JPS59149660A - Fuel-cell power generating system - Google Patents

Fuel-cell power generating system

Info

Publication number
JPS59149660A
JPS59149660A JP58014531A JP1453183A JPS59149660A JP S59149660 A JPS59149660 A JP S59149660A JP 58014531 A JP58014531 A JP 58014531A JP 1453183 A JP1453183 A JP 1453183A JP S59149660 A JPS59149660 A JP S59149660A
Authority
JP
Japan
Prior art keywords
fuel
gas
air electrode
carbon dioxide
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58014531A
Other languages
Japanese (ja)
Inventor
Yoshinaga Nakayama
中山 宜長
Shuichi Yoshida
修一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58014531A priority Critical patent/JPS59149660A/en
Publication of JPS59149660A publication Critical patent/JPS59149660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent any accidents by detecting contamination by minute amounts of fuel gas and oxidant gas which develop in an emergency such as cell disorder by installing a CO2 gas detector near the cell body in a piping on the outlet side of an air electrode. CONSTITUTION:A fuel cell body 1 is constituted by installing catalyst layers 12 and 13 on both sides of an electrolyte layer 11 before a fuel and an air electrode 14 and 15 respectively are installed on the catalyst layers 12 and 13. When methane of 100% purity for example is taken as a fuel from the inlet 21 of a fuel reformer 2, reformed gas existing in the outlet of the reformer 2 is composed of carbon dioxide, about 70% hydrogen and a little less than 0.2% carbon nonoxide. If any bad condition arises in the catalyst layer 11 producing contamimation by a minute amount of gas between the fuel and the air electrode sides, increase in carbon dioxide concentration is detected with a carbon dioxide detector 3 installed near the outlet 25 of the air electrode 15 thereby enabling the bad condition to be known. This enables gas leakage to be detected earlier than a hydrogen detector and secures the safety of the device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料1池発亀装置に関し、特にその故障時の保
護に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a single fuel pond starter device, and particularly to protection in the event of a failure thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池の本体は電解質層を中心にし、その両面に触媒
層を設け、さらに両面に4極を設けた素電池が基本構成
単位となっている。これらの合計5層からなる素電池1
−1気的に接続するとともに、素電池の片面には燃料ガ
ス全供給し、残る一方の片面には空気等の酸化剤ガスを
供給できるような構造をとシながら前記の素電池を集積
して燃料電池の本体は構成される。このようにして構成
された燃料電池を発心に使用する場合、電池内谷部での
燃料ガス濃度や酸素濃度をできるだけ一様に保ちなから
起電反応を続行させるために、一般には燃料極側と空気
極側の夫々にガス供給の入口、出口を設け、理論上起電
反応に必要な夫々のガス流量以上の過剰なガスを流し、
夫々の極面で流れのある状態で使用する。
The basic structural unit of a fuel cell is a unit cell, which has an electrolyte layer at its center, catalyst layers on both sides, and four poles on both sides. A unit cell 1 consisting of these 5 layers in total
-1 The unit cells described above are integrated while maintaining a structure in which the fuel gas is fully supplied to one side of the unit cell, and the oxidizing gas such as air can be supplied to the other side. The main body of the fuel cell is constructed as follows. When using a fuel cell configured in this way as a starter, the fuel electrode side is generally An inlet and an outlet for gas supply are provided on the and air electrode sides, respectively, and an excess of gas exceeding the theoretically necessary gas flow rate for the electromotive reaction is supplied.
Use with a flow on each pole.

燃料電池発電装置においては、一般に炭化水素を燃料と
して夏用し、これに水蒸気を加えて燃料改質装置に送り
、水素を主成分とし、二酸化炭素(炭酸ガス)、−酸化
炭素などからなるガスに改質して使用する。これらのガ
ス成分のうち起゛1反応にあづかるものは、例えばリン
酸型燃料電では水素ガスのみであり、溶融炭酸塩型燃料
電池では水素及び−酸化炭素ガスが起1反応を起す。ま
た空気fc till化剤として使用することが一般的
であり、この場合には空気の主成分の窒素は使用されな
いまま燃料電池空気極出口よシ排出される。
In fuel cell power generation equipment, hydrocarbons are generally used as fuel in the summer, and water vapor is added to this and sent to a fuel reformer to produce a gas containing hydrogen as the main component, carbon dioxide (carbon dioxide gas), -carbon oxide, etc. Modify and use. Among these gas components, for example, in a phosphoric acid fuel cell, only hydrogen gas takes part in the reaction, while in a molten carbonate fuel cell, hydrogen and carbon oxide gas take part in the reaction. It is also common to use air as an fc tilling agent, and in this case, nitrogen, which is the main component of air, is discharged from the fuel cell air electrode outlet without being used.

