JPS59147814A - Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine - Google Patents

Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine

Info

Publication number
JPS59147814A
JPS59147814A JP58022038A JP2203883A JPS59147814A JP S59147814 A JPS59147814 A JP S59147814A JP 58022038 A JP58022038 A JP 58022038A JP 2203883 A JP2203883 A JP 2203883A JP S59147814 A JPS59147814 A JP S59147814A
Authority
JP
Japan
Prior art keywords
trap
burner
amount
fuel
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58022038A
Other languages
Japanese (ja)
Other versions
JPH0151888B2 (en
Inventor
Motohiro Niizawa
新澤 元啓
Masaaki Katsumata
勝亦 正晃
Takashi Kawakami
隆 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58022038A priority Critical patent/JPS59147814A/en
Publication of JPS59147814A publication Critical patent/JPS59147814A/en
Publication of JPH0151888B2 publication Critical patent/JPH0151888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To improve the ignition characteristic so as to prevent a trap from being burnt out by increasing the amount of fuel supply for correction for a prescribed period from burning initiation of a burner used for trap regeneration and further decreasing said amount of fuel supply when a changing speed of exhaust temperature exceeds a prescribed value during said fuel amount increasing correction. CONSTITUTION:An exhaust air purifying device collects fine particles in exhaust gas by means of a trap 4 provided in an exhaust passage 1, and regenerates the trap 4 by operating a burner 5 for its burning in response to the pressure difference obtained from outputs of pressure sensors 18, 19 located across the trap 4. In this case, a temperature sensor 23 is provided between the burner 5 and the trap 4, and until its detected value T1 reaches a prescribed lower limit value (about 550 deg.C), a fuel amount increasing correction means 32 is operated based on a command issued from a comparison means 36, and a basic injection amount retrieved by means of a basic injection amount retrieving means 31 is increased for correction. Further, during said situation, the exhaust temperature T1 is differentiated by a differential means 37, and when the differentiated value exceeds a prescribed value, a fuel amount decreasing correction means 33 is operated, allowing a fuel injection amount to be decreased for correction.

Description

【発明の詳細な説明】 本発明は内燃機関の排気浄化装置として用いられる排気
微粒子捕集用トラップの再生用バーナーの制御装置に関
し、特にバーナーへの燃料供給量を制御する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a burner for regenerating an exhaust particulate trap used as an exhaust purification device for an internal combustion engine, and more particularly to a device for controlling the amount of fuel supplied to the burner.

従来の自動車用内燃機関の排気浄化装置として、例えば
特開昭56−115809号公報に示されるものがある
。これは、排気通路の途中にトラップを設けて排気中の
カーボンを主成分とする微粒子(パーティキュレート)
を捕集するものであシ、また、トラップの上流にトラッ
プ再生用バーナーが備えられ、トラップに所定量の微粒
子が捕集されたことが検知されたときにバーナーを所定
時間作動させて微粒子を焼却し、トラップを再生するよ
うになっている。
As a conventional exhaust gas purification device for an internal combustion engine for an automobile, there is one disclosed in, for example, Japanese Patent Laid-Open No. 115809/1983. This is done by setting up a trap in the middle of the exhaust passage to collect particulates whose main component is carbon in the exhaust.
It is also equipped with a trap regeneration burner upstream of the trap, and when it is detected that a predetermined amount of fine particles have been collected in the trap, the burner is operated for a predetermined period of time to remove the fine particles. Incinerates and regenerates traps.

しかしながら、このような従来のトラップ再生用バーナ
ーの制御装置にあっては、再生時のバーナーへの燃料供
給量を特に制御しておらず、一定の燃料を供給するよう
になっていたため、次のような問題点があった。
However, such conventional trap regeneration burner control devices do not particularly control the amount of fuel supplied to the burner during regeneration, but instead supply a constant amount of fuel. There were some problems.

