JPS59147895A - Multicylinder rotary type compressor - Google Patents
Multicylinder rotary type compressorInfo
- Publication number
- JPS59147895A JPS59147895A JP2143583A JP2143583A JPS59147895A JP S59147895 A JPS59147895 A JP S59147895A JP 2143583 A JP2143583 A JP 2143583A JP 2143583 A JP2143583 A JP 2143583A JP S59147895 A JPS59147895 A JP S59147895A
- Authority
- JP
- Japan
- Prior art keywords
- crankshaft
- shaft
- auxiliary
- shaft joint
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/02—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/06—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/56—Number of pump/machine units in operation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、複数の圧縮要素が縦方向に積層状に重ねられ
た複数シリンダロータリ圧縮機に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a multi-cylinder rotary compressor in which a plurality of compression elements are vertically stacked.
従来の複借シリンダロータリ式圧縮機において、その容
量を制御するには、すべての圧縮要素のうち任意数の圧
縮要素を、吸込側を閉塞し冷媒を流入させないで無負荷
運転を行なう。しかし、この無負荷運転する圧縮要素は
、高圧の密閉容器内に置かれて力ることから、該圧縮要
素の低圧のシリンダ内に高圧の冷媒ガスが漏洩し、これ
により該シリンダ内で偏心回転するローラとベーンとに
より微弱ながら圧縮作用が生じてしまい、無駄な入力を
消費する不都合がある。また、これらの無負荷運転7行
なう圧縮要素は、軸受、ローラ、ベーン等の摺動部を持
つため、これらの摺動で生じる摩擦による動力損失は避
けられない。すなわち、この種の圧縮機においては無負
荷運転の際でもかなり大きい無駄な入力全消費しており
、また容量制御運転時の圧縮性能が悪いという間炉があ
る。In order to control the capacity of a conventional double-borrowed rotary compressor, an arbitrary number of compression elements among all the compression elements are operated under no load by closing the suction side and not allowing refrigerant to flow into the compressor. However, since this compression element that operates without load is placed in a high-pressure sealed container and is under stress, high-pressure refrigerant gas leaks into the low-pressure cylinder of the compression element, causing eccentric rotation within the cylinder. The rollers and vanes exert a slight compression effect, resulting in the inconvenience of wasted input. Furthermore, since these compression elements that perform no-load operation 7 have sliding parts such as bearings, rollers, vanes, etc., power loss due to friction caused by these sliding parts is unavoidable. That is, in this type of compressor, even during no-load operation, a considerably large amount of wasted input is consumed, and the compression performance during capacity control operation is poor.
本発明はこのような従来技術の央情に鑑みてなさねたも
ので、その目的は上記の従来の欠点を解消し、て、容量
制御運転時の圧縮性能を向上させることができ、省電力
に図った各社fal制御が可能な複数シリンダロータリ
式圧縮機を提供することにある。The present invention has been made in view of the general situation of the prior art, and its purpose is to eliminate the above-mentioned drawbacks of the prior art, improve compression performance during capacity control operation, and save power. It is an object of each company to provide a multiple cylinder rotary compressor capable of fal control.
つまり、本発明は圧縮機の容量全制御するために、モー
タの運転時には常に同期して運転する主圧縮要素のクラ
ンク軸とこれと同一軸線上に配置された少な゛くとも1
つの補助圧縮要素のクランク軸とのそれぞれの軸相互の
対向軸端部に連結もしくは切り離し機能を有する環状ま
たはコイル状の形状記憶合金製の軸継手が前記両クラン
ク軸のそれぞれを均等の長さにわたって抜って装着して
あり、このように構成した上で該記憶合金製の軸継手を
加熱して該軸継手を膨張させることによりその内径を大
きくして前記両クランク軸との間に隙間を生じさせて切
り離し、捷た該軸継手の加熱をやめ冷却させて該軸継手
を縮小させることにより該軸継手が前記両クランク軸を
締め付けて該両クランク軸を連結するようになっている
。すなわち、両クランク軸を連結することにより補助圧
縮要素を生圧縮要素と同期した運転を行なわせたり、あ
るいは両者のクランク軸を切り離すことにより補助圧縮
要素の運転を停止させて圧縮機の容量を任意に多段に制
御できるようになっている。In other words, in order to fully control the capacity of the compressor, the present invention provides at least one compressor disposed on the same axis as the crankshaft of the main compression element, which always operates synchronously when the motor is operating.
An annular or coiled shape-memory alloy shaft joint having a function of connecting or disconnecting is attached to the opposing shaft ends of each of the two auxiliary compression elements with the crankshafts, extending over an equal length between each of the two crankshafts. With this configuration, the shaft joint made of memory alloy is heated to expand the shaft joint, thereby increasing its inner diameter and creating a gap between the two crankshafts. The shaft joint tightens the two crankshafts and connects the two crankshafts by stopping the heating of the splintered shaft joint and cooling it to reduce the size of the shaft joint. In other words, by connecting both crankshafts, the auxiliary compression element can operate in synchronization with the raw compression element, or by disconnecting both crankshafts, the operation of the auxiliary compression element can be stopped, and the capacity of the compressor can be adjusted as desired. can be controlled in multiple stages.
