JPH0275164A - Molten carbonate type fuel cell electricity generating device and operating method for the same - Google Patents

Molten carbonate type fuel cell electricity generating device and operating method for the same

Info

Publication number
JPH0275164A
JPH0275164A JP63225272A JP22527288A JPH0275164A JP H0275164 A JPH0275164 A JP H0275164A JP 63225272 A JP63225272 A JP 63225272A JP 22527288 A JP22527288 A JP 22527288A JP H0275164 A JPH0275164 A JP H0275164A
Authority
JP
Japan
Prior art keywords
fuel cell
molten carbonate
carbon dioxide
carbonate fuel
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225272A
Other languages
Japanese (ja)
Inventor
Toshiki Kahara
俊樹 加原
Keizo Otsuka
大塚 馨象
Tsutomu Takahashi
務 高橋
Tadashi Takashima
正 高島
Matsuo Sato
松雄 佐藤
Takayuki Mogi
孝之 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63225272A priority Critical patent/JPH0275164A/en
Publication of JPH0275164A publication Critical patent/JPH0275164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04455Concentration; Density of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To decrease fuel consumption and enhance the power generating efficiency by sensing the output of a fuel cell of molten carbonate type, and controlling so that the oxygen concentration of cathode gas is greater and the carbon dioxide gas concentration is smaller with with larger. output. CONSTITUTION:An anode 2 is supplied with a fuel in hydrocarbon series such as LNG which is previously converted into hydrogen by a modifier 4. Air and part of the fuel having passed through an air control valve 7 and a fuel control valve 6, respectively, are sent to a catalyst burner 5 and combusted to be turned into a mixture gas of produced carbon dioxide gas and air as residue and forwarded to a cathode 1. The output of battery and the gas composition supplied to this cathode 1 are sensed by respective sensors 8A, 8B to serve for control of valves 6, 7 by a controller 8. That is, either the valve 6 is throttled or the one 7 opened when the output is increased, and thereby the proportion of oxygen and carbon dioxide gas is varied, which should enhance the power generating efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩を電解質とする溶融炭酸塩型燃料電
池に係り、特に溶融炭酸塩型燃料電池の性能を向上し発
電効率を向上するに好敵な溶融炭酸塩型燃料電池発電装
置および該発電装置の運転方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten carbonate fuel cell using molten carbonate as an electrolyte, and in particular improves the performance of the molten carbonate fuel cell and improves power generation efficiency. The present invention relates to a molten carbonate fuel cell power generation device that is a good enemy to the above, and a method of operating the power generation device.

〔従来の技術〕[Conventional technology]

一般に溶融炭酸塩型燃料電池のカソードガスとしては、
空気と炭酸ガスの混合ガスが用いられている。すなわち
、ボンベに充填された炭酸ガスと空気を混合したり、あ
るいは炭化水素系燃料を燃焼させて炭酸ガスを生成し、
この炭酸ガスと空気を混合したりして得られた空気と炭
酸ガスの混合ガスが使用されている。
Generally, the cathode gas for molten carbonate fuel cells is
A mixture of air and carbon dioxide gas is used. In other words, carbon dioxide gas is produced by mixing carbon dioxide gas filled in a cylinder with air, or by burning hydrocarbon fuel.
A mixed gas of air and carbon dioxide obtained by mixing carbon dioxide and air is used.

ところで、溶融炭酸塩型燃料電池の起電反応は次式で示
される。
Incidentally, the electromotive reaction of a molten carbonate fuel cell is expressed by the following equation.

アノード: H2+C03”←H20+CO2+ 2 
e −−−(1)カソード: 1/2 o、+co、+
 2 e−←CO3”−・・・= (2)全体  : 
H2+1/20□←11□0    ・・・・・・(3
)カソードでは、172モルの酸素、1モルの炭酸ガス
およびアノードからの電子が電気化学的に反応して、炭
酸イオンを生成する。したがって、カソードに供給する
ガス組成は酸素と炭酸ガスの比率が体積比で1対2にな
るよう調整されている。
Anode: H2+C03”←H20+CO2+ 2
e --- (1) Cathode: 1/2 o, +co, +
2 e−←CO3”−・・・= (2) Overall:
H2+1/20□←11□0 ・・・・・・(3
) At the cathode, 172 moles of oxygen, 1 mole of carbon dioxide, and electrons from the anode react electrochemically to produce carbonate ions. Therefore, the gas composition supplied to the cathode is adjusted so that the ratio of oxygen to carbon dioxide gas is 1:2 by volume.