すなわち、排気微粒子を燃焼させるためには、トラップ
入口側排気温度を約600℃に保つ必要があるが、燃料
の供給開始から着火燃焼による排気温度の立上υ期間と
、所定の排気温度に達した後とでは、自ら必要とする燃
料供給量が異なり、燃料供給量を一定にする場合は勿論
、燃料供給量を回転数及び負荷等の機関運転条件に応じ
て制御する場合でも、着火性の改善や立上少時間の短縮
は望めない。
In other words, in order to burn exhaust particulates, it is necessary to maintain the exhaust temperature at the trap inlet side at approximately 600°C, but there is a period from the start of fuel supply to the rise in exhaust temperature due to ignition combustion, and the period when the exhaust temperature reaches the predetermined exhaust temperature. The required amount of fuel supply differs depending on the amount of fuel supplied, and even when the amount of fuel supplied is constant, and even when the amount of fuel supplied is controlled according to engine operating conditions such as rotation speed and load, ignitability may be affected. No improvement or reduction in start-up time can be expected.

このため、前記立上シ期間に燃料供給量を増量補正する
ことが考えられた。
For this reason, it has been considered to increase the amount of fuel supplied during the start-up period.

ところが、温度上昇速度が速すぎるような場合には、第
1図に破線で示すように目標値に達した後そのまま高温
になり、過温度によるトラップの焼損、溶損等の不具合
を生じる恐れがあった。
However, if the rate of temperature rise is too fast, the temperature will continue to rise even after reaching the target value, as shown by the broken line in Figure 1, and there is a risk of problems such as burnout or melting of the trap due to overtemperature. there were.

本発明はこのような実状に鑑み、着火性の改善と排気温
度の立上り時間の短縮とを図9つつ、温度上昇速度が過
大になることによるオーバーシュートを防止し、第1図
に実線で示す如き特性を得ることを目的とする。
In view of these circumstances, the present invention aims to improve ignition performance and shorten the rise time of exhaust gas temperature, while also preventing overshoot due to an excessive temperature rise rate, as shown by the solid line in Figure 1. The purpose is to obtain such characteristics.

このため、本発明では、バーナー下流のトラップ入口側
排気温度を検出する飾気温度検出手段と、その検出値を
微分する微分演算手段と、バーナーへの燃料供給開始か
ら着火燃焼により排気温度の検出値が所定値に達するま
での期間バーナーへの燃料供給量を増量補正する増量補
正手段と、前記期間中で排気温度の微分値が所定値以上
になったときにバーナーへの燃料供給量を前記増量補正
された値よジも小さな値に減量補正する減量補正手段と
を設けるようにした。
For this reason, the present invention includes a decorative air temperature detection means for detecting the exhaust temperature on the trap inlet side downstream of the burner, a differential calculation means for differentiating the detected value, and a detection means for detecting the exhaust temperature by ignition combustion from the start of fuel supply to the burner. increasing correction means for increasing the amount of fuel supplied to the burner for a period until the value reaches a predetermined value; A weight loss correction means is provided to correct the weight increase correction value to a smaller value.

以下に実施例を説明する。Examples will be described below.

第2図において、ディーゼル機関の排気通路1の途中に
トラップケース2が介装され、このトラップケース2内
には緩衝材3を介してハニカム式のトラップ4が装着さ
れる。このトラップ4は、ハニカムの穴のうち一部につ
いては入口側をあけて出口側を塞ぎ、他部については入
口側を塞いで出口側をあけてあυ、排気が穴の壁部を透
過する際にこれに微粒子を捕集するものである。
In FIG. 2, a trap case 2 is interposed in the middle of an exhaust passage 1 of a diesel engine, and a honeycomb type trap 4 is installed inside the trap case 2 with a buffer material 3 interposed therebetween. This trap 4 is constructed by opening the inlet side of some of the holes in the honeycomb and closing the outlet side, and closing the inlet side and opening the outlet side of the other holes, so that the exhaust gas passes through the wall of the hole. This is used to collect fine particles.

トラップケース2内のトラップ4上流にはトラップ再生
用のバーナー5が設けられる。
A burner 5 for trap regeneration is provided upstream of the trap 4 in the trap case 2.

