JPS59151423A - Device for electron beam patterning - Google Patents

Device for electron beam patterning

Info

Publication number
JPS59151423A
JPS59151423A JP58024722A JP2472283A JPS59151423A JP S59151423 A JPS59151423 A JP S59151423A JP 58024722 A JP58024722 A JP 58024722A JP 2472283 A JP2472283 A JP 2472283A JP S59151423 A JPS59151423 A JP S59151423A
Authority
JP
Japan
Prior art keywords
maximum value
measurement
pattern
rectangular beam
shorter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58024722A
Other languages
Japanese (ja)
Other versions
JPH0624183B2 (en
Inventor
Fumio Murai
二三夫 村井
Shinji Okazaki
信次 岡崎
Yutaka Takeda
豊 武田
Osamu Suga
治 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58024722A priority Critical patent/JPH0624183B2/en
Publication of JPS59151423A publication Critical patent/JPS59151423A/en
Publication of JPH0624183B2 publication Critical patent/JPH0624183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To increase the patterning accuracy of the titled device by a method wherein, in the variable rectangular beam type electron beam patterning device, the ratio of longer side and the shorter side measurements is brought to constant without determining the measurements of the longer side and the shorter side of a rectangular beam independently, the maximum value of the shorter side measurement is determined, these values are corresponded to the minimum line width of the drawn pattern and the beam connection accuracy, they are memorized in the memory means located in the device, and they are referred to when the beam measurements are determined. CONSTITUTION:A memory means, to be used for providing the maximum value A of the shorter side measurement of a rectangular beam and the maximum value B of the ratio of the longer side measurement and the shorter measurement of the rectangular beam, is provided on a patterning device and when the measurements of the rectangular beam is determined, a controlling device is provided so that the shorter measurement will be brought to S which is below said maximum value A and also the longer measurement will be brought to SXB or below. To be more precise, when the ratio of the longer side and the shorter side is set as B and the width of the pattern is set as W, the shorter measurement of the beam is set as A and the longer measurement is set as AXB in the case of W>A, and if it is W<A, the shorter side is selected to W and the longer side to WXB.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電子線描画装置、特に描画精度およびスループ
ットを向上させた可変矩形ビーム形電子線描画装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electron beam lithography system, and particularly to a variable rectangular beam type electron beam lithography system with improved lithography accuracy and throughput.

〔従来技術〕[Prior art]

可変矩形ビーム型電子線描画装置は、点ビーム型電子線
描画装置の欠点であるスルーグツトの低さを改良すべく
開兄されたものである。しかし、可変矩形ビーム型電子
線描画装置の電子光学系の調整は複雑であり、完全な調
整が困難であるという本質的問題を有している。
The variable rectangular beam type electron beam lithography system was developed in order to improve the low throughput, which is a drawback of the point beam type electron beam lithography system. However, the adjustment of the electron optical system of the variable rectangular beam type electron beam lithography apparatus is complicated, and there is an essential problem that complete adjustment is difficult.

従来の可変矩形ビーム型電子線描画装置では、矩形ビー
ムの長辺の寸法と短辺の寸法を独立に定めている。この
場合、わずかな調整ずれのため、矩形ビームが偏向方向
に対して傾いていると、第1図に示す如き状態になる。
In a conventional variable rectangular beam type electron beam lithography system, the length of the long side and the size of the short side of the rectangular beam are determined independently. In this case, if the rectangular beam is tilted with respect to the deflection direction due to a slight adjustment error, a situation as shown in FIG. 1 will occur.

第1図(4)は大面積パターンの例を示すもので、この
場合には前記傾きの影響は小さいが、第1図(B)に示
した如き細い線状のパターンの場合には、ビームショッ
トの接続部が分離するという問題があった。
Figure 1 (4) shows an example of a large area pattern, in which case the influence of the above-mentioned inclination is small, but in the case of a thin linear pattern as shown in Figure 1 (B), the beam There was a problem that the connection part of the shot would separate.