実際には、燃焼反応の関係で上記体積比を1対2にする
ことは難しいが、できるだけ1対2に近づける努力がな
されている。
In reality, it is difficult to make the volume ratio 1:2 due to combustion reactions, but efforts are being made to make it as close to 1:2 as possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記したようにカソードガスとして酸素
と炭酸ガスの比率を1対2、もしくはこれに近い値に固
定してしまうことは、例えばカソードガス冷却を採用し
た場合に多量の炭酸ガスを流通させる必要があるため、
炭酸ガス源としての燃料の燃焼量が膨大となり、無駄に
消費する燃料量が増加し、消費燃料量に対する発電効率
が低下するという問題があった。
However, as mentioned above, fixing the ratio of oxygen and carbon dioxide gas as cathode gas to 1:2 or a value close to this means that, for example, when cathode gas cooling is adopted, it is necessary to circulate a large amount of carbon dioxide gas. Because there is
There is a problem in that the amount of fuel burned as a source of carbon dioxide becomes enormous, the amount of fuel wasted increases, and the power generation efficiency with respect to the amount of fuel consumed decreases.

本発明の目的は、無駄に消費する燃料量を減少させ、消
費燃料量に対する発電効率を向上させることができる溶
融炭酸塩型燃料電池発電装置および該発電装置の運転方
法を提供することである。
An object of the present invention is to provide a molten carbonate fuel cell power generation device and a method for operating the power generation device, which can reduce the amount of fuel wasted and improve power generation efficiency relative to the amount of consumed fuel.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の発電装置の第1は
、溶融炭酸塩型燃料電池のアノードに水素を含むアノー
ドガスを供給するとともに、カソ−ドに酸素と炭酸ガス
を含むカソードガスを供給して発電する溶融炭酸塩型燃
料電池発電装置において、前記溶融炭酸塩型燃料電池の
出力を検出する出力手段と、該出力検出手段からの信号
に基づいて溶融炭酸塩型燃料電池の電池出力を検知し、
電池出力が大きくなる程、前記カソードガスの酸素濃度
を大きくし且つ炭酸ガス濃度を小さく制御する手段と、
を具備したものである。
In order to achieve the above object, a first aspect of the power generation device of the present invention is to supply an anode gas containing hydrogen to the anode of a molten carbonate fuel cell, and supply a cathode gas containing oxygen and carbon dioxide to the cathode. In a molten carbonate fuel cell power generation device that supplies power to the molten carbonate fuel cell, the molten carbonate fuel cell has output means for detecting the output of the molten carbonate fuel cell, and a cell output of the molten carbonate fuel cell based on a signal from the output detection means. Detected,
means for increasing the oxygen concentration and decreasing the carbon dioxide concentration of the cathode gas as the battery output increases;
It is equipped with the following.

また、本発明の発電装置の第2は、溶融炭酸塩型燃料電
池のアノードに炭化水素系燃料を供給し、該炭化水素系
燃料を水素に変換させるとともに、カソードに酸素と炭
酸ガスを含むカソードガスを供給して発電する内部改質
型の溶融炭酸塩型燃料電池発電装置において、前記溶融
炭酸塩型燃料電池の出力を検出する出力検出手段と、該
出力検出手段からの信号に基づいて溶融炭酸塩型燃料電
池の電池出力を検知し、電池出力が大きくなる程、前記
カソードガスの酸素濃度を大きくし目、つ炭酸ガス濃度
を小さく制御する制御手段と、を具備したものである。
The second aspect of the power generation device of the present invention is to supply a hydrocarbon fuel to the anode of a molten carbonate fuel cell, convert the hydrocarbon fuel into hydrogen, and supply a cathode containing oxygen and carbon dioxide gas to the cathode. In an internal reforming type molten carbonate fuel cell power generation device that supplies gas to generate electricity, the molten carbonate fuel cell includes an output detection means for detecting the output of the molten carbonate fuel cell; The apparatus is equipped with a control means that detects the cell output of the carbonate fuel cell, and controls the oxygen concentration of the cathode gas to be increased and the carbon dioxide gas concentration to be decreased as the cell output increases.

