JPH0158216B2 - - Google Patents
Info
- Publication number
- JPH0158216B2 JPH0158216B2 JP55103599A JP10359980A JPH0158216B2 JP H0158216 B2 JPH0158216 B2 JP H0158216B2 JP 55103599 A JP55103599 A JP 55103599A JP 10359980 A JP10359980 A JP 10359980A JP H0158216 B2 JPH0158216 B2 JP H0158216B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- styrene
- rubber
- maleic anhydride
- ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 24
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 17
- 239000000178 monomer Substances 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 15
- 229920002554 vinyl polymer Polymers 0.000 claims description 15
- 229920005992 thermoplastic resin Polymers 0.000 claims description 9
- 229920001955 polyphenylene ether Polymers 0.000 claims description 8
- 229920002857 polybutadiene Polymers 0.000 claims description 7
- 239000011342 resin composition Substances 0.000 claims description 6
- 150000003440 styrenes Chemical class 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 229920001971 elastomer Polymers 0.000 description 11
- 239000005060 rubber Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- -1 polyphenylene Polymers 0.000 description 4
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000011115 styrene butadiene Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 2
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 2
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 2
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 239000005063 High cis polybutadiene Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- AGULWIQIYWWFBJ-UHFFFAOYSA-N 3,4-dichlorofuran-2,5-dione Chemical compound ClC1=C(Cl)C(=O)OC1=O AGULWIQIYWWFBJ-UHFFFAOYSA-N 0.000 description 1
- CXJAFLQWMOMYOW-UHFFFAOYSA-N 3-chlorofuran-2,5-dione Chemical compound ClC1=CC(=O)OC1=O CXJAFLQWMOMYOW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001890 Novodur Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000009725 powder blending Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は耐熱性および耐衝撃性の改良された熱
可塑性樹脂組成物に関するものであり、さらに詳
細には、特定の共重合割合の芳香族ビニル単量体
と無水マレイン酸とから得られる熱可塑性樹脂
に、それぞれ特定割合のゴム補強スチレン系重合
体およびポリフエニレンエーテルを配合させて成
る樹脂組成物に関するものである。
従来における芳香族ビニル単量体、就中、スチ
レンと無水マレイン酸との共重合体はスチレン系
樹脂に比して耐熱性などにすぐれているが、機械
的性質、とりわけ耐衝撃性が悪く、脆いので著し
く用途が限定されている。
そこで、かかる芳香族ビニル単量体―無水マレ
イン酸共重合体の耐衝撃性を改良する方法とし
て、ゴムの存在下に芳香族ビニル単量体と無水マ
レイン酸とを共重合させる方法などが採用されて
はいるが、このようにゴムを入れるために重合系
が極めて粘稠となる結果、重合コントロールも難
しくなるし、使用すべきゴムの種類も量も制限さ
れることとなり、衝撃値の向上は期待できても、
耐熱性の低下というマイナスの効果があるので、
かかるゴム共存下での共重合法には未だに難があ
る。
しかも、このようにゴムの共存下に芳香族ビニ
ル単量体と無水マレイン酸とを共重合させるとな
ると、装置上の面からも更にコストアツプに結び
つく要因が多くなつてやはり問題があり、そのた
めに勢いブレンド技術に依存せざるを得ない。
しかしながら、耐熱性と耐衝撃性との相反する
性質をブレンド系で兼備させることは可成り困難
で、今までにも西ドイツ国特許第2524787号明細
書には、スチレン―無水マレイン酸共重合体お
よびスチレン―ブタジエン・ブロツクポリマー
ないしはその水添物あるいはアクリリツク・グ
ラフトコポリマーないしはそれと同様なポリマ
ー、さらに必要な場合には、ポリフエニレンエ
ーテルなどから成るブレンド系で高熱変形温度と
高衝撃強度が得られることが開示されてはいる
が、これら熱変形温度(耐熱性)と耐衝撃性との
バランスには今一つ難点があり、しかも上記の如
き多成分系ブレンド物では高価なものとなつて経
済的ではなく、工業的に有利であるとは言い難
い。
しかるに、本発明者らはこうした背景に鑑み、
ブレンド系でありながら、芳香族ビニル単量体と
無水マレイン酸との共重合体の耐熱性を何んら損
うことなく、しかも同時に耐衝撃性をも改善させ
るべく鋭意検討を重ねた結果、特定割合の無水マ
レイン酸を含有する、芳香族ビニル単量体と無水
マレイン酸との共重合体に、それぞれ特定量のゴ
ム補強樹脂、とくに補強スチレン系重合体および
ポリフエニレンエーテルを配合させることによ
り、コスト的にも安価なブレンド処方にて耐熱性
と耐衝撃性とを確保し、しかも重合処方品以上の