燃料電池に供給された改質ガス及び空気はα池の中で厳
密に分離されておシ、この二つのガスが混合されること
は一般には起らない。例えばリン酸型では、前記の燃料
極に於ては主として水素がガスの状態で拡散し、触媒層
に達すればここで酸化反応によって水素イオンとなる。
The reformed gas and air supplied to the fuel cell are strictly separated in the alpha pond, and mixing of these two gases generally does not occur. For example, in the case of the phosphoric acid type, hydrogen mainly diffuses in a gaseous state at the fuel electrode, and when it reaches the catalyst layer, it becomes hydrogen ions through an oxidation reaction.

従って電解質層はイオンのみが通過し、ガスが通過する
ことはないのが通常の状態である。このように電解質層
を通過するのはイオンのみであることは、溶融炭酸塩型
など他の燃料電池でも変らない。しかしながら、使用さ
れる改質ガス中の水素は、爆発領域のきわめて広い気体
であることから、燃料1池を発シ装置として使用する場
合には非常時のガスの混入を考慮し、安全性全確保する
ための手段を構しておく必要がある。特に大きな事故に
至る前の混入予知が重要であり、屈解貿層に極く狭小な
ピンホール−やクラックが発生し、4解質層全ガスの通
過があった場合には、微量であるうらKこれ全検出する
ことで、燃料ガスの1混入口の遮断と不活性ガスによる
電池内のパージを行って、事故を防ぐことが必要である
Therefore, under normal conditions, only ions pass through the electrolyte layer, and no gas passes through it. This fact that only ions pass through the electrolyte layer does not change in other fuel cells, such as the molten carbonate type. However, since the hydrogen in the reformed gas used is a gas with an extremely wide explosion range, when using one fuel tank as an ignition device, consideration must be given to the mixing of gas in an emergency to ensure safety. It is necessary to have means in place to ensure this. It is especially important to predict contamination before it leads to a major accident, and if an extremely narrow pinhole or crack occurs in the Quhebo layer and all the gas from the four solute layers passes through, a trace amount of gas will be detected. By detecting all of these, it is necessary to shut off one fuel gas inlet and purge the inside of the battery with inert gas to prevent accidents.

ところで、非常時の燃料電池本体の中でのガス混入を検
出する手段として、従来は空気極側の出口マニホールド
又は配管に燃料ガスの主成分である水素のガス検出器を
設けておき、燃料極側の出口マニホールド又は配管の電
池に近い部分に酸素のガス検出器金膜けておいて、夫々
相手極のガス成分の混入を検知するものとしていた。し
−75ムしながらこのような方法では後述する理由によ
り微量のガスの混入を検知することはできない。
By the way, as a means of detecting gas contamination in the fuel cell body in an emergency, conventionally a gas detector for hydrogen, which is the main component of fuel gas, is installed in the outlet manifold or piping on the air electrode side. An oxygen gas detector gold film was placed on the side outlet manifold or piping near the battery to detect the contamination of gas components from the respective electrodes. However, with this method, it is not possible to detect the inclusion of a trace amount of gas for reasons described later.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃料電池の中で゛電池の故障等非常時
に発生する燃料ガスと酸化剤ガスの微量な混入を検知し
、事故の発生を未然に防止するようにした燃料電池発電
装置を提供するものである。
An object of the present invention is to provide a fuel cell power generation system that detects minute amounts of mixture of fuel gas and oxidizing gas that occur in a fuel cell in the event of an emergency such as a battery failure, thereby preventing the occurrence of an accident. This is what we provide.

〔発明の実施例〕[Embodiments of the invention]