さらに、本発明の運転方法の第1は、溶融炭酸塩型燃料
電池のアノードに水素を含むアノードガスを供給すると
ともに、カソードに酸素と炭酸ガスを含むカソードガス
を供給し、電気化学的反応を利用して発電を行なう溶融
炭酸塩型燃料電池発電装置の運転方法において、前記溶
融炭酸塩型燃料電池を低電流密度で運転するときは、前
記カソードガスの酸素と炭酸ガスの比率を略1対2とし
、高電流密度で運転するときは、前記カソードガスの酸
素の比率を高くし、且つ炭酸ガスの比率を低くすること
である。
Further, in the first operating method of the present invention, an anode gas containing hydrogen is supplied to the anode of the molten carbonate fuel cell, and a cathode gas containing oxygen and carbon dioxide is supplied to the cathode, thereby causing an electrochemical reaction. In the method for operating a molten carbonate fuel cell power generation device that generates electricity using a molten carbonate fuel cell, when the molten carbonate fuel cell is operated at a low current density, the ratio of oxygen to carbon dioxide gas in the cathode gas is approximately 1:1. 2, when operating at a high current density, the proportion of oxygen in the cathode gas is increased and the proportion of carbon dioxide gas is decreased.

また、本発明の運転方法の第2は、溶融炭酸塩型燃料電
池のアノードに水素を含むアノードガスを供給するとと
もに、カソードに酸素と炭酸ガスを含むカソードガスを
供給し、電気化学的反応を利用して発電を行なう溶融炭
酸塩型燃料電池発電装置の運転方法において、カソード
ガス中の酸素の比率を変化させることによって、溶融炭
酸塩型燃料電池の出力を制御することである。
In addition, the second operating method of the present invention is to supply an anode gas containing hydrogen to the anode of the molten carbonate fuel cell, and to supply a cathode gas containing oxygen and carbon dioxide to the cathode, thereby causing an electrochemical reaction. A method of operating a molten carbonate fuel cell power generation device that uses a molten carbonate fuel cell to generate electricity is to control the output of a molten carbonate fuel cell by changing the proportion of oxygen in the cathode gas.

〔作用〕[Effect]

本発明によれば、高電流密度で運転するときは、酸素の
比率を高くし、炭酸ガスの比率を低くしている。これは
溶融炭酸塩に対する溶解量が、酸素は約10−’moQ
/’drn’−atmであるのに対し、炭酸ガスは約1
0−2moR/dm・atmであり、10”倍も大きい
ためである。すなわち、電気化学的反応場に存在する溶
存ガスとして、炭酸ガスの方が圧倒的に多いため、電流
値を大にすると次式(4)、(5)に示すカソードの素
反応が律速になり、カソード分極を大にするので、これ
を防止するために炭酸ガスの比率を小さくするものであ
る。
According to the present invention, when operating at a high current density, the proportion of oxygen is increased and the proportion of carbon dioxide is decreased. This means that the amount of oxygen dissolved in the molten carbonate is approximately 10-'moQ.
/'drn'-atm, whereas carbon dioxide is about 1
0-2moR/dm・atm, which is 10" times larger. In other words, carbon dioxide is by far the most dissolved gas present in the electrochemical reaction field, so when the current value is increased, The elementary reactions at the cathode shown in the following formulas (4) and (5) become rate-determining and increase cathode polarization, so in order to prevent this, the ratio of carbon dioxide gas is reduced.

1/202+2e−←02−・・・・・・・・・・・・
・・・・・・・・・・・(4)o2−+、co、←C○
3′=・・・・・・・・・・・・・・・旧・・山(5)
カソードに供給するガス中の酸素濃度と炭酸ガス濃度を
変化させたときの各電流密度に対するカソード単位の変
化を第2図に示す。図中点線で示したところが酸素と炭
酸ガスの比率が1対2になるとこるである。図から判る
ように、電流を取り出さないとき、すなわち開路では、
カソード電位は酸素/炭酸ガス=1/2の点線で示した
部分で最も責になり、分極が小さく性能が高い。ところ
が、電流を多く取り出すようにすると、酸素濃度が大で
かつ炭酸ガス濃度が小はど分極が小さく、性能が良くな
る。例えば電流密度150mA/cJにおいては、分極
が最低になるのは酸素/炭酸ガス=2/1のところであ
り、開路時の場合と逆である。このような現象が生じる
のは、酸素と炭酸ガスの溶融炭酸塩に対する溶解量に差
があるためと考えられる。すなわち、反応式(4)、(
5)に示したカソードの素反応は、上記のガスが溶融炭
酸塩中にまず溶は込み、次にカソード表面に到達して(
4,)、(5)式に示した反応を起こすためと考えられ
る。
1/202+2e-←02-・・・・・・・・・・・・
・・・・・・・・・・・・(4) o2−+, co, ←C○
3'=・・・・・・・・・・・・・・・Old・・Mountain(5)
FIG. 2 shows changes in cathode units with respect to each current density when the oxygen concentration and carbon dioxide concentration in the gas supplied to the cathode are changed. The dotted line in the figure shows what happens when the ratio of oxygen to carbon dioxide is 1:2. As you can see from the figure, when no current is drawn, that is, when the circuit is open,
The cathode potential is most critical at the part indicated by the dotted line where oxygen/carbon dioxide gas = 1/2, where polarization is small and performance is high. However, when a large amount of current is extracted, the polarization is small and the performance is improved when the oxygen concentration is high and the carbon dioxide concentration is low. For example, at a current density of 150 mA/cJ, the polarization is lowest when oxygen/carbon dioxide = 2/1, which is the opposite of the case when the circuit is open. It is thought that this phenomenon occurs because there is a difference in the amounts of oxygen and carbon dioxide dissolved in the molten carbonate. That is, reaction formula (4), (
The elementary reaction at the cathode shown in 5) is that the above gas first dissolves into the molten carbonate, then reaches the cathode surface, and (
This is thought to be due to the reaction shown in equations 4,) and (5) occurring.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に従って説明する。 An embodiment of the present invention will be described below with reference to the drawings.