以下、本発明の実施例全図面に基づいて説明する。第1
図は本発明の第1の実施例の複数シリンダロータリ式圧
縮機の縦断面図である。なお、この図においては、説明
を容易にするために2個のシリンダを持つ2シリンダロ
一タリ式圧縮機が示しである。しかし、同一軸線上に積
層状に設けられた6個以上のシリンダを持つ複数シリン
ダロータリ式圧縮機に関しても同様に本実施例を適用し
得ることは勿論である(第2図〜第6図についても同様
)。Hereinafter, embodiments of the present invention will be described based on all the drawings. 1st
The figure is a longitudinal sectional view of a multi-cylinder rotary compressor according to a first embodiment of the present invention. In this figure, a two-cylinder rotary compressor having two cylinders is shown for ease of explanation. However, it goes without saying that this embodiment can be similarly applied to a multi-cylinder rotary compressor having six or more cylinders arranged in a stacked manner on the same axis (see Figs. 2 to 6). (same as well).
第1図において、1は密閉容器で、該密閉容器1内には
上部に電動要素であるモータ2を、下部に該モータ2に
直結する主圧縮要素3と補助圧縮要素9がそれらの中間
に軸継手要素29を介して配設、収納されている。主圧
縮要素3は次の各部品から構成される。すなわち、シリ
ンダ6、偏心部4αを有する王クランク軸、シリンダ6
内で主クランク軸4の偏心部4αにより偏心回転するロ
ーラ5、該ローラ5に当接してシリンダ6内を高圧室と
低圧室とに区画するベーン(図示せず)、シリンダ6の
上開口部を閉塞し主クランク軸4の軸受部7αを有する
上端面板7、およびシリンダ6の下開口部を閉塞し主ク
ランクl1i1114の軸受部8αを有する下端面板8
である。In FIG. 1, 1 is an airtight container, and inside the airtight container 1, there is a motor 2, which is an electric element, in the upper part, and a main compression element 3 and an auxiliary compression element 9, which are directly connected to the motor 2 in the lower part, are located between them. It is arranged and housed via the shaft coupling element 29. The main compression element 3 is composed of the following parts. That is, the cylinder 6, the king crankshaft having the eccentric portion 4α, and the cylinder 6
A roller 5 that rotates eccentrically by an eccentric portion 4α of the main crankshaft 4, a vane (not shown) that comes into contact with the roller 5 and divides the inside of the cylinder 6 into a high pressure chamber and a low pressure chamber, and an upper opening of the cylinder 6. an upper end face plate 7 which closes the lower opening of the cylinder 6 and has a bearing part 7α of the main crankshaft 4; and a lower end face plate 8 which closes the lower opening of the cylinder 6 and has a bearing part 8α of the main crank l1i1114.
It is.
′−!た、補助圧縮要素9は同様に次の各部品から構成
される。すなわち、シリンダ12、偏心部10af有す
る補助クランク軸10、シリンダ12内で補助クランク
軸10の偏心部10αにより偏心回転するローラ11、
該ローラ11に当接してシリンダ12内を高圧室と低圧
室とに区画するベーン(図示せず)、シリンダ12の上
開口部を閉塞し補助クランク軸10の軸受部13α全有
する上端面板13およびシリンダ12の下開口部を閉塞
し補助クランク軸10の軸受部14αを有する下端面板
14である。′-! In addition, the auxiliary compression element 9 is similarly composed of the following parts. That is, the cylinder 12, the auxiliary crankshaft 10 having an eccentric portion 10af, the roller 11 eccentrically rotated within the cylinder 12 by the eccentric portion 10α of the auxiliary crankshaft 10,
A vane (not shown) that abuts the roller 11 and divides the inside of the cylinder 12 into a high pressure chamber and a low pressure chamber, an upper end face plate 13 that closes the upper opening of the cylinder 12 and has the entire bearing portion 13α of the auxiliary crankshaft 10; This is a lower end face plate 14 that closes the lower opening of the cylinder 12 and has a bearing portion 14α for the auxiliary crankshaft 10.
主圧縮要素3と補助圧縮要素9とは、前者の下端面板8
と後者の上端面板13の筒状部13hとの嵌合によって
所定の位置に固定されてしる。The main compression element 3 and the auxiliary compression element 9 are the lower end face plate 8 of the former.
It is fixed in a predetermined position by fitting with the cylindrical portion 13h of the latter upper end face plate 13.
なお、これらの下端面板8と上端面板13によって、前
記軸継手要素29が収納される密閉壁間である中空部1
5が構成される。そして、当該中空部15には主クラン
ク軸4の軸端部4bおよび補助クランク軸10の軸端部
10bが図示のように相互に対向して隣接している。こ
れらの対向する軸端部4h、 10bには形状記憶合金
c以下記憶合金と称す)製の環状の軸継手16が、l1
II端部4h、10hのそれぞれに均等の長さにわたっ
て装着してあり、該軸継手16によって軸継手要素29
が構成される。この記憶合金製の軸継手16は任意の温
度においては同一の内径を持つ主クランク[1ill1
4の軸端部4hと補助クランク軸10の軸端部10hと
の間に所定の隙間音生じて大きな締めしろを有して装着
さねており、また前記任意の温度より低い別の任意のγ
晶度においては該軸継手16が縮小してその内径が小さ
くなり前記軸端部4bおよび10h全締め付け、主クラ
ンク軸4と補助クランク軸10とを一体に連結するよう
になっている。Note that the lower end face plate 8 and the upper end face plate 13 form a hollow portion 1 between the sealed walls in which the shaft coupling element 29 is housed.