物性値をもつた熱可塑性樹脂組成物を見出すに及
んで、本発明を完成させるに到つた。
すなわち、本発明は(A)20重量%以下の無水マレ
イン酸と80重量%以上の芳香族ビニル単量体とを
共重合させて得られる熱可塑性樹脂25〜45.5重量
%、(B)シス―1,4―構造を90重量%以上有する
ポリブタジエンゴムの存在下でスチレンの単独ま
たはこれとスチレン誘導体とを重合させて得られ
るゴム補強スチレン系重合体25〜60重量%、およ
び(C)ポリフエニレンエーテル3〜25重量%から成
り、かつ、上記した(A)、(B)および(C)なる成分の合
計が100重量%となるような熱可塑性樹脂組成物
を提供するものである。
ここにおいて、上記熱可塑性樹脂(A)とは、20重
量%以下の無水マレイン酸と80重量%の芳香族ビ
ニル単量体とを共重合させて得られるものであ
り、好ましくは8〜15重量%の無水マレイン酸と
85〜92重量%の芳香族ビニル単量体とから得られ
るものである。
このさいの重合方法としては溶液重合あるいは
バルク重合などの方法が望ましく、たとえばスチ
レンモノマーの重合速度よりも実質的に遅い速度
で無水マレイン酸を加えてゆく重合方法を採るの
がよい。
かかる芳香族ビニル単量体としてはスチレンが
最も代表的なものであるが、そのほかにα―メチ
ルスチレン、o―、m―もしくはp―メチルスチ
レン、ジメチルスチレンまたはクロルスチレンの
如きスチレン誘導体が包含されるし、またこれら
の芳香族単量体の一部を、メチルメタクリレー
ト、メチルアクリレート、エチルメタクリレー
ト、アクリロニトリル、メタクリロニトリルある
いはハロゲン含有ビニルモノマーなどの他の共重
合可能なモノマーで置き換えてもよいことは無論
である。
他方、本発明において無水マレイン酸という言
葉は単にこれのみに限られず、クロロマレイン酸
無水物またはジクロロマレイン酸無水物の如き無
水マレイン酸の誘導体をも含めた意味で用いるも
のである。
そして、当該熱可塑性樹脂(A)の使用量は本発明
組成物を基準として25〜48.5重量%の範囲内であ
つて、かつ、他の二成分(B)および(C)との合計が
100重量%であるという条件をも満たす量である。
次に、前記したゴム補強スチレン系重合体と
は、シス―1,4―構造を90重量%以上有するポ
リブタジエンゴムの存在下でスチレンの単独また
はこれとスチレン誘導体とを重合させて得られる
熱可塑性樹脂を指称するものであり、とくにアイ
ゾツト衝撃強さが8〜20Kg―cm/cmで、かつ、ビ
カツト軟化点が82〜110℃であるものが好ましい。
ここでスチレン誘導体としては、前記した如くα
―メチルスチレン、o―、m―もしくはp―メチ
ルスチレン、ジメチルスチレンまたはクロルスチ
レン等が挙げられる。
ここでスチレン系化合物とはスチレンもしくは
この誘導体をいい、他方、該スチレン系化合物と
共重合可能なビニル化合物としてはシアン化ビニ
ル、アクリル酸、メタクリル酸、アクリル酸エス
テル、メタクリル酸エステルまたはマレイン酸無
水物などが包含される。
当該重合体(B)を得るには、シス―1,4―構造
を90重量%以上有するポリブタジエンゴムを使用
し、懸濁重合あるいは連続塊状重合などの方法に
よりスチレン、またはスチレンとスチレン誘導体
とグラフト重合せしめるのが望ましく、またかく
して得られる当該重合体(B)中のゴム含有率は7〜
20重量%の範囲内にあるのが好ましい。ゴム含有
率が7重量%未満では高衝撃値が得難く、逆に20
重量%を超えて余りに多くなると耐熱性が低下す
るので好ましくない。
ここで、上記シス―1,4―構造を90重量%以
上有するポリブタジエンとは、ブタジエンを高い
立体規則性を有するように重合させることにより
得られるゴムの意味であつて、トランス―1,4
構造および1,2―ビニル結合の含有率が10重量
%未満のものを指称する。
そして、当該重合体(B)の使用量は本発明組成物
を基準として25〜60重量%の範囲内であつて、か
つ、同時に、他の二成分(A)および(C)との合計が
100重量%であるという条件をも満たす量である。
さらに、前記したポリフエニレンエーテル(C)と
は一般式
(但し、式中のR1およびR2は炭素数1〜4のア
ルキル基またはハロゲン原子であり、pは50〜
300、好ましくは70〜250の整数であるものとす
る。)
で表わされるもので、極限粘度〔η〕が0.5〜0.7
(25℃、クロロホルム中)の範囲のものがよく、
そのうちでも特に代表的なものを挙げれば、ポリ
(2,6―ジメチルフエニレン―1,4―エーテ
ル)、ポリ(2,6―ジエチルフエニレン―1,
4―エーテル)、ポリ(2,6―ジクロロフエニ
レン―1,4―エーテル)、ポリ(2,6―ジブ
ロモフエニレン―1,4―エーテル)、ポリ(2
―メチル―6―エチル―フエニレン―1,4―エ
ーテル)、ポリ(2―クロロ―6―メチル―フエ
ニレン―1,4―エーテル)、ポリ(2―メチル
―6―イソプロピル―フエニレン―1,4―エー
テル)、ポリ(2,6―ジ―n―プロピルフエニ
レン―1,4―エーテル)、ポリ(2―ブロモ―
6―メチル―フエニレン―1,4―エーテル)、
ポリ(2―クロロ―6―ブロモ―フエニレン―
1,4―エーテル)、ポリ(2―クロロ―6―エ
チル―フエニレン―1,4―エーテル)、ポリ
(2―メチル―6―クロロ―フエニレン―1,4
―エーテル)、ポリ(2―メチル―6―n―ブチ
ル―フエニレン―1,4―エーテル)またはポリ
(2―メチル―6―ブロモ―フエニレン―1,4
―エーテル)などである。
そして、当該ポリフエニレンエーテル(C)の使用
量は本発明組成物を基準として3〜25重量%の範
囲内であつて、かつ同時に、他の二成分(A)および
(B)との合計が100重量%であるという条件をも満
たす範囲内においてである。
本発明組成物は前記したそれぞれ芳香族ビニル
単量体―無水マレイン酸共重合体状樹脂(A)、ゴム
補強スチレン系重合体(B)およびポリフエニレンエ
ーテル(C)を前記特定の割合でブレンドして得られ
るものであるが、このさいブレンド法としては粉
末ブレンド、溶液ブレンドもしくはペレツトブレ
ンドあるいは押出機、ニーダーもしくはFCMの
如きバンバリーミキサーなどによる任意の方法が
採用できる。
さらに、望むならばこのブレンド時において本
発明組成物には酸化防止剤、帝電防止剤、紫外線
吸収剤、着色剤、難燃剤、可塑剤、滑剤またはガ
ラス繊維の如き無機充填剤などを添加することも
できる。
かくして得られる本発明組成物は押出成形ない
しは射出成形などの任意の成形法を適用して成形
品、フイルムまたはシートなどに加工されて電気
用品、自動車部品、食品用容器、医療用器具、事
務器および精密機器関係、とくに耐熱性および耐
衝撃性を生かした分野での幅広い利用が期待され
る。
次に、本発明を実施例に従つて具体的に説明す
るが、部および%は特に断りのない限り、すべて
重量基準であるものとする。
実施例1、2および比較例1〜3
92%のスチレンと8%の無水マレイン酸とから
成るスチレン―無水マレイン酸共重合体「ダイラ
ーク(Dylark)#232」(アーコ・ポリマー社製
品)、ゴム補強スチレン系重合体〔大日本インキ
化学工業(株)製ハイシスポリブタジエンゴム8%含
有のスチレン・ブタジエン・グラフト共重合体:
重量平均分子量Mw=約22万、数平均分子量Mn
=約9万、メルトフローレート0.80g/10分