バーナー5は、周壁に多数の排気導入孔6aを有する燃
焼筒6と、燃焼筒6内にあって火炎噴出ロアaを有する
逆流式蒸発筒7と、逆流式蒸発筒7内に臨む混合気導管
8と、燃焼筒6内で逆流式蒸発筒7の火炎噴出口1a近
傍に臨む着火用のグロープラグ9とを含んで構成される
The burner 5 includes a combustion tube 6 having a large number of exhaust gas introduction holes 6a on the peripheral wall, a backflow type evaporator tube 7 located inside the combustion tube 6 and having a flame jetting lower a, and a mixture conduit facing into the backflow type evaporator tube 7. 8, and a glow plug 9 for ignition that faces near the flame outlet 1a of the reverse flow type evaporator tube 7 within the combustion tube 6.

混合気導管8の入口側には、エアポンプ1oの吐出口が
電磁式切換弁11を介して接続される。
A discharge port of an air pump 1o is connected to the inlet side of the air-fuel mixture conduit 8 via an electromagnetic switching valve 11.

エアポンプ10は機関によシプーリ駆動され、その吸入
口は図示しないエアクリーナに接続される。
The air pump 10 is driven by an engine, and its suction port is connected to an air cleaner (not shown).

切換弁11は非通電状態でエアポンプ1oの吐出口と吸
入口とをつなぎ、通電状態でエアポンプ1゜からの空気
を混合気導管8に供給するよう切換えられる。また、混
合気導管8の入口側には、燃料タンク12から電磁式燃
料ポンプ13によって導かれる燃料を噴射する電磁式燃
料噴射弁14が設けられる。
The switching valve 11 connects the discharge port and the suction port of the air pump 1o in a non-energized state, and is switched to supply air from the air pump 1° to the mixture conduit 8 in a energized state. Further, on the inlet side of the air-fuel mixture conduit 8, an electromagnetic fuel injection valve 14 is provided that injects fuel guided from the fuel tank 12 by an electromagnetic fuel pump 13.

ことにおいて、グロープラグ9、空気供給用切換弁11
、燃料ポンプ13及び燃料噴射弁14は、制御装置15
からの信号電流によって駆動されるようになっている。
In particular, the glow plug 9, the air supply switching valve 11
, the fuel pump 13 and the fuel injection valve 14 are controlled by a control device 15.
It is designed to be driven by a signal current from.

但し、グロープラグ9及び燃料ポンプ13はバッテリ1
6にそれぞれ常開のリレー9a、13aを介して接続さ
れておシ、これらのりL’−9a、13aが制御装置1
5によって駆動される。また、グロープラグ9、空気供
給用切換弁11及び燃料ポンプ13はオンオフ制御であ
るが、燃料噴射弁14はデユーティ−制御される。
However, the glow plug 9 and fuel pump 13 are connected to the battery 1.
These relays L'-9a and 13a are connected to the control device 1 through normally open relays 9a and 13a, respectively.
5. Further, the glow plug 9, the air supply switching valve 11, and the fuel pump 13 are controlled on and off, but the fuel injection valve 14 is controlled by duty.

制御装置15にはバッテリ16からエンジンキースイッ
チ1Tを介して電源電圧が印加される他、各種のセンサ
からの信号が入力される。
A power supply voltage is applied to the control device 15 from the battery 16 via the engine key switch 1T, and signals from various sensors are also input.

すなわち、トラップ4への排気入口部(バーナー5下流
)にトラップ入口側排気圧力Plを検出するための圧力
センサ18が設けられ、トラップ4からの排気出口部に
トラップ出口側排気圧力P2を検出するための圧力セン
サ19が設けられる。
That is, a pressure sensor 18 for detecting the trap inlet exhaust pressure Pl is provided at the exhaust inlet to the trap 4 (downstream of the burner 5), and a pressure sensor 18 is provided at the exhaust outlet from the trap 4 to detect the trap outlet exhaust pressure P2. A pressure sensor 19 is provided for this purpose.