5 is composed. In the hollow portion 15, the shaft end 4b of the main crankshaft 4 and the shaft end 10b of the auxiliary crankshaft 10 are adjacent to each other and face each other as shown. At these opposing shaft ends 4h and 10b, an annular shaft joint 16 made of a shape memory alloy (hereinafter referred to as memory alloy) is attached to l1.
It is attached to each of the II ends 4h and 10h over an equal length, and the shaft joint 16 connects the shaft joint element 29.
is configured. This memory alloy shaft joint 16 is connected to the main crank [1ill1] which has the same inner diameter at any temperature.
4 and the shaft end 10h of the auxiliary crankshaft 10. γ
In terms of crystallinity, the shaft joint 16 is shrunk to have a smaller inner diameter, and the shaft end portions 4b and 10h are fully tightened to integrally connect the main crankshaft 4 and the auxiliary crankshaft 10.
なお、この軸継手16による主クランク軸4と補助クラ
ンク軸10との連結および切離し動作については後で詳
しく述べる。The operation of connecting and disconnecting the main crankshaft 4 and the auxiliary crankshaft 10 using the shaft joint 16 will be described in detail later.
次に冷凍ザイクルの冷媒ガスの流れる糸路について説、
明する。24は主圧縮要素3の吸込管、25は補助圧縮
要素9の吸込管である。すなわち、冷凍サイクル装置を
構成する熱交換器(図示せず)から吸込管24を通って
流入したガスは、主圧縮要素3で圧縮されて高温高圧の
ガスとなり、該高温高圧ガスは吐出口18を経て弁19
′と弁押え20から成る吐出弁19.から中空部15へ
吐出される。また、同様に熱交換器から吸込管25を通
って流入したガスは、補助圧縮装19で圧縮されて高温
高圧となったガスは、吐出口21全経て弁22′と弁押
え23から成る吐出弁22から中空部15へ吐出される
。該中空部15−・吐出されたこれらのガスは、矢印a
で示すように、主圧縮要素3のシリンダ6の通路17全
通って賃閉容器1内の上部へ出て、当該圧縮機の吐出管
26から外部の冷凍サイクルの各機器(図示せず)へ順
次流れてb〈。Next, I will explain the thread path through which the refrigerant gas flows in the frozen cycle.
I will clarify. 24 is a suction pipe of the main compression element 3, and 25 is a suction pipe of the auxiliary compression element 9. That is, gas flowing from a heat exchanger (not shown) constituting the refrigeration cycle device through the suction pipe 24 is compressed by the main compression element 3 to become a high-temperature, high-pressure gas, and the high-temperature, high-pressure gas flows through the discharge port 18. via valve 19
' and a valve holder 20. It is discharged from the hollow part 15. Similarly, the gas flowing from the heat exchanger through the suction pipe 25 is compressed in the auxiliary compression device 19 and becomes high temperature and high pressure. It is discharged from the valve 22 into the hollow part 15. The hollow part 15--These discharged gases are shown in the arrow a
As shown, the air passes through the entire passage 17 of the cylinder 6 of the main compression element 3 and exits to the upper part of the enclosed container 1, and from the discharge pipe 26 of the compressor to each external refrigeration cycle device (not shown). Flowing sequentially b〈.
このように構成された2シリンダロ一タリ式圧縮機にお
いて、本発明に直接係る軸継手要素29の動作を説明す
る。第1図においては、主クランク軸4と補助クランク
軸10とは軸継手要素29の軸継手16により連結され
た状態にある。以下主クランク軸4の動力が補助クラン
ク軸10に伝達される様子全説明する。In the two-cylinder rotary compressor configured as described above, the operation of the shaft coupling element 29 directly related to the present invention will be explained. In FIG. 1, the main crankshaft 4 and the auxiliary crankshaft 10 are connected by a shaft coupling 16 of a shaft coupling element 29. In FIG. The manner in which the power from the main crankshaft 4 is transmitted to the auxiliary crankshaft 10 will be fully explained below.
通電されたモータ2により回転する主クランク軸4は、
主圧縮要素3の可動部を駆動して、吸込口24から吸入
された冷媒ガスを圧縮し、高温高圧となった冷媒ガスを
吐出管18から吐出弁19ヲ経て中空部15に吐出させ
る。The main crankshaft 4 rotated by the energized motor 2,
The movable part of the main compression element 3 is driven to compress the refrigerant gas sucked in from the suction port 24, and the high temperature and high pressure refrigerant gas is discharged from the discharge pipe 18 through the discharge valve 19 into the hollow part 15.
ここで、図示のように主クランク軸4の軸端部4bと補
助クランク軸10の軸端部10bとはこのときの任意の
温度では形状すなわち内径が変化しない記憶合金製の軸
継手16によって連結され−ているので、補助クランク
軸10は主クランク軸4と一体になって回転する。した
がって1回転する該補助クランク軸10は、補助圧縮要
素9の可動部全駆動して、吸込口25から吸入された冷
媒ガスを圧縮し、高温高圧となった冷媒ガスを吐出管2
1から吐出弁22全経て中空部15へ吐出させる。Here, as shown in the figure, the shaft end 4b of the main crankshaft 4 and the shaft end 10b of the auxiliary crankshaft 10 are connected by a shaft joint 16 made of a memory alloy whose shape, ie, inner diameter, does not change at any temperature at this time. Therefore, the auxiliary crankshaft 10 rotates together with the main crankshaft 4. Therefore, the auxiliary crankshaft 10, which rotates once, fully drives the movable part of the auxiliary compression element 9, compresses the refrigerant gas sucked in from the suction port 25, and releases the high temperature and high pressure refrigerant gas to the discharge pipe 2.