本発明に係る溶融炭酸塩型燃料電池発電装置の全体構成
を第1図に示す。図に示すように、溶融炭酸塩型燃料電
池はカソード1.アノード2及び溶融炭酸塩からなる電
解質3で構成される。アノード2にはL N Gやメタ
ン等の炭化水素系燃料が改質器4によって水素に変換さ
れて供給される。
FIG. 1 shows the overall configuration of a molten carbonate fuel cell power generation device according to the present invention. As shown in the figure, a molten carbonate fuel cell has a cathode 1. It consists of an anode 2 and an electrolyte 3 consisting of molten carbonate. A hydrocarbon fuel such as LNG or methane is converted into hydrogen by a reformer 4 and supplied to the anode 2 .

一方、カソード1には燃料の一部と空気が、それぞれ燃
料制御弁6及び空気制御弁7を通って触媒バーナ5に送
られ、ここで燃料を燃焼して生成した炭酸ガスと残りの
空気との混合ガスとなって供給される。また燃料電池の
出力及びカソード1に供給されるガス組成をそれぞれ検
出器8A、813で検出し、燃料制御弁6及び空気制御
弁7を制御するコントローラ8が設けられている。そし
て、電池の出力が増大したときには、燃料制御弁6を絞
るか、または空気制御弁7を更に開くことにより、酸素
と炭酸ガスの割合を任意の適合する比率に変え電池性能
を高く維持して発電効率を高くするようにしている。
On the other hand, a part of the fuel and air are sent to the cathode 1 through a fuel control valve 6 and an air control valve 7, respectively, to a catalytic burner 5, where carbon dioxide gas generated by burning the fuel and the remaining air are sent to the cathode 1. It is supplied as a mixed gas. Further, a controller 8 is provided which detects the output of the fuel cell and the gas composition supplied to the cathode 1 with detectors 8A and 813, respectively, and controls the fuel control valve 6 and the air control valve 7. When the output of the battery increases, by throttling the fuel control valve 6 or further opening the air control valve 7, the ratio of oxygen and carbon dioxide gas is changed to an arbitrary suitable ratio to maintain high battery performance. We are trying to increase power generation efficiency.

なお、本実施例では、検出器8A、8Bが検出手段を、
燃料制御弁6、空気制御弁7およびコントローラ8が制
御手段を各々構成している。
In addition, in this embodiment, the detectors 8A and 8B serve as detection means.
The fuel control valve 6, the air control valve 7, and the controller 8 each constitute a control means.

また、本実施例によれば逆にカソードに供給するガス組
成を変化させることによって、電池出力を制御できるこ
とも明らかである。
Furthermore, according to this embodiment, it is also clear that the battery output can be controlled by changing the gas composition supplied to the cathode.

また、電池の出力以外にも改質器4に供給する燃料量あ
るいはアノード2の入口でのガス供給量、または電池温
度変化等を検知し、その変化によって炭酸ガスと酸素の
比率を変化させ、最適組成に制御することも可能である
In addition to the output of the battery, the amount of fuel supplied to the reformer 4, the amount of gas supplied at the inlet of the anode 2, changes in battery temperature, etc. are detected, and the ratio of carbon dioxide and oxygen is changed according to the changes. It is also possible to control the composition to an optimum composition.