本発明の第一の要点は、電解質層を極ぐわず突通過した
ガスは、相手極側の触媒層で反応しそしまう事実を突き
止めたことにある。例えば燃料極側の水素が極くわずか
電解質層を通過して空気極に達すると、空気極側の触媒
層で空気中の酸素と反応して水(水蒸気)となってしま
うことであり、水素のまま空気電極に達し、これを通過
するような状態が起る場合には、電解質層を通過する水
素ガスの量は、危険な事故の防止が不可能な程の量に達
していることを見い出した。従って従来性われているよ
うに、空気極側に設けた水素検出器の警報レベルを爆発
発生限界以下の値、例えば0.1%に設定したとしても
、この検出器が警報を発したときは既に、電池内のガス
混入量は危険の限界を越えていることになる。
The first point of the present invention lies in the discovery of the fact that gas that passes through the electrolyte layer fails to react in the catalyst layer on the opposite electrode side. For example, when a very small amount of hydrogen on the fuel electrode side passes through the electrolyte layer and reaches the air electrode, it reacts with oxygen in the air on the catalyst layer on the air electrode side and becomes water (steam). If a situation occurs where the hydrogen gas reaches the air electrode and passes through it, the amount of hydrogen gas passing through the electrolyte layer has reached such an amount that it is impossible to prevent dangerous accidents. I found it. Therefore, as is conventionally known, even if the alarm level of the hydrogen detector installed on the air electrode side is set to a value below the explosion generation limit, for example 0.1%, when this detector issues an alarm, The amount of gas in the battery has already exceeded the dangerous limit.

本発明の第二の要点は、電解質層をガスが微量通過する
現象が発生した場合には、炭化水素系のガスを改質した
ガスを燃料とする限p1空気相側出口に炭酸ガスが検出
されることを突き止めたことにある。空気中には通常約
0.03%の炭酸ガスが含まれており、通常の起電反応
時には、空気極出口ガスには起電反応で消費された酸素
及び起電反応により生成した水蒸気を除き、その他の成
分についての質量流量には変化は見られない。空気極出
口側マニホールド又は同じく出口側空気配管の電池本体
近くに、炭酸ガス検出器を設けることで、例えばその検
出レベルを0.04%と設定することで、極めて良く、
電解質層の微少ガス通過を把え、危険防止の有効な手段
となることを見い出した。
The second point of the present invention is that when a phenomenon in which a small amount of gas passes through the electrolyte layer occurs, carbon dioxide gas is detected at the outlet on the air phase side of p1 as long as the gas obtained by reforming hydrocarbon gas is used as fuel. The problem lies in finding out what happens. Air normally contains approximately 0.03% carbon dioxide gas, and during a normal electromotive reaction, the air electrode outlet gas contains oxygen consumed in the electromotive reaction and water vapor generated by the electromotive reaction. , no change is observed in the mass flow rate for other components. By providing a carbon dioxide gas detector near the battery body on the air electrode outlet side manifold or the outlet side air piping, for example, by setting the detection level to 0.04%, it is extremely effective.
We have discovered that this method can be an effective means of preventing danger by understanding the passage of minute gases through the electrolyte layer.

以下に添付の図面を参照して、本発明の詳細な説明する
The present invention will now be described in detail with reference to the accompanying drawings.

第1図は本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

第1図において、1は燃料電池本体、2は燃料改質装置
、3は二酸化炭素検出器である。
In FIG. 1, 1 is a fuel cell main body, 2 is a fuel reformer, and 3 is a carbon dioxide detector.

燃料電池本体1は電解質層11の両側に触媒層12.1
3を夫々設け、次に燃料極14と相手側に空気極15を
設けた構成となっている。図に示した構成は模式的に素
1池1組を示したが、実際にはこれを数多く積み重ねて
作られており、燃料通路16及び空気通路17ともに多
数に分岐しており、通路の入口側及び出口側には図示は
しないがマニホールドを有している。
The fuel cell body 1 has catalyst layers 12.1 on both sides of the electrolyte layer 11.
3 are respectively provided, and then an air electrode 15 is provided on the opposite side of the fuel electrode 14. Although the configuration shown in the figure schematically shows one set of elementary ponds, it is actually made by stacking many of them, and both the fuel passage 16 and the air passage 17 are branched into many parts, and the entrance of the passage Although not shown, manifolds are provided on the side and the outlet side.

燃料改質装置2は当実施例においては図示しない改質器
、高温シフトコンバーター及び低温シフトコンバータ及
び二三の熱交換器等からなシ、燃料の他に水蒸気を取り
入れている。この装置の入口21よシ、例えば純度10
0%のメタンを燃料として取入れた場合に、燃料電池本
体1の燃料極入口22に直結された改質装置出口におい
て、ドライベースの改質ガス組成は水素が約70%、−
酸化炭素が0.2チ弱とな勺、残セは二酸化炭素となっ
ている。
In this embodiment, the fuel reformer 2 includes a reformer, a high-temperature shift converter, a low-temperature shift converter, a few heat exchangers, etc. (not shown), and takes in water vapor in addition to fuel. From the inlet 21 of this device, for example, purity 10
When 0% methane is taken in as fuel, the dry base reformed gas composition at the reformer outlet directly connected to the fuel electrode inlet 22 of the fuel cell body 1 is about 70% hydrogen, -
The carbon oxide content is a little less than 0.2%, and the remainder is carbon dioxide.