1 to the hollow portion 15 through the entire discharge valve 22.
なお、このとき中空部に設けられた記憶合金製の軸継手
16は、これら高温高圧の冷媒ガスにさらされるが、あ
らかじめ仔章に設定された当該記憶合金の変態混層に達
しな−ので、生クランク軸4と補助クランク軸10とは
いまだ該軸継手16により一体に連結されており、した
がって土圧m要素3と補助圧縮要素9の双方が圧縮作用
を行なう。At this time, the shaft joint 16 made of a memory alloy provided in the hollow part is exposed to these high temperature and high pressure refrigerant gases, but the transformation mixture layer of the memory alloy, which has been set in advance, is not reached. The crankshaft 4 and the auxiliary crankshaft 10 are still connected together by the shaft joint 16, so that both the earth pressure m-element 3 and the auxiliary compression element 9 perform a compression action.
次に軸継手要素29による主クランク+1illI4と
補助クランク軸10の切離し動作について説明する。Next, the operation of separating the main crank +1illI4 and the auxiliary crankshaft 10 by the shaft coupling element 29 will be explained.
第2図は第1図の2シリンダロ一タリ式圧縮機において
王クランク4ilI14と補助クランク軸10とが切離
されている状態を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a state in which the main crank 4ilI14 and the auxiliary crankshaft 10 are separated from each other in the two-cylinder rotary compressor shown in FIG.
この状態を言い換えるならば、第1図に示した両軸の連
結状態と比較して、冷凍サイクルに過負荷が与えられ、
当該圧縮機の吐出圧力が上昇し、各圧縮要素からの吐出
ガス温度が高い状態である。すなわち、第2図に示す圧
縮機においては、この吐出ガス温度が軸継手16全形成
している記憶合金の変態を起す、あらかじめ設定された
任意の温度を越えることにより、記憶合金製の環状の軸
継手16の内径が膨張する。よって該軸継手16の内壁
と主クランク軸4の乍端部4hおよび補助クランク軸1
0の軸端部10bの外壁との間に隙間27を持つような
本来の記憶された形状に戻る。これにより、王クランク
11illI4と補助クランク軸10との連結が外ずさ
れて、主クランク軸4の11力が補助クランク軸10に
伝達しなくなり、補助圧縮要素9の圧縮作用が停止する
。In other words, compared to the state in which both shafts are connected as shown in Fig. 1, an overload is applied to the refrigeration cycle.
The discharge pressure of the compressor has increased, and the temperature of the discharged gas from each compression element is high. That is, in the compressor shown in FIG. 2, the temperature of the discharged gas exceeds a preset arbitrary temperature that causes transformation of the memory alloy forming the entire shaft joint 16. The inner diameter of the shaft joint 16 expands. Therefore, the inner wall of the shaft joint 16, the end portion 4h of the main crankshaft 4, and the auxiliary crankshaft 1
The shape returns to the original memorized shape in which there is a gap 27 between the shaft end 10b and the outer wall of the shaft end 10b. As a result, the connection between the king crank 11illI4 and the auxiliary crankshaft 10 is disconnected, the 11 force of the main crankshaft 4 is no longer transmitted to the auxiliary crankshaft 10, and the compression action of the auxiliary compression element 9 is stopped.
すなわち、この軸の切離し機能を冷凍サイクルのし房運
転に適用すわば、暖房能力が過剰になったとき補助圧縮
要素9の運転を停止させ適正な暖房能力に軽減して運転
することができる。That is, if this shaft disconnection function is applied to the operation of the refrigeration cycle, when the heating capacity becomes excessive, the operation of the auxiliary compression element 9 can be stopped and the operation can be reduced to an appropriate heating capacity.
以上の説明から明らかなように、軸継手16の連結ふ・
よひ過負荷時の切り離し動作により圧縮機の容量全2段
に制御することが可能となる。As is clear from the above explanation, the connection foot of the shaft coupling 16 is
The disconnection operation at the time of overload makes it possible to control the capacity of the compressor to two stages in total.
しかし、第1図に示した第1の実施例の構成では、冷房
あるいは暖房運転を折力う冷凍サイクル装置の容部を2
段に自在に制御するには機能不足である。However, in the configuration of the first embodiment shown in FIG.
It lacks functionality to allow for flexible control.
この目的全達成するために本発明の第2の実施例を第6
図に示す。第3図は第1図と同様の縦断面図で、同一符
号を附したものは同一機能を有する同一部品を示す(他
の図面についても同様)。In order to achieve all of this object, the second embodiment of the present invention is described in the sixth embodiment.
As shown in the figure. FIG. 3 is a longitudinal sectional view similar to FIG. 1, and the same reference numerals indicate the same parts having the same functions (the same applies to other drawings).
この図に示す第2の実施例は、記憶合金製の環状の軸継
手16の外周との間にわずかの隙間を設けて電気的に該
軸継手16を加熱するヒータ28が配置しである。なお
、本実施例における軸継手要素29の連結動作は第1の
実施例と全く同じなので説明全省略する。したがって該
軸継手要素29の切り離し動作のみを説明する。In the second embodiment shown in this figure, a heater 28 is arranged to electrically heat the annular shaft joint 16 made of a memory alloy with a slight gap between the heater 28 and the outer periphery of the shaft joint 16. Note that the connection operation of the shaft coupling element 29 in this embodiment is completely the same as in the first embodiment, so a complete explanation will be omitted. Therefore, only the disconnection operation of the shaft coupling element 29 will be described.