これを防止するために、第2図に示す如く、パターン周
辺(A)および細い線状パターン(B)の場合にのみ、
電子ビーム形状を小さくして、スループットの低下を最
小限に抑えようとする装置も提案されているが、この装
置においては、大面積図形の中心部分の最大ビームサイ
ズと周辺部および細いパターンの最大ビー□ムサイズを
別個に指定しなければならないため、図形データの増大
を招くという別の問題が生ずる。
To prevent this, as shown in Figure 2, only in the case of the pattern periphery (A) and the thin linear pattern (B),
A device has also been proposed that attempts to minimize the drop in throughput by reducing the electron beam shape, but in this device, the maximum beam size at the center of a large-area figure and the maximum beam size at the periphery and thin patterns have been proposed. Since the beam size must be specified separately, another problem arises in that the amount of graphic data increases.

〔発明の″目的〕[Object of the invention]

本発明は上記事情〒鑑みてなされたもので、その目的と
するところは、従来の電子線描画装置における上述の如
き問題を解消し、描画精度および、   スループット
を向上可能な電子線描画装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide an electron beam lithography system capable of solving the above-mentioned problems in conventional electron beam lithography systems and improving lithography accuracy and throughput. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明の要点は、可変矩形ビーム型電子線描画装置にお
いて、矩形ビームの長辺と短辺との寸法を独立に定める
のでは瞳<、長辺の寸法と短辺の寸法との比率を一定と
し、かつ短辺寸法の最大値を定め、これらの値を、描画
パターンの最小線幅およびビーム接続精度等に対応させ
て装置内の記憶手段に記憶させておき、ビーム寸法決定
の際に参照するようにした点にある。
The main point of the present invention is that in a variable rectangular beam type electron beam lithography system, it is not possible to independently determine the dimensions of the long side and short side of the rectangular beam. Then, determine the maximum value of the short side dimension, store these values in the storage means in the device in correspondence with the minimum line width of the drawing pattern, beam connection accuracy, etc., and refer to them when determining the beam size. The point is that I tried to do it.

第3図は本発明の要点をより具体的に説明するためのも
のであり、(A)、 (B)は電子ビームの偏向方向に
対して平行な辺および垂直な辺で構成され′た、図形、
(C)は電子ビームの偏向方向に対して傾いた辺を含む
図形の例を示すものである。
FIG. 3 is for explaining the main points of the present invention in more detail, and (A) and (B) are composed of sides parallel to and perpendicular to the deflection direction of the electron beam. shapes,
(C) shows an example of a figure including sides inclined with respect to the deflection direction of the electron beam.

前:記長辺と短辺の寸法との比率をB1短辺寸法の最、
犬値をAとし、た場合、図形の幅Wが上記Aより犬であ
れば、ビーム寸法は短辺寸法をA1長辺寸法をAxB(
図(A)参照)とし、図形の幅Wが上記Aより小であれ
ばビーム寸法は短辺をW1長辺をWxB(図(B)参照
)とする。また、図(C)の如く傾いた辺を含む図形の
場合には、偏向方向に平行な辺および垂直な辺で構成さ
れる図形1゛と三角形2とに分解して描画を行い、この
場合、図形1に関しては短辺寸法をA以下、長辺寸法を
AxB以下とする。
Previous: The ratio of the long side and short side dimensions is the maximum of the short side dimension of B1,
If the dog value is A, then if the width W of the figure is more dog than the above A, the beam dimension is the short side dimension as A1 and the long side dimension as AxB(
(see Figure (A)), and if the width W of the figure is smaller than the above A, the beam dimensions are set such that the short side is W1 and the long side is WxB (see Figure (B)). In addition, in the case of a figure that includes inclined sides as shown in Figure (C), it is drawn by dividing it into figure 1 and triangle 2, which are made up of sides parallel to and perpendicular to the deflection direction. , As for figure 1, the short side dimension is set to be A or less, and the long side dimension is set to be not more than AxB.