本実施例のリン酸型燃料電池本体の燃料極大口22に導
かれた改質ガスのなかの水素のみが起電反応にあづかシ
、残りのガス成分及び未反応ゐまま残った水素が燃料極
出口23から排出される。
Only the hydrogen in the reformed gas led to the large fuel port 22 of the phosphoric acid fuel cell main body of this embodiment participates in the electromotive reaction, and the remaining gas components and hydrogen remaining unreacted reach the fuel electrode. It is discharged from the outlet 23.

空気極15側の入口2′4から送り込まれた空気のなか
の酸素は空気極触媒層15のなかで反応し、水(水蒸気
)が生成され空気の成分のなかで窒素やその他の成分と
ともに空気極出口25から排出される。
Oxygen in the air sent from the inlet 2'4 on the air electrode 15 side reacts in the air electrode catalyst layer 15, water (steam) is generated, and air is mixed with nitrogen and other components among the air components. It is discharged from the polar outlet 25.

触媒層11に不具合が生じ、燃料極側と空気極側の間に
微量のガスの混入(クロスオ=)(−)が発生したとき
、空気極出口25の近くに設けた二酸化炭素検出器3に
よ)、二酸化炭素濃度の増加全検知し、この不具合を知
ることができる。
When a problem occurs in the catalyst layer 11 and a trace amount of gas is mixed in between the fuel electrode side and the air electrode side (cross-o =) (-), the carbon dioxide detector 3 installed near the air electrode outlet 25 detects ), the increase in carbon dioxide concentration can be fully detected and this problem can be detected.

〔発明の効果〕〔Effect of the invention〕

本発明の効果を、従来の空気極出口に水素検出器を設け
る方法と比較し、第2図に示す。図中の横軸は空気極側
へ燃料ガスの洩れ出した量を空気極出口のガス増分のパ
ーセントで示し、縦軸はドライペルスのガス検出器指示
値を示す。
The effects of the present invention are compared with the conventional method of providing a hydrogen detector at the air electrode outlet, and are shown in FIG. The horizontal axis in the figure shows the amount of fuel gas leaking to the air electrode side as a percentage of the gas increment at the air electrode outlet, and the vertical axis shows the value indicated by the dry pulse gas detector.

ここに示す試験結果は、空気極側での酸素利用率e50
q6の一定条件下で調べたものであり、31は二酸化炭
素検出器の指示値をプロットした曲線、32は水素検出
器の指示値全プロットした曲線である。通常の空気中に
は微量の二酸化炭素かつねに含まれているにも拘わらず
、水素検出器よりも早期にガス洩れを検知できることは
明確であ勺。
The test results shown here are based on the oxygen utilization rate e50 on the air electrode side.
The results were investigated under constant conditions of q6, and 31 is a curve in which the indicated values of the carbon dioxide detector are plotted, and 32 is a curve in which all indicated values of the hydrogen detector are plotted. Even though normal air always contains trace amounts of carbon dioxide, it is clear that gas leaks can be detected earlier than hydrogen detectors.

本発明が燃料成性発成装置の安全性を確保することに有
効であることが示された。
It has been shown that the present invention is effective in ensuring the safety of the fuel composition generator.

なお二酸化炭素検出器を燃料電池本体の空気極出口マニ
ホールド内に設けた第2の実施例によっても、同じ効果
が得られた。
The same effect was also obtained in the second embodiment in which the carbon dioxide detector was provided in the air electrode outlet manifold of the fuel cell main body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略図、第2図は本発明
の効果を従来方法と比較して示す特性図である。 1 ・燃料電池本体   2・燃料改質装置3・・二酸
化炭素ガス検出器 11・1解質層     12 燃料極触媒層13・空
気極触媒層   14 燃料極工5空気極      
1(i・燃料通路17 空気通路     21・燃料
改質装置人口22・燃料極入口    23・・燃料掘
出口24 空気極入口    25・空気極出口代理人
 弁理士 則 近 憲 佑 (ほか1名)第  l 図 第  2 図 洩d賓”   nnt
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the effects of the present invention in comparison with a conventional method. 1 - Fuel cell body 2 - Fuel reformer 3... Carbon dioxide gas detector 11 - 1 Solute layer 12 Fuel electrode catalyst layer 13 - Air electrode catalyst layer 14 Fuel electrode work 5 Air electrode
1 (i・Fuel passage 17 Air passage 21・Fuel reformer population 22・Fuel electrode inlet 23・・Fuel excavation outlet 24・Air electrode inlet 25・Air electrode outlet Patent attorney Noriyuki Chika (and 1 other person) No. l Figure 2: Guest” nnt