さらに、L N Gやメタンなどの炭化水素系燃料を溶
融炭酸塩型燃料電池内部のアノード側で水素に改質して
発電する、いわゆる内部改質型の燃料電池においても、
同様に電池出力、カソード入口ガス組成、あるいは燃料
供給量や電池温度変化を検知して、酸素と炭酸ガスの供
給量を制御し、電池性能を向上させ発電効率を高くして
運転することができる。
Furthermore, in so-called internal reforming fuel cells, which generate electricity by reforming hydrocarbon fuels such as LNG and methane into hydrogen on the anode side inside the molten carbonate fuel cell,
Similarly, by detecting battery output, cathode inlet gas composition, fuel supply amount, and battery temperature changes, the supply amount of oxygen and carbon dioxide can be controlled, improving battery performance and increasing power generation efficiency. .

本実施例による検討結果では、無負荷状態すなわち電流
ゼロの開路では、酸素と炭酸ガスの比率は1対2が、電
流密度250mA/cJ付近では4対1が適することが
わかった。また。溶融炭酸塩型燃料電池で一般に採用さ
れている電流密度15−11= Om A / aJ付近では2対1が適する。
According to the study results of this example, it was found that in a no-load state, that is, in an open circuit with zero current, a ratio of 1:2 between oxygen and carbon dioxide is suitable, and a ratio of 4:1 is suitable when the current density is around 250 mA/cJ. Also. A ratio of 2:1 is suitable at a current density of around 15-11=Om A/aJ, which is generally employed in molten carbonate fuel cells.

なお、発電時の電流密度あるいは出力を先に定め、あら
かじめカソードに供給する酸素と炭酸ガスの割合をその
値に最適なものに設定しておいてもさしつかえないこと
も明らかである。
Note that it is also obvious that the current density or output during power generation may be determined in advance, and the ratio of oxygen and carbon dioxide gas supplied to the cathode may be set in advance to an optimum value for that value.

次に本発明に関する実験例について説明する実験例(1
) 第2図に示した結果はカソードのみについて調べたもの
であり、実際の電池でも本発明による方法が有効か否か
について検討した。炭酸リチウム62モル、炭酸カリウ
ム38モルからなる混合炭酸塩を電解質とし、アノード
にニッケル多孔質板を、カソードに酸化ニッケル多孔質
板をそれぞれ用いて公知の溶融炭酸塩型燃料電池を組み
立て、アノードに水素72%、炭酸ガス18%水蒸気1
0%からなるアノードガスを供給し、カソードに空気と
炭酸ガスの濃度を変化させたカソードガスを供給した。
Next, an experimental example (1) to explain an experimental example related to the present invention
) The results shown in FIG. 2 were investigated only for the cathode, and it was also investigated whether the method according to the present invention is effective for actual batteries. A known molten carbonate fuel cell was assembled using a mixed carbonate consisting of 62 moles of lithium carbonate and 38 moles of potassium carbonate as the electrolyte, a nickel porous plate for the anode, and a nickel oxide porous plate for the cathode. 72% hydrogen, 18% carbon dioxide, 1 water vapor
An anode gas consisting of 0% was supplied, and a cathode gas with varying concentrations of air and carbon dioxide was supplied to the cathode.

このとき用いた炭酸ガスはボンベ入りのものを用いた。The carbon dioxide gas used at this time was in a cylinder.

電流密度1.50mA/aJの出力で運転したときのセ
ル電圧と、カソードに供給した空気及び炭酸ガス濃度の
関係を第3図に示す。
FIG. 3 shows the relationship between the cell voltage when operating at a current density of 1.50 mA/aJ and the concentration of air and carbon dioxide gas supplied to the cathode.

この結果から炭酸ガス濃度がこれまで言われていたもの
より小さい方が、セル電圧が高くなることが明らかであ
り、本発明が有効であることが明らかになった。
From this result, it is clear that the cell voltage becomes higher when the carbon dioxide concentration is smaller than what has been thought so far, and it becomes clear that the present invention is effective.