〔発明の実施例〕    、 以下、本発明の実施例を図面に基づいて詳細に説明する
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第4図は本発明の一実、施例である電子線描画装置の概
略構成を示す図である。図において、10は電子線描画
装置本体であり、電子銃11.第1整形アパーチャ12
.整形偏向器13.第2整形アパーチャ14.縮小レン
ズ15および対物レンズ16から構成されているもので
ある。17は描画対象の例としてのウェハである。また
、20はパターンデータを記憶する記憶部、30はショ
ット分解条件を記憶するレジスタ回路、4oはパターン
分解回路41およびショット分解回路42を有する分解
回路、50はバッファメモリ、そして60は上記各回路
を制御するCPUである。
FIG. 4 is a diagram showing a schematic configuration of an electron beam lithography apparatus which is an embodiment of the present invention. In the figure, 10 is an electron beam lithography apparatus main body, electron guns 11. First shaping aperture 12
.. Shaping deflector 13. Second shaping aperture 14. It is composed of a reduction lens 15 and an objective lens 16. 17 is a wafer as an example of a drawing target. Further, 20 is a storage unit that stores pattern data, 30 is a register circuit that stores shot decomposition conditions, 4o is a decomposition circuit having a pattern decomposition circuit 41 and shot decomposition circuit 42, 50 is a buffer memory, and 60 is each of the above circuits. This is the CPU that controls the

本実施例の動作を以下、第5図により説明する。The operation of this embodiment will be explained below with reference to FIG.

第5図は本実施例装置の機能構成図であり、記号30A
はショット分割条件を、41Aはパターン分解処理を、
42Aはショット分解処理を、また、20Aはパターン
データ記憶を示している。
FIG. 5 is a functional configuration diagram of the device of this embodiment, with the symbol 30A
is the shot division condition, 41A is the pattern decomposition process,
42A indicates shot decomposition processing, and 20A indicates pattern data storage.

ショット分解条件3OAとしては描画パターンを矩形ビ
ーム九分解してショットするための条件、ここでは矩形
ビームの短辺Sの最大値Aおよび矩形ビームの長辺lと
短辺Sとの比7/sの最大値Bとが登録されている。
Shot decomposition condition 3OA is a condition for dividing the drawing pattern into nine rectangular beams and shooting them, here, the maximum value A of the short side S of the rectangular beam, and the ratio of the long side l of the rectangular beam to the short side S, 7/s. The maximum value B is registered.

幅W0.高さH6なるパターンデータが与えられると、
バッファメモリ5oicw==wo、H=Hoとして記
憶される。次に、パターン分解回路41によりパターン
分解処理41Aが実施される。この処理は、上記パター
ンを図中に示される3つめ条件によって決定される高さ
S2幅Wのパ〉−ンに分解して記憶するものである。次
に、ショット分解42によるショット分解処理42Aが
実施される。
Width W0. When pattern data with height H6 is given,
It is stored in the buffer memory 5 as oicw==wo, H=Ho. Next, pattern decomposition processing 41A is performed by the pattern decomposition circuit 41. In this process, the above pattern is broken down into patterns of height S2 width W determined by the third condition shown in the figure and stored. Next, shot decomposition processing 42A by shot decomposition 42 is performed.

この処理は上記パターン分解処理41A Kより得られ
た、高さS1幅Wのパターンを、図中の3つの条件によ
って決定される長辺l、短辺Sの矩形ビームによりショ
ットするものである。該ショット終了後、バッファメモ
リ50内のパターン50Aの幅がWからw−4に置換え
られ、上記パターン分解処理41Aおよびショット分解
処理42Aが、w=Oとなるまで繰返される。次いで、
上記バッファメモリ50内のパターン50Aの高さがH
からH−8に置換えられ、上記パターン分解処理41A
およびショット分解処理゛42Aが、H−oとなるまt
繰返される。
In this process, a pattern having a height S1 and a width W obtained by the pattern decomposition process 41AK is shot with a rectangular beam having a long side l and a short side S determined by the three conditions in the figure. After the shot ends, the width of the pattern 50A in the buffer memory 50 is replaced from W to w-4, and the pattern decomposition process 41A and shot decomposition process 42A are repeated until w=O. Then,
The height of the pattern 50A in the buffer memory 50 is H
to H-8, and the above pattern decomposition process 41A
And the shot decomposition process 42A becomes H-o.
repeated.