(200℃、5g)、アイゾツト衝撃強さ10Kg―cm/
cm、ビカツト軟化点95℃〕およびポリフエニレン
エーテル「PPO#534」〔エンジニアリング・プ
ラスチツク(株)製品、〔η〕=0.60(25℃、クロロホ
ルム中)〕の三成分を、第1表に所定の割合で押
出機混練により溶融混合させたのち〔26mmφホツ
トカツト方式の単軸押出機(先端ダルメージ混練
装置付)〕250℃で射出成形により試験片を形成し
て物性を測定した。
なお、比較のために「ダイラーク#232」〔比較
例1〕、「ダイラーク#250」(同上社製ゴム変性ス
チレン―無水マレイン酸共重合樹脂)〔比較例
2〕、およびダイラーク#232」―「アクリロイド
KM―611」(ローム・アンド・ハース社製品で、
ゴム状ジエン重合体の存在下にアクリル系単量体
を乳化グラフト重合させたもの)―「PPO
#534」の三成分系〔比較例3〕についても同様
の試験を試みた。
以上の結果を第1表にまとめて示した。
The present invention relates to a thermoplastic resin composition with improved heat resistance and impact resistance, and more particularly to a thermoplastic resin composition obtained from a specific copolymerization ratio of an aromatic vinyl monomer and maleic anhydride. The present invention relates to a resin composition in which a rubber-reinforced styrenic polymer and a polyphenylene ether are blended into a resin in specific proportions. Conventional aromatic vinyl monomers, especially copolymers of styrene and maleic anhydride, have better heat resistance than styrenic resins, but have poor mechanical properties, especially impact resistance. Because it is brittle, its uses are extremely limited. Therefore, as a method for improving the impact resistance of such an aromatic vinyl monomer-maleic anhydride copolymer, a method of copolymerizing an aromatic vinyl monomer and maleic anhydride in the presence of rubber has been adopted. However, as a result of adding rubber, the polymerization system becomes extremely viscous, making it difficult to control the polymerization, and limiting the type and amount of rubber that should be used, making it difficult to improve impact value. Although we can expect
This has the negative effect of reducing heat resistance.
There are still difficulties in such copolymerization methods in the coexistence of rubber. Moreover, copolymerizing aromatic vinyl monomers and maleic anhydride in the coexistence of rubber in this way poses problems in terms of equipment, as there are many factors that lead to further increases in costs. We have no choice but to rely on momentum blending technology. However, it is quite difficult to combine the conflicting properties of heat resistance and impact resistance in a blend system, and so far, West German Patent No. 2524787 has disclosed that styrene-maleic anhydride copolymer and A blend system consisting of a styrene-butadiene block polymer or its hydrogenated product, an acrylic graft copolymer or a similar polymer, and, if necessary, polyphenylene ether, etc., has a high heat distortion temperature and high impact strength. However, there are some difficulties in balancing the heat distortion temperature (heat resistance) and impact resistance, and the multi-component blends described above are expensive and uneconomical. , it is hard to say that it is industrially advantageous. However, in view of this background, the present inventors