実験例(2) 実施例(1)と同様に公知の溶融炭酸塩型燃料電池を用
い、第1図に示した構成の発電システムを作った。燃料
としてL N Gを用い、これを改質器2によって水素
に改質したガスをアノードに供給した。また、カソード
にはLNGの一部を触媒バーナ5に導き、このL N 
Gを燃焼して生成した炭酸ガスを含むガスとLNG燃焼
に使った残りの空気との混合ガスを供給した。無負荷発
電時のカソードガス組成は酸素、窒素、炭酸ガス及び水
蒸気であり、酸素と炭酸ガスの比率は1対]、6であっ
た。電流密度を向上させて1.50 m A、 / c
iにしたところ、セル電圧が無負荷時の1.07Vから
0.77Vに低下した。次に触媒バーナに供給する燃料
を燃料制御弁6によって少量にし、徴素と炭酸ガスの比
率を2対1にしたところ、セル電圧は0.82Vに向上
した。また電流密度を250 m A / aKにした
ときには、酸素と炭酸ガスの比率が4対1のとき最もセ
ル電圧が高くなった。
Experimental Example (2) As in Example (1), a power generation system having the configuration shown in FIG. 1 was created using a known molten carbonate fuel cell. LNG was used as a fuel, and gas that was reformed into hydrogen by the reformer 2 was supplied to the anode. In addition, a part of LNG is guided to the cathode to the catalytic burner 5, and this L N
A mixed gas of gas containing carbon dioxide produced by burning G and the remaining air used for LNG combustion was supplied. The cathode gas composition during no-load power generation was oxygen, nitrogen, carbon dioxide, and water vapor, and the ratio of oxygen to carbon dioxide was 1:6. Increase current density to 1.50 mA,/c
When the voltage was set to i, the cell voltage decreased from 1.07V at no load to 0.77V. Next, when the fuel supplied to the catalytic burner was reduced to a small amount using the fuel control valve 6, and the ratio of carbon dioxide to carbon dioxide was set to 2:1, the cell voltage increased to 0.82V. Further, when the current density was set to 250 mA/aK, the cell voltage was highest when the ratio of oxygen to carbon dioxide was 4:1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、不要な炭酸ガス
を低減させることにより、消費燃料量が減少し、燃料電
池の発電効率を向にさせることができる。
As described above, according to the present invention, by reducing unnecessary carbon dioxide gas, the amount of fuel consumed can be reduced, and the power generation efficiency of the fuel cell can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る溶融炭酸塩型燃料電池発電装置の
全体構成図、第2図はカソードに供給する酸素と炭酸ガ
スの割合とカソード性能との関係を示すグラフ、第3図
はカソードガス組成とセル電圧との関係を示すグラフで
ある。 1・・・カソード、2・・・アノード、3・・・電解質
、4・・・改質器、5・・・触媒バーナ、6・・燃料制
御弁、7・・・空気制御弁、8・・・コントローラ、8
A、8B・・・検出器。
Fig. 1 is an overall configuration diagram of a molten carbonate fuel cell power generation device according to the present invention, Fig. 2 is a graph showing the relationship between the ratio of oxygen and carbon dioxide supplied to the cathode and cathode performance, and Fig. 3 is a graph showing the relationship between the cathode performance and the ratio of oxygen and carbon dioxide gas supplied to the cathode. It is a graph showing the relationship between gas composition and cell voltage. DESCRIPTION OF SYMBOLS 1... Cathode, 2... Anode, 3... Electrolyte, 4... Reformer, 5... Catalyst burner, 6... Fuel control valve, 7... Air control valve, 8...・・Controller, 8
A, 8B...Detector.

Claims (1)