すなわち、冷房あるいは暖房運転を行なう冷凍ザイクル
装置において、冷房能力あるいは暖房能力が過剰になり
これらの能力を下げたー場合、図示しない各運転モード
全選択して制御する制御装置から当該圧縮機に信号が発
せられる。In other words, in a refrigeration cycle device that performs cooling or heating operation, if the cooling capacity or heating capacity becomes excessive and these capacities are lowered, a signal is sent to the compressor from a control device (not shown) that selects and controls all of the operating modes. is emitted.
この信号により圧縮機の前記ヒータ28が通電し、当該
ヒータ28がこれに隣接する記憶合金製の軸継手16ヲ
加熱する。この加熱により、該記憶合金が変態を起す温
度に達すると、当該軸継手16は膨張してその内径が大
きくなシ、該軸継手16の内壁と王クランク軸4の軸端
部4bと補助クランク軸10の軸端部IQAの外壁との
間に隙間27’(+−生ずるようになる。これにより、
主クランク軸4と補助クランク軸10との連絡が外され
て、補助圧m要素9の圧縮作用が停止する。This signal energizes the heater 28 of the compressor, and the heater 28 heats the memory alloy shaft joint 16 adjacent thereto. When the temperature at which the memory alloy undergoes transformation is reached by this heating, the shaft joint 16 expands and its inner diameter becomes large. A gap 27' (+-) is created between the shaft end IQA of the shaft 10 and the outer wall.
The communication between the main crankshaft 4 and the auxiliary crankshaft 10 is removed, and the compression action of the auxiliary pressure m element 9 is stopped.
また、再び主クランク軸4と補助クランク軸10との連
結を行う場合は、前記制御装置の信号によりヒータ28
の通電が停止し、該ヒータ28の加熱作用が停止する。In addition, when the main crankshaft 4 and the auxiliary crankshaft 10 are to be connected again, the heater 28 is activated by a signal from the control device.
energization is stopped, and the heating action of the heater 28 is stopped.
すると、軸継手16は放熱によって温度が低下し、この
温度低下により該軸継手16が低温時の記憶された形状
に復帰する。Then, the temperature of the shaft joint 16 decreases due to heat radiation, and this temperature drop causes the shaft joint 16 to return to its memorized shape at a low temperature.
これにより、主クランク軸4と補助クランク軸10の連
結がなされる。Thereby, the main crankshaft 4 and the auxiliary crankshaft 10 are connected.
つまり、この第2の実施例においては王クランク軸4と
補助クランク軸10の連結、切り離しを、ヒータ28に
よる記憶合金製の軸継手16の加熱作用により自在に行
なうものである。That is, in this second embodiment, the main crankshaft 4 and the auxiliary crankshaft 10 are freely connected and disconnected by the heating action of the memory alloy shaft joint 16 by the heater 28.
第4図は本発明の第5の実施例を示す第1図〜第3図と
同様の縦断面図である。この第4図に示す第3の実施例
は、環状の記憶合金製の軸継手16は第1.第2の実施
例と同様であるが、軸継手16の連結、切り離し動作を
行なう手段が相違する。すなわち、第2の実施例におい
ては該手段はヒータであったが、本実施例においては、
中空部15と冷凍サイクルの低圧側に連通ずる配管35
.37と高圧側に連通ずる配管36.38とが設けてあ
り、これらの配管に低温低圧あるいは高温高圧の冷媒を
流通させ、こわにより軸継手16の形状を変化させて、
軸の連結、切り離しを行なうものである。31.32.
33.34はそれぞれ配管35.36.37.38を通
る流体の流れを制御する電磁弁である。FIG. 4 is a longitudinal sectional view similar to FIGS. 1 to 3, showing a fifth embodiment of the present invention. In the third embodiment shown in FIG. 4, the annular memory alloy shaft coupling 16 is the first. This embodiment is similar to the second embodiment, but the means for connecting and disconnecting the shaft joint 16 is different. That is, in the second embodiment, the means was a heater, but in this embodiment,
Piping 35 communicating with the hollow part 15 and the low pressure side of the refrigeration cycle
.. 37 and pipes 36 and 38 communicating with the high pressure side are provided, and low temperature, low pressure or high temperature and high pressure refrigerant is passed through these pipes, and the shape of the shaft coupling 16 is changed due to stiffness.
It connects and disconnects shafts. 31.32.
33, 34 are solenoid valves that control the flow of fluid through pipes 35, 36, 37, 38, respectively.
このような構成の第5の実施例の圧縮機において、軸継
手16による主クランク軸4と補助クランク軸10との
連結は次のようにして行なわれる。つまり、電磁弁32
,311を閉じ、電磁弁31゜33を開いて、軸継手1
6の設けである中空部15と冷凍サイクルの低圧側配管
35.37とを、入口管30と出口管を介して連通させ
る。これにより冷凍サイクルの低温低圧冷媒が実線矢印
すで示す糸路で中空部15へ流れる。こうして、低温の
冷媒により軸継手16が縮小して低温時の形状に戻りそ
の内径が小さくなって、両クランク軸の連結が行なわれ
る。In the compressor of the fifth embodiment having such a configuration, the main crankshaft 4 and the auxiliary crankshaft 10 are connected by the shaft joint 16 in the following manner. In other words, the solenoid valve 32
, 311, open the solenoid valves 31 and 33, and open the shaft coupling 1.