これらの圧力センサ1B、19は例えば圧電素子により
構成される。そして、これらの圧力センサ18,19の
信号は制御装置15に入力される。
These pressure sensors 1B and 19 are composed of piezoelectric elements, for example. Signals from these pressure sensors 18 and 19 are then input to the control device 15.

壕だ、機関の回転数を検出するだめの回転数センサ20
と、機関の負荷を検出するだめの負荷センサ21とが設
けられる。回転数センサ20はクランク角センサにより
構成され、負荷センサ21は燃料噴射ポンプ22のコン
トロールレバー22aと連動するポテンショメータによ
り構成される。
It's the engine speed sensor 20 that detects the engine speed.
and a load sensor 21 for detecting the load of the engine. The rotation speed sensor 20 is constituted by a crank angle sensor, and the load sensor 21 is constituted by a potentiometer interlocked with a control lever 22a of the fuel injection pump 22.

そして、回転数センサ20及び負荷センサ21の信号も
制御装置15に入力される。
Signals from the rotation speed sensor 20 and the load sensor 21 are also input to the control device 15.

更に、トラップ4への排気入口部(バーナー5下流)に
トラップ入口側排気温度Tlを検出するための例えばC
A熱電対からなる温度センサ23が設けられる。そして
、この温度センサ23の信号も制御装置15に入力され
る。
Furthermore, for example, C is installed at the exhaust gas inlet to the trap 4 (downstream of the burner 5) to detect the trap inlet side exhaust gas temperature Tl.
A temperature sensor 23 consisting of an A thermocouple is provided. The signal from this temperature sensor 23 is also input to the control device 15.

制御装置15は、マイクロコンピュータによ多構成され
るが、第3図の機能ブロック図に表わされるように、再
生時期(限界捕集量)であるか否かを検知して再生時期
になったときに再生開始信号を発する再生時期検知手段
25と、再生時期検知手段25からの再生開始信号を受
けたときにバーナー5用の各装置に出力信号を発して各
装置を作動させる出力制御手段26とを備える。
The control device 15 is mainly composed of a microcomputer, and as shown in the functional block diagram of FIG. 3, it detects whether or not it is the regeneration time (limit collection amount) and indicates that the regeneration time has come. a regeneration time detection means 25 that sometimes issues a regeneration start signal; and an output control means 26 that issues an output signal to each device for the burner 5 to operate each device when receiving the regeneration start signal from the regeneration time detection means 25. Equipped with.

ここで、再生時期検知手段25は、圧カセンザ18.1
9の信号から(PIP2)/Pt を演算し、これを所
定値と比較して、所定値以上となったときに再生時期と
判断し、再生開始信号を発するようになっている。
Here, the regeneration timing detection means 25 is the pressure sensor 18.1.
(PIP2)/Pt is calculated from the signal No. 9, and compared with a predetermined value. When the value exceeds the predetermined value, it is determined that it is time to reproduce, and a reproduction start signal is issued.

出力制御手段26は、ディレィ回路等を内蔵しておシ、
バーナー5を作動させる場合に、先ずグロープラグ9を
作動させ、次いで空気供給用切換弁11、燃料ポンプ1
3及び燃料噴射弁14を作動させるようになっている。
The output control means 26 has a built-in delay circuit, etc.
When operating the burner 5, first the glow plug 9 is operated, then the air supply switching valve 11 and the fuel pump 1 are operated.
3 and the fuel injection valve 14 are operated.