【特許請求の範囲】 1、溶融炭酸塩型燃料電池のアノードに水素を含むアノ
ードガスを供給するとともに、カソードに酸素と炭酸ガ
スを含むカソードガスを供給して発電する溶融炭酸塩型
燃料電池発電装置において、前記溶融炭酸塩型燃料電池
の出力を検出する出力検出手段と、該出力検出手段から
の信号に基づいて溶融炭酸塩型燃料電池の電池出力を検
知し、電池出力が大きくなる程、前記カソードガスの酸
素濃度を大きくし且つ炭酸ガス濃度を小さく制御する制
御手段と、を具備する溶融炭酸塩型燃料電池発電装置。 2、請求項1記載の発電装置において、前記制御手段に
は、炭化水素系燃料を燃焼させる燃焼部と、該燃焼部へ
供給される前記炭化水素系燃料および空気の量を制御す
る制御弁と、が設けられた溶融炭酸塩型燃料電池発電装
置。 3、請求項1記載の発電装置において、前記制御手段に
は、炭化水素系燃料を燃焼させる燃焼部と、該燃焼部の
下流側に設けられ、電池出力に応じて前記燃焼部からの
炭酸ガスを吸収する吸収部と、が設けられた溶融炭酸塩
型燃料電池発電装置。 4、溶融炭酸塩型燃料電池のアノードに炭化水素系燃料
を供給し、該炭化水素系燃料を水素に変換させるととも
に、カソードに酸素と炭酸ガスを含むカソードガスを供
給して発電する内部改質型の溶融炭酸塩型燃料電池発電
装置において、前記溶融炭酸塩型燃料電池の出力を検出
する出力検出手段と、該出力検出手段からの信号に基づ
いて溶融炭酸塩型燃料電池の電池出力を検知し、電池出
力が大きくなる程、前記カソードガスの酸素濃度を大き
くし且つ炭酸ガス濃度を小さく制御する制御手段と、を
具備する溶融炭酸塩型燃料電池発電装置。 5、溶融炭酸塩型燃料電池のアノードに水素を含むアノ
ードガスを供給するとともに、カソードに酸素と炭酸ガ
スを含むカソードガスを供給し、電気化学的反応を利用
して発電を行なう溶融炭酸塩型燃料電池発電装置の運転
方法において、前記溶融炭酸塩型燃料電池を低電流密度
で運転するときは、前記カソードガスの酸素と炭酸ガス
の比率を略1対2とし、高電流密度で運転するときは、
前記カソードガスの酸素の比率を高くし、且つ炭酸ガス
の比率を低くする溶融炭酸塩型燃料電池発電装置の運転
方法。 6、請求項5記載の運転方法において、過剰の空気を供
給して炭化水素系燃料を燃焼させることにより、酸素と
炭酸ガスを含む前記カソードガスを生成するとともに、
高電流密度で運転するときは前記炭化水素系燃料の量を
減少させる溶融炭酸塩型燃料電池発電装置の運転方法。 7、請求項5記載の運転方法において、過剰の空気を供
給して炭化水素系燃料を燃焼させることにより、酸素と
炭酸ガスを含む前記カソードガスを生成するとともに、
高電流密度で運転するときは前記空気の量を増加させる
溶融炭酸塩型燃料電池発電装置の運転方法。8、請求項
5、6又は7記載の運転方法において、前記カソードガ
ス中の酸素と炭酸ガスの比率を1対2から4対1の範囲
内に設定する溶融炭酸塩型燃料電池発電装置の運転方法
。 9、溶融炭酸塩型燃料電池のアノードに水素を含むアノ
ードガスを供給するとともに、カソードに酸素と炭酸ガ
スを含むカソードガスを供給し、電気化学的反応を利用
して発電を行なう溶融炭酸塩型燃料電池発電装置の運転
方法において、前記カソードガス中の酸素と炭酸ガスの
比率を変化させることによって、溶融炭酸塩型燃料電池
の出力を制御する溶融炭酸塩型燃料電池発電装置の運転
方法。
[Claims] 1. Molten carbonate fuel cell power generation that generates electricity by supplying an anode gas containing hydrogen to the anode of the molten carbonate fuel cell and supplying cathode gas containing oxygen and carbon dioxide to the cathode. In the apparatus, an output detection means for detecting the output of the molten carbonate fuel cell, and a cell output of the molten carbonate fuel cell is detected based on a signal from the output detection means, and as the cell output becomes larger, A molten carbonate fuel cell power generation device comprising: control means for controlling the oxygen concentration of the cathode gas to be high and the carbon dioxide concentration to be low. 2. The power generating apparatus according to claim 1, wherein the control means includes a combustion section that burns hydrocarbon fuel, and a control valve that controls the amount of the hydrocarbon fuel and air supplied to the combustion section. , a molten carbonate fuel cell power generation device. 3. The power generating apparatus according to claim 1, wherein the control means includes a combustion section that burns hydrocarbon fuel, and is provided downstream of the combustion section, and controls carbon dioxide gas from the combustion section according to the battery output. A molten carbonate fuel cell power generation device is provided with an absorption section that absorbs. 4. Internal reforming that supplies hydrocarbon fuel to the anode of a molten carbonate fuel cell, converts the hydrocarbon fuel into hydrogen, and supplies cathode gas containing oxygen and carbon dioxide to the cathode to generate electricity. type of molten carbonate fuel cell power generation device, comprising: an output detection means for detecting the output of the molten carbonate fuel cell; and a cell output of the molten carbonate fuel cell based on a signal from the output detection means. 1. A molten carbonate fuel cell power generation device, comprising: control means that increases the oxygen concentration of the cathode gas and controls the carbon dioxide concentration to decrease as the battery output increases. 5. A molten carbonate fuel cell that supplies an anode gas containing hydrogen to the anode of the molten carbonate fuel cell and supplies a cathode gas containing oxygen and carbon dioxide to the cathode to generate electricity using an electrochemical reaction. In the method for operating a fuel cell power generation device, when the molten carbonate fuel cell is operated at a low current density, the ratio of oxygen to carbon dioxide gas in the cathode gas is approximately 1:2, and when the molten carbonate fuel cell is operated at a high current density. teeth,
A method of operating a molten carbonate fuel cell power generation apparatus in which the ratio of oxygen in the cathode gas is increased and the ratio of carbon dioxide gas is lowered. 6. The operating method according to claim 5, in which the cathode gas containing oxygen and carbon dioxide gas is produced by supplying excess air and combusting the hydrocarbon fuel;
A method of operating a molten carbonate fuel cell power plant that reduces the amount of said hydrocarbon fuel when operating at high current densities. 7. The operating method according to claim 5, in which the cathode gas containing oxygen and carbon dioxide gas is produced by supplying excess air and combusting the hydrocarbon fuel;
A method of operating a molten carbonate fuel cell power plant in which the amount of air is increased when operating at high current densities. 8. The operating method according to claim 5, 6 or 7, wherein the ratio of oxygen to carbon dioxide in the cathode gas is set within the range of 1:2 to 4:1. Method. 9. A molten carbonate fuel cell that generates electricity by using an electrochemical reaction by supplying an anode gas containing hydrogen to the anode of the fuel cell and supplying a cathode gas containing oxygen and carbon dioxide to the cathode. A method of operating a molten carbonate fuel cell power generation device, wherein the output of the molten carbonate fuel cell is controlled by changing the ratio of oxygen and carbon dioxide in the cathode gas.
JP63225272A 1988-09-08 1988-09-08 Molten carbonate type fuel cell electricity generating device and operating method for the same Pending JPH0275164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225272A JPH0275164A (en) 1988-09-08 1988-09-08 Molten carbonate type fuel cell electricity generating device and operating method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225272A JPH0275164A (en) 1988-09-08 1988-09-08 Molten carbonate type fuel cell electricity generating device and operating method for the same