The hollow portion 15 provided in No. 6 and the low pressure side pipes 35 and 37 of the refrigeration cycle are communicated via the inlet pipe 30 and the outlet pipe. As a result, the low-temperature, low-pressure refrigerant of the refrigeration cycle flows into the hollow portion 15 along the thread path indicated by the solid arrow. In this way, the shaft joint 16 is shrunk by the low-temperature refrigerant, returns to its low-temperature shape, and its inner diameter becomes smaller, thereby connecting both crankshafts.
逆に主クランク軸4と補助クランク軸10との切り離し
は次のようである。つまり、電磁弁31゜33を閉じ、
電磁弁32,3.iを開いて、中空部15と冷凍サイク
ルの高圧側配管36.38と全、入口管60と出口管3
9を介して連通させる。これにより冷凍サイクル−の高
温高圧冷奴が破線矢印Cで示す糸路で中9部15へ!′
#ねる。こうして、高温の冷媒により軸継手16が加熱
され、該軸継手16が膨張し7内径が大きくなることに
より、該軸継手16と主クランク軸4および補助クラン
ク軸10の間に隙間が生じて切り離しが行々われる。Conversely, the separation between the main crankshaft 4 and the auxiliary crankshaft 10 is as follows. In other words, close the solenoid valves 31 and 33,
Solenoid valve 32, 3. Open the hollow part 15, the high pressure side pipes 36 and 38 of the refrigeration cycle, the inlet pipe 60 and the outlet pipe 3.
9. As a result, the high-temperature, high-pressure cold tofu of the refrigeration cycle goes to the middle 9 section 15 along the thread path shown by the broken line arrow C! ′
#Neru. In this way, the shaft joint 16 is heated by the high-temperature refrigerant, and the shaft joint 16 expands and the inner diameter of the shaft joint 7 becomes larger. As a result, a gap is created between the shaft joint 16 and the main crankshaft 4 and the auxiliary crankshaft 10, allowing them to be separated. will be held.
以上の動作手順をふむことにより、両クランク軸の連結
、切り離し7を自在に行ない、尚該圧縮機の容量全2段
に自在に制御することができる。By following the above operating procedure, both crankshafts can be freely connected and disconnected 7, and the capacity of the compressor can be freely controlled to two stages in total.
第5図は本発明の第4の実施例を示す第1〜第4図と同
様の縦断面図である。これまで述べた第1〜第6の実施
例の2シリンダロ一タリ式圧縮機においては、軸継手1
6の形状は環状であったが、本実施例においては第5図
に示すように軸継手40の形状はコイル状になってしる
。したがって、本実施例にあっては、軸継手40はコイ
ル状になっているので内径が小さく々るとき、その縮小
にともなって生じる摩擦力によりねじ締められ、王クラ
ンク軸4の軸端部4hと補助クランク軸10のm端部u
3hとをしっかりと連結することができる。つまり、簡
単な構造で締め付は力が大きいので、製造コストを安く
できる。FIG. 5 is a longitudinal sectional view similar to FIGS. 1 to 4, showing a fourth embodiment of the present invention. In the two-cylinder rotary compressors of the first to sixth embodiments described above, the shaft coupling 1
6 was annular in shape, but in this embodiment, the shaft coupling 40 has a coil shape as shown in FIG. Therefore, in this embodiment, since the shaft joint 40 is coiled, when the inner diameter becomes smaller, the shaft end 4h of the crankshaft 4 is tightened by the frictional force generated as the inner diameter becomes smaller. and m end u of the auxiliary crankshaft 10
3h can be firmly connected. In other words, since the structure is simple and the tightening force is large, manufacturing costs can be reduced.
なお、本実施例における王クランク軸4と補助クランク
軸10の連結および切り離しの動作は前述した実施例と
同じなので、説明を省略する。Note that the operation of connecting and disconnecting the king crankshaft 4 and the auxiliary crankshaft 10 in this embodiment is the same as in the above-described embodiment, so a description thereof will be omitted.
以上説明してきたように本発明の複数シリンダロータリ
式圧縮機は、各圧縮要素の各クランク軸どうしの各軸端
部を咎う環状またはコイル状の記憶合金製の軸継手が設
けてあり、該軸継手全加熱あるいは冷却させてその内径
全変化させることによ秒前記両軸を自在に連結し、切り
離すようになっているので、必要に応じて圧縮機の容t
k任意に幾段に分けて自在に運転することができる。し
たがって補助圧縮要素における無駄な圧縮作用や摺動部
の摩擦による動力損失をなくして入力を大幅に減少する
ことができ、該圧縮機の圧縮性能を向上させひいては省
電力に役立つ。また、上述のように軸継手構造が簡単で
あり、かつ生クランク軸および補助クランク軸とも両者
の接続のための特別な加工を施さなくても済むので、製
造コストヲ極めて安価にすることができる。このように
本発明は効果は顕著でちる。As explained above, the multiple cylinder rotary compressor of the present invention is provided with an annular or coiled shaft joint made of a memory alloy that connects the shaft ends of the crankshafts of each compression element. By fully heating or cooling the shaft joint and changing its inner diameter, the two shafts can be freely connected and disconnected, so the capacity of the compressor can be adjusted as needed.
k It can be operated freely by dividing it into any number of stages. Therefore, it is possible to eliminate wasteful compression action in the auxiliary compression element and power loss due to friction in the sliding parts, thereby significantly reducing the input power, improving the compression performance of the compressor and contributing to power saving. Further, as described above, the shaft joint structure is simple, and there is no need for special processing to connect the raw crankshaft and the auxiliary crankshaft, so manufacturing costs can be extremely reduced. As described above, the effects of the present invention are remarkable.