第6図は上述の第5図に示した手順によって描画パター
ンを矩形ビームショットに分解した例を示すものである
。第6図においては、矩形ビームの短辺の最大値Aを2
μm、長辺と短辺との比の最大値Bを20とした場合の
、(A)5μmXIQμmパターンs (B) 1μs
X I Qiimパターンおよび(C) 0.5 tt
m x10μmパターンについての矩形ビームの形状を
示すものである。図からも明らかな如く、大面積パター
ン(A)は前記条件での最大の矩形ビーム形状2μmX
4μmでショットされ、中程度のパターン(B)は1μ
sX2μm、矩形ビームの接続精度が問題となる微細パ
ターン(C)は0.53mX1μmのビーム形状でショ
ットされる。このようにショットすることにより大面積
パターンにおける描画時間の短縮と微細パターンにおけ
る接続精度の両方を満足する電子線描画装置を実現する
ことができる。
FIG. 6 shows an example in which a drawing pattern is broken down into rectangular beam shots by the procedure shown in FIG. 5 above. In Figure 6, the maximum value A of the short side of the rectangular beam is 2
(A) 5μmXIQμm pattern s (B) 1μs when the maximum value B of the ratio between the long side and the short side is 20
X I Qiim pattern and (C) 0.5 tt
The shape of a rectangular beam is shown for an m x 10 μm pattern. As is clear from the figure, the large area pattern (A) has a maximum rectangular beam shape of 2 μm× under the above conditions.
shot at 4μm, medium pattern (B) at 1μm
The fine pattern (C), in which the connection accuracy of a rectangular beam of s×2 μm is a problem, is shot with a beam shape of 0.53 m×1 μm. By performing shots in this manner, it is possible to realize an electron beam lithography apparatus that satisfies both shortening of lithography time for large-area patterns and connection accuracy for fine patterns.

第7図は本発明の他の実施例を示すもので、本発明をい
わゆる輪郭描画法と組合わせた場合の実施例である。第
7図(A)は7μmXIQμmパターン、(B)は5μ
sX I Qtimパターンそして(C)は0.511
m X10μmパターンを図形処理プログラムにより輪
郭図形71と中心図形72とに分解したものに、本発明
を適用した例を示すものである。
FIG. 7 shows another embodiment of the present invention, which is an embodiment in which the present invention is combined with a so-called contour drawing method. Figure 7 (A) is a 7μmXIQμm pattern, (B) is a 5μm pattern.
sX I Qtim pattern and (C) is 0.511
This figure shows an example in which the present invention is applied to a pattern of m×10 μm that is decomposed into a contour figure 71 and a center figure 72 by a figure processing program.

第7図は、輪郭図形の幅を1μmとし、矩形ビームの短
辺の最大値Aを2.5μm、長辺と短辺との比の最大値
Bを2.0とした場合の矩形ビームサイズを示しており
、大面積パターン(A)においては、中心図形72に対
しては最大ビームサイズ2.5μsX4μmが用いられ
ても、輪郭図形71に対しては1μsX2μmのビーム
でショットされる。
Figure 7 shows the rectangular beam size when the width of the contour figure is 1 μm, the maximum value A of the short side of the rectangular beam is 2.5 μm, and the maximum value B of the ratio between the long side and the short side is 2.0. In the large area pattern (A), even if the maximum beam size of 2.5 μs×4 μm is used for the center figure 72, the contour figure 71 is shot with a beam of 1 μs×2 μm.