Although it is a blend system, we have conducted extensive research to improve the impact resistance of the copolymer of aromatic vinyl monomer and maleic anhydride without any loss in heat resistance. A copolymer of an aromatic vinyl monomer and maleic anhydride containing a specific proportion of maleic anhydride is blended with a specific amount of a rubber reinforcing resin, particularly a reinforcing styrenic polymer and a polyphenylene ether. As a result, the present invention was completed by discovering a thermoplastic resin composition that ensured heat resistance and impact resistance with an inexpensive blend formulation and also had physical properties superior to those of polymerized formulations. I reached it. That is, the present invention provides (A) 25 to 45.5% by weight of a thermoplastic resin obtained by copolymerizing 20% by weight or less of maleic anhydride and 80% by weight or more of an aromatic vinyl monomer; (B) cis- 25 to 60% by weight of a rubber-reinforced styrenic polymer obtained by polymerizing styrene alone or with a styrene derivative in the presence of a polybutadiene rubber having 90% by weight or more of a 1,4-structure, and (C) polyphenylene. The object of the present invention is to provide a thermoplastic resin composition comprising 3 to 25% by weight of nylene ether and having the above-mentioned components (A), (B), and (C) totaling 100% by weight. Here, the thermoplastic resin (A) is obtained by copolymerizing 20% by weight or less of maleic anhydride and 80% by weight of an aromatic vinyl monomer, preferably 8 to 15% by weight. % maleic anhydride and
It is obtained from 85 to 92% by weight of aromatic vinyl monomer. The preferred polymerization method in this case is solution polymerization or bulk polymerization, for example, a polymerization method in which maleic anhydride is added at a rate substantially slower than the polymerization rate of styrene monomer. The most typical such aromatic vinyl monomer is styrene, but it also includes styrene derivatives such as α-methylstyrene, o-, m- or p-methylstyrene, dimethylstyrene or chlorstyrene. However, some of these aromatic monomers may also be replaced by other copolymerizable monomers such as methyl methacrylate, methyl acrylate, ethyl methacrylate, acrylonitrile, methacrylonitrile or halogen-containing vinyl monomers. Of course. On the other hand, in the present invention, the term "maleic anhydride" is not limited to this, but also includes derivatives of maleic anhydride such as chloromaleic anhydride or dichloromaleic anhydride. The amount of the thermoplastic resin (A) to be used is within the range of 25 to 48.5% by weight based on the composition of the present invention, and the total amount with the other two components (B) and (C) is
This amount also satisfies the condition of 100% by weight. Next, the above-mentioned rubber-reinforced styrenic polymer is a thermoplastic polymer obtained by polymerizing styrene alone or with a styrene derivative in the presence of polybutadiene rubber having 90% by weight or more of cis-1,4-structure. This refers to resins, and those having an Izot impact strength of 8 to 20 kg-cm/cm and a Vicat softening point of 82 to 110°C are particularly preferred.
Here, as the styrene derivative, α