第1図は本発明の第1の実施例の2シリンダロ一タリ式
圧縮機の縦断面図、第2図は第1図の2シリンダロ一タ
リ式圧縮機の王クランク軸と補助クランク軸が切り離さ
れた状態を示す縦断面図、第3〜5図はそれぞれ本発明
の第2〜第4の実施例の2シリンダロ一タリ式圧縮機の
縦断面図である。
2・・・モータ 3・・・土圧縮要素4・
・・王クランク軸 Ah、10h・・・軸端部5.
11・・・ローラ 6,12・・・シリンダ7
.13・・・上端面板(シリンダ端面板)8.14・・
・下端面板(シリンダ端面板)9・・補助圧縮要素
10・・・補助クランク軸15・・・中9部(密閉壁
間)16,4Q・・・軸継手28・・・ヒータ
31.32.3434 ・・・電磁弁35、34
37.38・・・配管
哨1 ア
腋?V
第37
第4図FIG. 1 is a longitudinal cross-sectional view of a two-cylinder rotary compressor according to the first embodiment of the present invention, and FIG. 2 is a diagram showing the two-cylinder rotary compressor shown in FIG. FIGS. 3 to 5 are longitudinal sectional views of two-cylinder rotary compressors according to second to fourth embodiments of the present invention, respectively. 2...Motor 3...Soil compaction element 4.
... King crankshaft Ah, 10h ... Shaft end 5.
11...Roller 6, 12...Cylinder 7
.. 13... Upper end face plate (cylinder end face plate) 8.14...
・Lower end face plate (cylinder end face plate) 9...Auxiliary compression element
10... Auxiliary crankshaft 15... Middle 9 section (between sealed walls) 16, 4Q... Shaft joint 28... Heater
31.32.3434 ...Solenoid valve 35, 34
37.38...Piping sentry 1 A armpit? V 37 Figure 4
Claims (1)
縦方向に積層状に重ねられた複数シリンダロータリ式圧
縮機において、前記圧縮要素はそれぞれ同一軸線上にク
ランク軸を持ち、該クランク軸どうしの相互に対抗する
軸端が隣接しており、各クランク軸の接続部に形状記憶
合金製の環状またはコイル状の軸継手が装着しであるこ
と7%徴とする複数シリンダロータリ式圧縮機。 (2) 前記圧縮要素の間に密閉空間が設けられ、前
記軸継手は該密閉空間に設けてあり、かつ該軸継手の近
傍にヒータが配設しであることを特徴とする特許請求の
範囲第1項記載の複数シリンダロータリ式圧縮機。 (3) 前sF圧縮要素゛の間に密閉9間が設けられ
、前記軸継手は該密閉窒間内に位置し、該密閉空間と連
通し高温および低温冷媒の流れる配管と、該配管の入口
および出口に設けfC電磁弁とを持つこと全特徴とする
特許請求の範囲第1項記載の複数シリンダロータリ式圧
縮機。[Scope of Claims] (In a multi-cylinder rotary compressor in which 11 main compression elements and at least one auxiliary compression element are vertically stacked, each of the compression elements has a crankshaft on the same axis. 7%, the mutually opposing shaft ends of the crankshafts are adjacent to each other, and an annular or coil-shaped shaft joint made of a shape memory alloy is attached to the connecting portion of each crankshaft. Cylinder rotary compressor. (2) A sealed space is provided between the compression elements, the shaft coupling is provided in the sealed space, and a heater is disposed near the shaft coupling. A multi-cylinder rotary compressor according to claim 1. (3) A sealed gap is provided between the front sF compression elements, the shaft joint is located within the sealed nitrogen gap, and the shaft joint is located within the sealed nitrogen gap. A multi-cylinder rotary compressor according to claim 1, further comprising a pipe communicating with a closed space and through which high-temperature and low-temperature refrigerants flow, and fC solenoid valves provided at the inlet and outlet of the pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2143583A JPS59147895A (en) | 1983-02-14 | 1983-02-14 | Multicylinder rotary type compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2143583A JPS59147895A (en) | 1983-02-14 | 1983-02-14 | Multicylinder rotary type compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59147895A true JPS59147895A (en) | 1984-08-24 |
Family
ID=12054893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2143583A Pending JPS59147895A (en) | 1983-02-14 | 1983-02-14 | Multicylinder rotary type compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59147895A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4764097A (en) * | 1984-11-22 | 1988-08-16 | Mitsubishi Denki Kabushiki Kaisha | Two-cylinder type rotary compressor |
US5100308A (en) * | 1989-03-25 | 1992-03-31 | Gebr. Becker Gmbh & Co. | Vane pump with adjustable housing and method of assembly |
US6910872B2 (en) * | 2002-05-29 | 2005-06-28 | Samsung Electronics Co., Ltd. | Rotary compressor |
US7059842B2 (en) * | 2003-09-30 | 2006-06-13 | Samsung Electronics Co., Ltd. | Variable capacity rotary compressor |
US7223081B2 (en) * | 2003-07-24 | 2007-05-29 | Samsung Electronics Co., Ltd. | Variable capacity rotary compressor |
WO2009062366A1 (en) * | 2007-11-17 | 2009-05-22 | Guang Dong Mei Zhi Refrigeration Equipment Co., Ltd | A discharge valve device of a rotary compressor |
