとの共重合体(B)とを
配合してなる樹脂組成物にして、該樹脂組成物中のゴム
質分含量が3〜45重量%、(A)のグラフト率が25
〜70重量%、(A)/(B)の重量比率が5/95〜
80/20であり、(B)は低分子量共重合体(B−1
)と高分子量共重合体(B−2)とからなり、(B−1
)と(B−2)のメチルエチルケトン溶液の30℃での
極限粘度はそれぞれ(B−1)=0.4〜0.6、(B
−2)=0.6〜1.1であり、さらに(B−1)/(
B−2)の重量比率が90/10〜30/70であるこ
とを特徴とする耐衝撃性熱可塑性樹脂組成物。
1 A graft polymer obtained by graft polymerizing acrylonitrile and one or more of styrene, α-methylstyrene, and methyl methacrylate to a rubbery component whose main component is polybutadiene, and whose rubbery content exceeds 50% by weight. 65% by weight or less (A), styrene,
A resin composition comprising a copolymer (B) of one or more of α-methylstyrene and methyl methacrylate and acrylonitrile, the resin composition having a rubber content of 3 to 45% by weight. %, the grafting rate of (A) is 25
~70% by weight, weight ratio of (A)/(B) ~5/95
80/20, and (B) is a low molecular weight copolymer (B-1
) and a high molecular weight copolymer (B-2), (B-1
) and (B-2), the intrinsic viscosities at 30°C of methyl ethyl ketone solutions are (B-1) = 0.4 to 0.6 and (B
-2)=0.6 to 1.1, and (B-1)/(
An impact-resistant thermoplastic resin composition characterized in that the weight ratio of B-2) is from 90/10 to 30/70.
JP1978079A 1979-02-23 1979-02-23 Impact resistant thermoplastic resin composition Expired JPS5915145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978079A JPS5915145B2 (en) 1979-02-23 1979-02-23 Impact resistant thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978079A JPS5915145B2 (en) 1979-02-23 1979-02-23 Impact resistant thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS55112252A JPS55112252A (en) 1980-08-29
JPS5915145B2 true JPS5915145B2 (en) 1984-04-07

Family

ID=12008830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978079A Expired JPS5915145B2 (en) 1979-02-23 1979-02-23 Impact resistant thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5915145B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147534A (en) * 1981-03-06 1982-09-11 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS58154752A (en) * 1982-03-09 1983-09-14 Asahi Chem Ind Co Ltd Thermoplastic resin composition
DE3303864A1 (en) * 1983-02-05 1984-08-09 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS
JPS59219362A (en) * 1983-05-27 1984-12-10 Sumitomo Naugatuck Co Ltd Thermoplastic resin composition
JPS60231751A (en) * 1984-05-02 1985-11-18 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
KR102298296B1 (en) 2018-10-31 2021-09-07 주식회사 엘지화학 Thermoplastic resin composition
CN114133677B (en) * 2021-11-11 2023-05-09 天津大沽化工股份有限公司 Special material for mining safety helmet and preparation method thereof

Also Published As

Publication number Publication date
JPS55112252A (en) 1980-08-29

Similar Documents

Publication Publication Date Title
US4393172A (en) High-notched-impact core-shell polymers having improved weather resistance
JP6364490B2 (en) High heat resistant ABS resin composition suitable for blow molding and method for preparing the same
KR102068650B1 (en) Graft copolymer, method for preparing the graft copolymer, thermoplastic resin composition and molding product
KR101895112B1 (en) Rubber-modified vinyl-based graft copolymer and thermoplastic resin composition comprising the same
JPS5915145B2 (en) Impact resistant thermoplastic resin composition
KR20180052849A (en) Thermoplastic resine, thermoplastic resine composition comprising the same, method for preparing thermoplastic resine and method for preparing thermoplastic resine composition
JPH0786165B2 (en) Impact resistant thermoplastic resin composition
JPS6239173B2 (en)
JPS6051502B2 (en) Styrenic resin composition with good mold release properties
JPH02272050A (en) Transparent thermoplastic resin composition
JPH075789B2 (en) Polybutadiene rubber composition
JPS6352054B2 (en)
JPH0755969B2 (en) Impact-resistant polystyrene resin composition
JPH0660273B2 (en) Rubber modified polystyrene resin composition
JPS6326774B2 (en)
JPS636106B2 (en)
JPH08874B2 (en) Thermoplastic resin composition
JPH0559124B2 (en)
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
JPS6086159A (en) Abs polycarbonate mixtures having improved flame resistance
JPS5928584B2 (en) Impact resistant thermoplastic resin composition
JPH0158216B2 (en)
JP3500265B2 (en) Styrene resin composition
JPS5810427B2 (en) Taishiyougekiseijiyugoutaino Seizouhouhou
JPS6363740A (en) Thermoplastic resin composition