-methylstyrene, o-, m- or p-methylstyrene, dimethylstyrene or chlorstyrene. Here, the styrene compound refers to styrene or a derivative thereof, and vinyl compounds copolymerizable with the styrene compound include vinyl cyanide, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, or maleic anhydride. It includes things such as things. To obtain the polymer (B), a polybutadiene rubber having 90% by weight or more of cis-1,4-structure is used, and it is grafted with styrene or styrene and a styrene derivative by a method such as suspension polymerization or continuous bulk polymerization. It is preferable to polymerize, and the rubber content in the polymer (B) obtained in this way is 7 to 7.
Preferably it is within the range of 20% by weight. If the rubber content is less than 7% by weight, it is difficult to obtain a high impact value;
If the amount exceeds % by weight, the heat resistance decreases, which is not preferable. Here, the polybutadiene having 90% by weight or more of the cis-1,4-structure means a rubber obtained by polymerizing butadiene with high stereoregularity, and is a rubber obtained by polymerizing butadiene with high stereoregularity.
Refers to those with a structure and a content of 1,2-vinyl bonds of less than 10% by weight. The amount of the polymer (B) to be used is within the range of 25 to 60% by weight based on the composition of the present invention, and at the same time, the total amount with the other two components (A) and (C) is
This amount also satisfies the condition of 100% by weight. Furthermore, the polyphenylene ether (C) mentioned above has the general formula (However, R 1 and R 2 in the formula are an alkyl group having 1 to 4 carbon atoms or a halogen atom, and p is 50 to
300, preferably an integer between 70 and 250. ) with an intrinsic viscosity [η] of 0.5 to 0.7
(25℃, in chloroform) range is best;
Among them, the most representative ones are poly(2,6-dimethylphenylene-1,4-ether), poly(2,6-diethylphenylene-1,
4-ether), poly(2,6-dichlorophenylene-1,4-ether), poly(2,6-dibromophenylene-1,4-ether), poly(2
-methyl-6-ethyl-phenylene-1,4-ether), poly(2-chloro-6-methyl-phenylene-1,4-ether), poly(2-methyl-6-isopropyl-phenylene-1,4) -ether), poly(2,6-di-n-propylphenylene-1,4-ether), poly(2-bromo-
6-methyl-phenylene-1,4-ether),
Poly(2-chloro-6-bromo-phenylene-
1,4-ether), poly(2-chloro-6-ethyl-phenylene-1,4-ether), poly(2-methyl-6-chloro-phenylene-1,4)
-ether), poly(2-methyl-6-n-butyl-phenylene-1,4-ether) or poly(2-methyl-6-bromo-phenylene-1,4)
- ether) etc. The amount of the polyphenylene ether (C) used is within the range of 3 to 25% by weight based on the composition of the present invention, and at the same time, the amount of the other two components (A) and
This is within the range that also satisfies the condition that the total amount with (B) is 100% by weight. The composition of the present invention contains the aromatic vinyl monomer-maleic anhydride copolymer resin (A), the rubber-reinforced styrenic polymer (B), and the polyphenylene ether (C) in the specific proportions described above. It is obtained by blending, and any method such as powder blending, solution blending, pellet blending, extruder, kneader, or Banbury mixer such as FCM can be adopted as the blending method. In addition, if desired, antioxidants, anti-Teiden agents, ultraviolet absorbers, colorants, flame retardants, plasticizers, lubricants, or inorganic fillers such as glass