CN102235360A (en) * | 2010-05-07 | 2011-11-09 | 广东美芝制冷设备有限公司 | Double-cylinder rotary compressor |
WO2011095148A3 (en) * | 2010-02-04 | 2012-06-21 | Ixetic Bad Homburg Gmbh | Tandem pump comprising a switchable coupling between the two pumps |
JP2013056578A (en) * | 2011-09-07 | 2013-03-28 | Nsk Ltd | Electric power steering device and method for manufacturing the same |
JP2015175258A (en) * | 2014-03-14 | 2015-10-05 | 東芝キヤリア株式会社 | rotary compressor and refrigeration cycle device |
CN110821836A (en) * | 2019-10-24 | 2020-02-21 | 珠海格力节能环保制冷技术研究中心有限公司 | Compressor variable-capacity structure, compressor, air conditioner and control method |
CN111120321A (en) * | 2018-10-31 | 2020-05-08 | 广东美芝制冷设备有限公司 | Compressor and refrigerating system |
-
1983
- 1983-02-14 JP JP2143583A patent/JPS59147895A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4764097A (en) * | 1984-11-22 | 1988-08-16 | Mitsubishi Denki Kabushiki Kaisha | Two-cylinder type rotary compressor |
US5100308A (en) * | 1989-03-25 | 1992-03-31 | Gebr. Becker Gmbh & Co. | Vane pump with adjustable housing and method of assembly |
US6910872B2 (en) * | 2002-05-29 | 2005-06-28 | Samsung Electronics Co., Ltd. | Rotary compressor |
US7223081B2 (en) * | 2003-07-24 | 2007-05-29 | Samsung Electronics Co., Ltd. | Variable capacity rotary compressor |
US7059842B2 (en) * | 2003-09-30 | 2006-06-13 | Samsung Electronics Co., Ltd. | Variable capacity rotary compressor |
CN100338364C (en) * | 2003-09-30 | 2007-09-19 | 三星电子株式会社 | Variable capacity rotary compressor |
WO2009062366A1 (en) * | 2007-11-17 | 2009-05-22 | Guang Dong Mei Zhi Refrigeration Equipment Co., Ltd | A discharge valve device of a rotary compressor |
WO2011095148A3 (en) * | 2010-02-04 | 2012-06-21 | Ixetic Bad Homburg Gmbh | Tandem pump comprising a switchable coupling between the two pumps |
CN102235360A (en) * | 2010-05-07 | 2011-11-09 | 广东美芝制冷设备有限公司 | Double-cylinder rotary compressor |
JP2013056578A (en) * | 2011-09-07 | 2013-03-28 | Nsk Ltd | Electric power steering device and method for manufacturing the same |
JP2015175258A (en) * | 2014-03-14 | 2015-10-05 | 東芝キヤリア株式会社 | rotary compressor and refrigeration cycle device |
CN111120321A (en) * | 2018-10-31 | 2020-05-08 | 广东美芝制冷设备有限公司 | Compressor and refrigerating system |
CN110821836A (en) * | 2019-10-24 | 2020-02-21 | 珠海格力节能环保制冷技术研究中心有限公司 | Compressor variable-capacity structure, compressor, air conditioner and control method |
CN110821836B (en) * | 2019-10-24 | 2023-11-24 | 珠海格力节能环保制冷技术研究中心有限公司 | Compressor variable-volume structure, compressor, air conditioner and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI223054B (en) | Refrigeration system and method of controlling a refrigeration system | |
US20020021972A1 (en) | Capacity control of refrigeration systems | |
KR101280155B1 (en) | Heat pump device, two-stage compressor, and method of operating heat pump device | |
JPS59147895A (en) | Multicylinder rotary type compressor | |
US7802440B2 (en) | Compression system and air conditioning system | |
JPH0833251B2 (en) | Cooling device and cooling method | |
CN101523129B (en) | Refrigerant system and method for operating refrigerant system | |
WO2019242311A1 (en) | Compressor and air conditioner system | |
JP2701658B2 (en) | Air conditioner | |
CN107191372B (en) | Rotary compressor and refrigerating device with same | |
JP4265128B2 (en) | Scroll compressor and air conditioner | |
CN1469093A (en) | Flow control of extruder | |
CN101140111A (en) | Capacity adjustable cyclone compressor refrigeration system | |
CN105909495B (en) | The Special pulse valve of compresser cylinder | |
CN104114959B (en) | Compressor | |
WO2021022767A1 (en) | Compressor and air conditioning system | |
JPH03260391A (en) | Closed type rotary compressor | |
JPH0730962B2 (en) | Two-stage compression refrigeration cycle | |
JPH0353532B2 (en) | ||
JPH0387576A (en) | Air conditioner | |
JPH086699B2 (en) | Hermetic rotary compressor | |
JPH0367964A (en) | Air conditioner | |
JPS6229789A (en) | Rotary compressor | |
JP3588216B2 (en) | Compressors and air conditioners | |
JP3585149B2 (en) | Compressors and air conditioners |