Claims (1)

【特許請求の範囲】[Claims] 炭化水素燃料を水素を主成分とするガスに改質する装置
を備え、この改質ガスと空気などの酸化剤とを電気化学
的に反応させて発心を行う燃料電池光1装置において、
燃料・1池本体の空気極ガス出口側に二酸化炭素(炭酸
ガス)の検出器を設けたことを特徴とする燃料電池発電
装置。
A fuel cell light 1 device is equipped with a device for reforming hydrocarbon fuel into a gas containing hydrogen as a main component, and generates energy by electrochemically reacting the reformed gas with an oxidizing agent such as air.
A fuel cell power generation device characterized in that a carbon dioxide (carbon dioxide gas) detector is provided on the air electrode gas outlet side of the fuel/1 pond body.
JP58014531A 1983-02-02 1983-02-02 Fuel-cell power generating system Pending JPS59149660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014531A JPS59149660A (en) 1983-02-02 1983-02-02 Fuel-cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014531A JPS59149660A (en) 1983-02-02 1983-02-02 Fuel-cell power generating system

Publications (1)

Publication Number Publication Date
JPS59149660A true JPS59149660A (en) 1984-08-27

Family

ID=11863722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014531A Pending JPS59149660A (en) 1983-02-02 1983-02-02 Fuel-cell power generating system

Country Status (1)

Country Link
JP (1) JPS59149660A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264875A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Phosphoric acid type fuel cell power generating system
WO2000039870A3 (en) * 1998-12-23 2000-09-21 Ballard Power Systems Method and apparatus for detecting a leak within a fuel cell
US6475651B1 (en) 2000-07-31 2002-11-05 Ballard Power Systems Inc. Method and apparatus for detecting transfer leaks in fuel cells
US6874352B2 (en) 2003-01-09 2005-04-05 Ballard Power Systems Inc. Method and apparatus for locating internal transfer leaks within fuel cell stacks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264875A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Phosphoric acid type fuel cell power generating system
WO2000039870A3 (en) * 1998-12-23 2000-09-21 Ballard Power Systems Method and apparatus for detecting a leak within a fuel cell
US6492043B1 (en) 1998-12-23 2002-12-10 Ballard Power Systems Inc. Method and apparatus for detecting a leak within a fuel cell
US6475651B1 (en) 2000-07-31 2002-11-05 Ballard Power Systems Inc. Method and apparatus for detecting transfer leaks in fuel cells
US6874352B2 (en) 2003-01-09 2005-04-05 Ballard Power Systems Inc. Method and apparatus for locating internal transfer leaks within fuel cell stacks

Similar Documents

Publication Publication Date Title
EP0550892B1 (en) Power generation plant including fuel cell
US6280865B1 (en) Fuel cell system with hydrogen purification subsystem
US7465509B2 (en) Fuel cell system with degradation protected anode
JP2924009B2 (en) How to stop fuel cell power generation
JPWO2007063826A1 (en) Fuel cell system
US20040005494A1 (en) Chemical sensing in fuel cell systems
FI122455B (en) The fuel cell device
JPS59149660A (en) Fuel-cell power generating system
JPS61279071A (en) Fuel cell
JPH08321315A (en) Fuel cell
EP1659653B1 (en) Fuel cell system and method for starting operation of fuel cell system
US20070154746A1 (en) Purging a fuel cell system
JP2001023670A (en) Fuel cell power generating system
JPS6188463A (en) Method of measuring volume of internal air leakage in matrix type fuel cell
JPS6282660A (en) Stopping method for phosphoric acid type fuel cell
JPS62115670A (en) Fuel cell power generating plant
JPS59149664A (en) Fuel-cell system
JP2001006706A (en) Fuel cell system
US4250231A (en) Acid electrolyte fuel cell method having improved carbon corrosion protection
JP3515789B2 (en) Fuel cell power plant
Chambers et al. Carbonaceous fuel cells
JPH097620A (en) Solid high polymer type fuel cell power generator
JPS60158557A (en) Fuel cell power generating system
JP2012059659A (en) Fuel cell power generator
JPH0282456A (en) Fuel cell