第8図は本発明の更に他の実施例を示すもので、第7図
に示した第2の実施例において、矩形ビームの長辺寸法
の最大値Cを規定する機能を加えた実施例である。この
場合、矩形ビームの長辺寸法は短辺寸法の最大値AのB
倍(最大値)と、長辺寸法の最大値Cとの小さい方とす
る。
FIG. 8 shows still another embodiment of the present invention, which is an embodiment in which a function for specifying the maximum value C of the long side dimension of the rectangular beam is added to the second embodiment shown in FIG. be. In this case, the long side dimension of the rectangular beam is B of the maximum value A of the short side dimension.
(maximum value) and the maximum value C of the long side dimension, whichever is smaller.

第8図は上記第2の実施例と□同様の輪郭図形71と中
心図形72について、矩形ビームの短辺の最大値Aを4
μm、長辺と短辺との比Bの最大値Bを2.0.また、
長辺の最大値Cを4μmとした場合の、6μsX10μ
mパターンのショットビームの形状を示しており、この
例では、中心図形72が4μsX4μmの2シヨツトで
描画され、中心図形の描画速度が前記第2の実施例の2
倍となると同時に、矩形ビームが大きくなりすぎて、電
流密度が均一性を欠く状態となるのを防止するという利
点を有するものである。
FIG. 8 shows that the maximum value A of the short side of the rectangular beam is 4 for the same outline figure 71 and center figure 72 as in the second embodiment.
μm, the maximum value B of the ratio B of the long side and the short side is 2.0. Also,
6μs×10μ when the maximum value C on the long side is 4μm
The shape of the shot beam of m patterns is shown, and in this example, the center figure 72 is drawn with two shots of 4 μs x 4 μm, and the drawing speed of the center figure is the same as that of the second embodiment.
At the same time, this has the advantage of preventing the rectangular beam from becoming too large and causing the current density to become non-uniform.

上記長辺の最大値Cは、矩形ビームの大きさがある程度
大きくなる場合に、その形状を略正方形とする如く定め
ることが有効である。
When the size of the rectangular beam increases to a certain extent, it is effective to determine the maximum value C of the long side so that the shape is approximately square.

g911&よ。ア□。よ、。。え施ケオオす、。;あり
、矩形ビームの長辺寸法と短辺寸法との比の最大値Bを
一定の値でなく、短辺寸法の関数とするようにした実施
例である。
g911&yo. A□. Yo,. . Esekeoosu. This is an embodiment in which the maximum value B of the ratio between the long side dimension and the short side dimension of the rectangular beam is not a constant value but is a function of the short side dimension.

第9図(A)は矩形ビームの短辺の最大値Aと長辺と短
辺との比の最大値(図では「長辺/短辺」と 。
FIG. 9(A) shows the maximum value A of the short side of a rectangular beam and the maximum value of the ratio between the long side and the short side (in the figure, it is called "long side/short side").

示している)Bとの関係の一例を示すもので・、あり、
この関係を用いて68mX1oμmパターンおよび0.
5μmX1Oμmパターンをショット分解し゛た状況を
第9図(B)、 (C)に示した。第9図(B)に示し
た分解状況は第8図に示した分解状況と差がないが、第
9図(C)に示した分解状況は、第7図(C)に示した
分解状況と比較すると、ショツト数が30%減じている
ことが理解されよう。
) shows an example of the relationship with B.
Using this relationship, a 68m×1oμm pattern and a 0.
Figures 9(B) and 9(C) show the shot decomposition of a 5 μm×10 μm pattern. The disassembly situation shown in Fig. 9(B) is the same as the disassembly situation shown in Fig. 8, but the disassembly situation shown in Fig. 9(C) is different from the disassembly situation shown in Fig. 7(C). It can be seen that the number of shots is reduced by 30% when compared with the previous model.

これは、前述の通り、矩形ビームの大きさがある範囲内
にある間は、できるだけ大きな面積の矩形ビームを使っ
てショツト数を少なくするということと、微細パターン
の接続精度を悪化させないということの両方を満足でき
る方向である。
As mentioned above, this is because while the size of the rectangular beam is within a certain range, the number of shots should be reduced by using a rectangular beam with as large an area as possible, and the connection accuracy of fine patterns should not be deteriorated. This is a direction that satisfies both.