fibers may be added to the composition of the present invention during blending. You can also do that. The thus obtained composition of the present invention can be processed into molded products, films, sheets, etc. by applying any molding method such as extrusion molding or injection molding, and can be used as electrical appliances, automobile parts, food containers, medical instruments, and office equipment. It is expected to be widely used in fields related to precision equipment, especially in fields that take advantage of its heat resistance and impact resistance. Next, the present invention will be specifically explained with reference to Examples, where all parts and percentages are based on weight unless otherwise specified. Examples 1 and 2 and Comparative Examples 1 to 3 Styrene-maleic anhydride copolymer "Dylark #232" (manufactured by Arco Polymers) consisting of 92% styrene and 8% maleic anhydride, rubber Reinforced styrene polymer [Styrene-butadiene graft copolymer containing 8% high-cis polybutadiene rubber manufactured by Dainippon Ink & Chemicals Co., Ltd.:
Weight average molecular weight Mw = approx. 220,000, number average molecular weight Mn
= Approximately 90,000, Melt flow rate 0.80g/10 minutes (200℃, 5g), Izotsu impact strength 10Kg-cm/
cm, Vikatsu softening point 95℃] and polyphenylene ether "PPO #534" [Product of Engineering Plastics Co., Ltd., [η] = 0.60 (25℃, in chloroform)] are specified in Table 1. After melt-mixing by extruder kneading at a ratio of [26 mm diameter hot-cut single-screw extruder (equipped with tip dalmage kneading device]), test pieces were formed by injection molding at 250°C and physical properties were measured. For comparison, "Dylarc #232" [Comparative Example 1], "Dylarc #250" (rubber-modified styrene-maleic anhydride copolymer resin manufactured by the same company) [Comparative Example 2], and "Dylark #232" - " acryloid
KM-611” (a Rohm and Haas product,
Emulsion graft polymerization of acrylic monomer in the presence of rubbery diene polymer) - "PPO
A similar test was also attempted for the three-component system [Comparative Example 3] of "#534". The above results are summarized in Table 1.
【表】
第1表からも明らかなように、本発明組成物は
従来のものに比して、耐熱性と耐衝撃性とのバラ
ンスがとれているものであることがわかる。
実施例3〜5および比較例4
87%のスチレンと13%の無水マレイン酸とから
成るスチレン―無水マレイン酸共重合体「ダイラ
ーク#332」(同上社製品)、ゴム補強スチレン系
重合体〔大日本インキ化学工業(株)製ハイシスポリ
ブタジエンゴム10%含有のスチレン・ブタジエ
ン・グラフト共重合体:Mw=約23万、Mn=約
11万、メルトフローレート0.45g/10分(200℃、
5Kg)、アイゾツト衝撃強さ12Kg―cm/cm、ビカ
ツト軟化点101℃〕および「PPO#534」の三成
分を第2表に所定の割合で充分に混合させたの
ち、70℃で8時間乾燥させた。
次いで、230〜250℃の温度で造粒し、250〜275
℃の温度下に1オンス射出成形機を用いて5×
1/2×4(インチ)の大きさの試験片を成形した。
しかるのち、この試験片について物性試験を行
ない、第2表に示すような結果が得られた。[Table] As is clear from Table 1, the composition of the present invention has a better balance between heat resistance and impact resistance than conventional compositions. Examples 3 to 5 and Comparative Example 4 Styrene-maleic anhydride copolymer "Dylarc #332" (product of the same company) consisting of 87% styrene and 13% maleic anhydride, rubber-reinforced styrenic polymer [large] Styrene-butadiene graft copolymer containing 10% high-cis polybutadiene rubber manufactured by Nippon Ink Chemical Industry Co., Ltd.: Mw = approx. 230,000, Mn = approx.