そして特に、燃料噴射弁14に対しでは、第4図に示す
ように、回転数センサ20及び負荷センサ21からの信
号に基づき、回転数及び負荷に応じて予め定めた基本噴
射量(回転数に比例し、負荷に反比例する)を検索する
基本噴射量検索手段31と、基本噴射量検索手段31に
よυ検索された基本噴射量を適宜補正する増量補正手段
32、減量補正手段33及び34と、これらの補正手段
32.33.34を通過して得られた噴射量に相当する
デユーティ−比(パルス幅)のパルス信号を出力するパ
ルス信号出力手段35とを備える。
In particular, for the fuel injection valve 14, as shown in FIG. a basic injection amount search means 31 for searching for the basic injection amount (proportional to the load and inversely proportional to the load), an increase correction means 32 and a reduction correction means 33 and 34 for appropriately correcting the basic injection amount found by the basic injection amount search means 31. , and a pulse signal output means 35 for outputting a pulse signal having a duty ratio (pulse width) corresponding to the injection amount obtained by passing through these correction means 32, 33, and 34.

ここで、増量補正手段32は、トラップ入口側排気温度
TIを目標値(例えば600℃)に対する所定の下限値
(例えば550℃)と比較する比較手段36からの指令
に基づいて、トラップ入口側排気温度Ill!が所定の
下限値未満のときに増量補正を行う。また、減量補正手
段33は、トラップ入口側排気温度T1が所定値未満の
ときにその排気温度を微分する微分演算手段3Tによる
微分値を所定値と比較する比較手段38からの指令に基
づいて、微分値が所定値以上のときに減量補正を行う。
Here, the increase correction means 32 adjusts the trap inlet side exhaust gas temperature TI based on a command from the comparison means 36 that compares the trap inlet side exhaust gas temperature TI with a predetermined lower limit value (for example, 550 degrees Celsius) with respect to the target value (for example, 600 degrees Celsius). Temperature Ill! is less than a predetermined lower limit value, an increase correction is performed. Further, the weight loss correction means 33 performs the following operations based on a command from the comparison means 38, which compares the differential value by the differential calculation means 3T, which differentiates the exhaust gas temperature when the trap inlet side exhaust gas temperature T1 is less than a predetermined value, with a predetermined value. Weight loss correction is performed when the differential value is greater than or equal to a predetermined value.

更に、減量補正手段34は、トラップ入口側排気温fT
+ を所定の上限値(例えば650℃)と比較する比較
手段39からの指令に基づいて、トラップ入口側排気温
WTtが所定の上限値を越えるときに減量補正を行う。
Further, the weight loss correction means 34 reduces the trap inlet side exhaust gas temperature fT.
Based on a command from the comparison means 39 that compares + with a predetermined upper limit value (for example, 650° C.), a reduction correction is performed when the trap inlet side exhaust gas temperature WTt exceeds the predetermined upper limit value.

次に作用を説明する。Next, the effect will be explained.

ハニカム式のトラップ4は層流型流量計の特徴があり、
排気微粒子の捕集量(流路抵抗)を一定とすれば、トラ
ップ入口側排気圧力P+(ガス量に比例)と、入口側排
気圧力P1と出口側圧力P2との差圧p、−p、 とが
直線比例し、これらの比率(PI   F2)/PIは
一定となる。勿論、捕集量の増大に伴ってその比率は増
大する。
The honeycomb trap 4 has the characteristics of a laminar flow meter.
If the amount of collected exhaust particulates (flow path resistance) is constant, the trap inlet side exhaust pressure P+ (proportional to the gas amount) and the differential pressure between the inlet side exhaust pressure P1 and the outlet side pressure P2, p, -p, are linearly proportional, and their ratio (PI F2)/PI is constant. Of course, the ratio increases as the amount of collected water increases.

したがって、制御装置15の再生時期検知手段25は、
圧力センサ18,19の信号から、(PIF2)/PI
を演算し、これが所定値以上であるか否か、すなわち限
界捕集量に達し再生時期となったか否かを判定する。
Therefore, the regeneration timing detection means 25 of the control device 15,
From the signals of pressure sensors 18 and 19, (PIF2)/PI
is calculated, and it is determined whether or not this is greater than or equal to a predetermined value, that is, whether or not the limit collection amount has been reached and it is time for regeneration.