□なお、第9図(A)Icは、短辺寸法の最大値Aと長
辺゛寸法と短辺寸法との比の最大値Bとの関係−曲線で
表した例を示したが、この関係は直線あるいは折れ線グ
ラフとして表現しても良いことは言うまでもない。
□Ic in FIG. 9 (A) shows an example of the relationship between the maximum value A of the short side dimension and the maximum value B of the ratio of the long side dimension and the short side dimension - expressed by a curve. Needless to say, the relationship may be expressed as a straight line or a line graph.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、可変矩形ビーム廁電
子線描画装置において、矩形ビームの長辺と短辺との寸
法を独立に決めるのでなく、長辺の寸法と短辺の寸法と
の比率を一定とし、かっ短辺寸法の最大値を定め、これ
らの値を描画パターンの最小線幅およびビーム接続精度
等に対応させて装置内の記憶手段に記憶させておき、ビ
ーム寸法決定の際に参照するようにしたので、描画精度
およびスループットを向上させた電子線描画装置を実現
できるという顕著な効果を奏するものである。
As described above, according to the present invention, in a variable rectangular beam electron beam lithography system, the dimensions of the long side and the short side of the rectangular beam are not determined independently, but the dimensions of the long side and the short side are determined separately. The ratio is kept constant, the maximum value of the short side dimension of the parentheses is determined, and these values are stored in the storage means in the device in correspondence with the minimum line width of the drawing pattern, the beam connection accuracy, etc., and are used when determining the beam dimensions. As a result, it is possible to realize an electron beam lithography apparatus with improved lithography accuracy and throughput, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の装置によるショット分解図、第
3図は本発明の詳細な説明するための図、第4図は本発
明の一実施例である電子線描画装置の概略構成を示す図
、第5図はその機能構成図、第6図〜第9図はショット
分解の具体例を示す図である。 10:電子線描画装置本体、20:パターンデータ記憶
部、30:レジスタ回路、41:パターン分解回路、4
2=ショット分解回路、50二バツフアメモリ、60:
CPU0 (11) 第   1   図 第   2   図 (支)  ■ トトト N〜 111 <cQ        ’   3 色          Ω 色          Ω 第   8   図 C=4μm 第   9   図 矩形ビーム短辺寸法、A A=4.○
1 and 2 are shot exploded views of a conventional apparatus, FIG. 3 is a diagram for explaining the present invention in detail, and FIG. 4 is a schematic configuration of an electron beam lithography apparatus that is an embodiment of the present invention. , FIG. 5 is a functional configuration diagram thereof, and FIGS. 6 to 9 are diagrams showing specific examples of shot decomposition. 10: Electron beam drawing device main body, 20: Pattern data storage section, 30: Register circuit, 41: Pattern decomposition circuit, 4
2 = shot decomposition circuit, 50 two-buffer memory, 60:
CPU0 (11) Fig. 1 Fig. 2 (support) ■ Tototo N~ 111 <cQ' 3 Color Ω Color Ω Fig. 8 C=4μm Fig. 9 Rectangular beam short side dimension, A A=4. ○

Claims (1)

【特許請求の範囲】[Claims] 可変矩形ビーム型電子線描画装置において、矩形ビーム
の短辺寸法の最大値Aおよび矩形ビームの長辺寸法と短
辺寸法との比の最大値Bを設定するための記憶手段を有
し、かつ、矩形ビームの寸法を決定する際には、短辺寸
法を前記最大値A以下の値S1長辺寸法をSxB以下と
する如く制御する手段を備えたことを特徴とする電子線
描画装置。
A variable rectangular beam type electron beam lithography apparatus, comprising a storage means for setting a maximum value A of the short side dimension of the rectangular beam and a maximum value B of the ratio of the long side dimension to the short side dimension of the rectangular beam, and . An electron beam lithography apparatus, characterized in that, when determining the dimensions of the rectangular beam, the electron beam lithography apparatus is provided with means for controlling the short side dimension to be a value S1 that is less than the maximum value A, and the long side dimension to be less than or equal to SxB.
JP58024722A 1983-02-18 1983-02-18 Electron beam drawing apparatus and method Expired - Lifetime JPH0624183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024722A JPH0624183B2 (en) 1983-02-18 1983-02-18 Electron beam drawing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024722A JPH0624183B2 (en) 1983-02-18 1983-02-18 Electron beam drawing apparatus and method