110,000, melt flow rate 0.45g/10min (200℃,
5Kg), Izotsu impact strength 12Kg-cm/cm, Vikatsu softening point 101℃], and "PPO#534" were thoroughly mixed in the specified proportions shown in Table 2, and then dried at 70℃ for 8 hours. I let it happen. Then granulated at a temperature of 230-250℃, 250-275
5x using 1oz injection molding machine under temperature of ℃
A test piece with a size of 1/2×4 (inch) was molded. Thereafter, a physical property test was conducted on this test piece, and the results shown in Table 2 were obtained.
【表】
実施例6および比較例5、6
第3表のような処方に替えて行なう以外は、実
施例1、2および比較例1〜3と同様に溶融混合
し、射出成形により試験金型で成形して試験片を
作製した。
次いで、これらの各試験片について実用耐熱試
験と実用強度とを測定した。
まず、実用耐熱試験は試験片を100℃の熱湯に
入れて5時間後の寸法変化率を求めるという方法
によつた。
次に、実用強度は4オンス「日鋼―アンカ―ベ
ルクV―20―140型」射出成形機により箱型試験
片(205×124×21mmで2.0mm厚)を形成し、これ
を用いてトルク強度、タツピング強度および落球
衝撃強さを測定することにより行なつた。
なお、それぞれの試験における試験片作製時の
成形条件などは下記の通りであつた。
耐熱試験(寸法安定性)……ダンベル試験片(重
量5g、1オンス成形機使用、成形温度
C1=225℃、C2=230℃)
強度試験……箱型試験片(重量84g、4オンス成
形機使用、成形温度C1=170℃、C2=
250℃、C3=250℃、N=230℃)
これらの各試験の結果はまとめて第3表に示し
た。[Table] Example 6 and Comparative Examples 5 and 6 Melt mixing was carried out in the same manner as in Examples 1 and 2 and Comparative Examples 1 to 3, except that the formulations shown in Table 3 were changed, and a test mold was molded by injection molding. A test piece was prepared by molding. Next, a practical heat resistance test and practical strength were measured for each of these test pieces. First, the practical heat resistance test was conducted by placing a test piece in hot water at 100°C and determining the dimensional change rate after 5 hours. Next, to determine the practical strength, a box-shaped test piece (205 x 124 x 21 mm, 2.0 mm thick) was formed using a 4 oz. This was done by measuring strength, tapping strength and falling ball impact strength. In addition, the molding conditions at the time of preparing the test pieces in each test were as follows. Heat resistance test (dimensional stability)...Dumbbell test piece (weight 5g, 1 oz molding machine used, molding temperature
C 1 = 225℃, C 2 = 230℃) Strength test: Box-shaped test piece (weight 84g, using a 4-ounce molding machine, molding temperature C 1 = 170℃, C 2 =
(250°C, C 3 = 250°C, N = 230°C) The results of each of these tests are summarized in Table 3.
【表】【table】
【表】
第3表より明らかなように、本発明組成物(三
成分系ブレンド物)はそれぞれゴム変性スチレン
―無水マレイン酸共重合体およびローシスゴム補
強ポリスチレンに比して、煮沸水浸漬時における
寸法安定性の面からも耐熱性が顕著であり、しか
も実用強度が優位にあることが知れる。[Table] As is clear from Table 3, the composition of the present invention (three-component blend) has larger dimensions when immersed in boiling water than the rubber-modified styrene-maleic anhydride copolymer and the rhosus rubber-reinforced polystyrene. It is known that it has remarkable heat resistance from the standpoint of stability, and has an advantage in practical strength.