Publications (1)

Publication Number Publication Date
JPH0275164A true JPH0275164A (en) 1990-03-14

Family

ID=16826727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225272A Pending JPH0275164A (en) 1988-09-08 1988-09-08 Molten carbonate type fuel cell electricity generating device and operating method for the same

Country Status (1)

Country Link
JP (1) JPH0275164A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685897A1 (en) * 1994-05-04 1995-12-06 ENERGY RESEARCH CORPORATION (a Corporation of the State of New York) Carbonate fuel cell with direct recycle of anode exhaust to cathode
JP2012530351A (en) * 2009-06-16 2012-11-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー System and method for operating a fuel cell system
JP2016513866A (en) * 2013-03-15 2016-05-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integrated operation of molten carbonate fuel cells.
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685897A1 (en) * 1994-05-04 1995-12-06 ENERGY RESEARCH CORPORATION (a Corporation of the State of New York) Carbonate fuel cell with direct recycle of anode exhaust to cathode
JP2012530351A (en) * 2009-06-16 2012-11-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー System and method for operating a fuel cell system
JP2016513866A (en) * 2013-03-15 2016-05-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integrated operation of molten carbonate fuel cells.
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level

Similar Documents

Publication Publication Date Title
JPH0275164A (en) Molten carbonate type fuel cell electricity generating device and operating method for the same
JP5251204B2 (en) Power generation system and method for stopping power generation system
CN101816090B (en) Fuel cell apparatus
JPH09266004A (en) Fuel cell power generating system and its operating method
JP3812581B2 (en) Hydrogen production method and hydrogen production apparatus used in the method
JP2585210B2 (en) Fuel cell power plant
US20070154746A1 (en) Purging a fuel cell system
JP4727642B2 (en) Operation method of hydrogen production power generation system
JP3784775B2 (en) Control method of fuel cell power generation system
JP3575650B2 (en) Molten carbonate fuel cell
JP3505741B2 (en) Operating method of molten carbonate fuel cell
Zhao et al. Enhanced performance of Gd0. 6Sr0. 4FeO3-δ electrode by Co3O4 incorporation for symmetrical solid oxide fuel cells
JP4466049B2 (en) Water flow control method for reforming steam
JPS6020473A (en) Fuel cell power generating system
JP4467929B2 (en) Fuel cell power generation system
KR100464203B1 (en) Heating system for fuel cell and control method thereof
JP2008305600A (en) Fuel cell power generation system and its control method
JP4620399B2 (en) Control method of fuel cell power generation system
JPH04324253A (en) Fuel cell
JP4467924B2 (en) Fuel cell power generation system
JP2006073215A (en) Fuel cell system
JPH04272664A (en) Operating method for molten carbonate type fuel cell
JP2010044960A (en) Fuel cell power generation system and power generation method of fuel cell
JPH01246770A (en) Output control method for fuel cell of molten carbonate type
JP2023139726A (en) fuel cell system