Publications (2)

Publication Number Publication Date
JPS59151423A true JPS59151423A (en) 1984-08-29
JPH0624183B2 JPH0624183B2 (en) 1994-03-30

Family

ID=12146046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024722A Expired - Lifetime JPH0624183B2 (en) 1983-02-18 1983-02-18 Electron beam drawing apparatus and method

Country Status (1)

Country Link
JP (1) JPH0624183B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182425A (en) * 1984-09-29 1986-04-26 Toshiba Corp Charged beam exposure equipment
JP2001035766A (en) * 1999-07-16 2001-02-09 Toshiba Corp Pattern drawing method
JP2003195511A (en) * 2001-12-27 2003-07-09 Shinko Electric Ind Co Ltd Method and device for exposure
JP2012253316A (en) * 2011-05-12 2012-12-20 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118633A (en) * 1979-03-05 1980-09-11 Fujitsu Ltd Exposing method for electron beam
JPS5679429A (en) * 1979-12-03 1981-06-30 Chiyou Lsi Gijutsu Kenkyu Kumiai Electron beam exposure process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118633A (en) * 1979-03-05 1980-09-11 Fujitsu Ltd Exposing method for electron beam
JPS5679429A (en) * 1979-12-03 1981-06-30 Chiyou Lsi Gijutsu Kenkyu Kumiai Electron beam exposure process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182425A (en) * 1984-09-29 1986-04-26 Toshiba Corp Charged beam exposure equipment
JP2001035766A (en) * 1999-07-16 2001-02-09 Toshiba Corp Pattern drawing method
JP2003195511A (en) * 2001-12-27 2003-07-09 Shinko Electric Ind Co Ltd Method and device for exposure
JP2012253316A (en) * 2011-05-12 2012-12-20 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method

Also Published As

Publication number Publication date
JPH0624183B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
DE102006041436A1 (en) Electron beam dosage computing method for e.g. electron beam lithographic device, involves utilizing parameter values to create illustration of basic dosages of beams and to prepare illustration of proximity effect correction coefficients
JPS59208719A (en) Method of producing integrated circuit in particle beam device
US11774860B2 (en) Writing data generating method, multi charged particle beam writing apparatus, pattern inspecting apparatus, and computer-readable recording medium
JP3335011B2 (en) Mask and charged particle beam exposure method using the same
JPS59151423A (en) Device for electron beam patterning
KR20200042398A (en) Drawing data generation method and multi charged particle beam drawing apparatus
JP2002151387A (en) Method for drawing electron beam
JP2894746B2 (en) Charged beam drawing method
JPS627689B2 (en)
JPH09293669A (en) Charged particle-beam drawing device and method
JP3353766B2 (en) Pattern data processing method and storage medium storing program
JPS6314866B2 (en)
JPH0590142A (en) Exposure method using charged particle beam
JPH03116922A (en) Electron beam exposure
JP3157968B2 (en) Charged particle beam exposure method
JPS6229893B2 (en)
JPS6244404B2 (en)
JPH0722116B2 (en) Electron beam writer
JP3313606B2 (en) Electron beam exposure apparatus and exposure method
JPS6390827A (en) Method and equipment of charged particle beam lithography
JPS62250636A (en) Charged-particle beam exposure device
JPS631741B2 (en)
JPS5922324A (en) Electron beam drawing method
JPH06140309A (en) Method for electron beam expoure
JPS6147632A (en) Charged particle beam drawing method