Claims (1)
上の芳香族ビニル単量体を共重合させて得られる
熱可塑性樹脂(A)25〜48.5重量%、シスー1,4―
構造を90重量%以上有するポリブタジエンゴムの
存在下でスチレンの単独またはこれとスチレン誘
導体とを重合させて得られるゴム補強スチレン系
重合体(B)25〜60重量%およびポリフエニレンエー
テル(C)3〜25重量%から構成され、かつ、上記
(A)、(B)および(C)三成分の合計が100重量%である
ことを特徴とする、耐熱性および耐衝撃性の改良
された熱可塑性樹脂組成物。1 Thermoplastic resin (A) obtained by copolymerizing 20% by weight or less of maleic anhydride and 80% by weight or more of an aromatic vinyl monomer (A) 25 to 48.5% by weight, cis-1,4-
Rubber-reinforced styrenic polymer (B) 25 to 60% by weight and polyphenylene ether (C) obtained by polymerizing styrene alone or with a styrene derivative in the presence of polybutadiene rubber having a structure of 90% by weight or more Consisting of 3 to 25% by weight, and the above
A thermoplastic resin composition with improved heat resistance and impact resistance, characterized in that the total of the three components (A), (B) and (C) is 100% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10359980A JPS5730752A (en) | 1980-07-30 | 1980-07-30 | Thermoplastic resin composition having heat resistance and impact resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10359980A JPS5730752A (en) | 1980-07-30 | 1980-07-30 | Thermoplastic resin composition having heat resistance and impact resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5730752A JPS5730752A (en) | 1982-02-19 |
JPH0158216B2 true JPH0158216B2 (en) | 1989-12-11 |
Family
ID=14358225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10359980A Granted JPS5730752A (en) | 1980-07-30 | 1980-07-30 | Thermoplastic resin composition having heat resistance and impact resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5730752A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59210966A (en) * | 1983-05-16 | 1984-11-29 | Daicel Chem Ind Ltd | Highly conductive styrene resin composition |
JPS61106650A (en) * | 1984-10-29 | 1986-05-24 | Mitsubishi Gas Chem Co Inc | Polyphenylene ether resin composition |
JPH0714235Y2 (en) * | 1986-09-19 | 1995-04-05 | 川崎汽船株式会社 | Dry container for bulk cargo |
JPH0330318Y2 (en) * | 1987-05-11 | 1991-06-26 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518358A (en) * | 1974-06-07 | 1976-01-23 | Gen Electric | |
JPS5420537A (en) * | 1977-07-16 | 1979-02-16 | Masashi Ichida | Device of transmitting turning effort by hydraulic pressure |
JPS5488953A (en) * | 1977-10-06 | 1979-07-14 | Gen Electric | Thermoplastic composition and manufacture |
-
1980
- 1980-07-30 JP JP10359980A patent/JPS5730752A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518358A (en) * | 1974-06-07 | 1976-01-23 | Gen Electric | |
JPS5420537A (en) * | 1977-07-16 | 1979-02-16 | Masashi Ichida | Device of transmitting turning effort by hydraulic pressure |
JPS5488953A (en) * | 1977-10-06 | 1979-07-14 | Gen Electric | Thermoplastic composition and manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS5730752A (en) | 1982-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3642949A (en) | Impact resistant high heat distortion composition | |
EP0046040B1 (en) | A highly heat-resistant thermoplastic resin composition having high oil-resistance and articles molded therefrom | |
EP0044703B1 (en) | A thermoplastic resin composition having high heat resistance and articles molded therefrom | |
CA1102473A (en) | Tough polyblends with improved heat distortion resistance | |
JPS6358862B2 (en) | ||
JPS58129043A (en) | Thermoplastic resin composition | |
JPH0158216B2 (en) | ||
JPS6323952A (en) | Thermoplastic molding material of abs and hydrogenated nitrile rubber | |
US4284735A (en) | Polyphenylene oxide blend with rubber-maleimide-styrene copolymer | |
JPH05163402A (en) | Thermoplastic resin composition | |
EP0196092A2 (en) | A thermoplastic resin composition | |
JPS61264036A (en) | Heat-resistant and impact-resistant thermoplastic resin composition | |
JPH0339545B2 (en) | ||
JP3086493B2 (en) | Polyamide resin composition with excellent impact resistance | |
JPH0440385B2 (en) | ||
JPH08134315A (en) | Thermoplastic polymer composition | |
JPS61163949A (en) | Thermoplastic resin composition | |
JP3254060B2 (en) | Rubber-modified vinyl aromatic resin composition | |
JPS6011979B2 (en) | Heat-resistant and impact-resistant resin composition | |
KR100217790B1 (en) | Rubber-reinforced styrene resin composition | |
JP2550355B2 (en) | Thermoplastic resin composition | |
JPS6363740A (en) | Thermoplastic resin composition | |
JPH0125337B2 (en) | ||
JPH01256550A (en) | Styrene resin composition of excellent appearance of molding | |
KR20230096632A (en) | Poly ether block amide copolymer and thermoplastic resin composition comprising the same |