この結果、再生時期であると判定されたときには、再生
時期検知手段25から再生開始信号が発せられ、出力制
御手段26は、バーナー5用の各装置を作動させてトラ
ップ4の再生を行う。
As a result, when it is determined that it is the regeneration time, the regeneration time detection means 25 issues a regeneration start signal, and the output control means 26 operates each device for the burner 5 to regenerate the trap 4.

詳しくは、先ずリレー9aを閉結してグロープラグ9を
作動させ、着火に必要な温度まで上昇させる。
Specifically, first, the relay 9a is closed, the glow plug 9 is activated, and the temperature is raised to a temperature necessary for ignition.

一定時間後、空気供給用切換弁11を切換えて、噴射弁
14を作動させ、燃料の供給を開始させる。
After a certain period of time, the air supply switching valve 11 is switched, the injection valve 14 is operated, and fuel supply is started.

これにより、バーナー6の混合気導管8がら空気と燃料
との混合気が噴出し、逆流式蒸発筒I内を流れてその火
炎噴出ロアaよυ燃焼筒6内に送り込1れる。このとき
、グロープラグ9の熱で着火し、燃焼する。尚、グロー
プラグ9は燃料の供給開始から一定時間後にリレー9a
が開放されることによって非作動となる。
As a result, a mixture of air and fuel is ejected from the air-fuel mixture conduit 8 of the burner 6, flows through the reverse flow type evaporator cylinder I, and is sent into the combustion cylinder 6 through its flame ejection lower a. At this time, the heat of the glow plug 9 ignites and burns. Incidentally, the glow plug 9 activates the relay 9a after a certain period of time from the start of fuel supply.
is deactivated by opening.

バー1−−5−71’の燃焼が開始されると、この燃焼
熱により燃焼筒6の多数の排気導入孔6aから導かれる
排気を加熱する。そして、この加熱された排気がトラッ
プ4内を通過することによす、トラップ4に捕集されて
いる微粒子が排気中の余剰酸素によって燃焼し焼却され
る。
When the combustion of the bar 1--5-71' starts, the combustion heat heats the exhaust gas introduced from the numerous exhaust gas introduction holes 6a of the combustion tube 6. Then, as the heated exhaust gas passes through the trap 4, the particulates collected in the trap 4 are combusted and incinerated by excess oxygen in the exhaust gas.

ここで、バーナー5への燃料供給量は、出力制御手段2
6中の基本噴射量検索手段31が回転数センサ20及び
負荷センサ21の信号からそのときの回転数と負荷とに
応じた基本噴射量を検索し、パルス信号出力手段35が
この基本噴射量に相当するパルス信号を出力して、燃料
噴射弁14の作動を制御することにより、回転数と負荷
とに応じて制御されるが、バーナー5への燃料供給開始
から着火燃焼によυ温度センサ23によって検出される
トラップ入口側排気温度T+ が所定の下限値である5
50℃に達するまでの期間は、比較手段36からの指令
に基づいて増量補正手段32が作動し、基本噴射量検索
手段31にて検索された基本噴射量を増量補正してパル
ス信号出力手段35に送ることにより、燃料供給量が増
量される。よって、着火を速やかに行わせることができ
ると共に、トラップ入口側排気温vTlの立上り時間を
短縮できる。そして、この期間においては、比較手段3
6からの指令に基づいて微分演算手段3Tがトラップ入
口側排気温度T1を微分してその変化を覧視しておシ、
その微分値が所定値以上、すなわち温度上昇連関が過大
となったときに、比較手段38からの指令に基づいて減
量補正手段33が作動する。このときは、増量補正手段
32にょつて増量補正された噴射量を減量補正手段33
によって減量補正してパルス信号出力手段35に送るこ
とになシ、したがって燃料供給量の増量度合が小さくな
る。よって、過度の温度上昇(オーバーシュート)を防
止でき、第1図に実線で示したように滑らかに目標値で
ある6 00 ”Cに推移させることができる。
Here, the amount of fuel supplied to the burner 5 is determined by the output control means 2
The basic injection amount search means 31 in 6 searches the basic injection amount according to the current rotation speed and load from the signals of the rotation speed sensor 20 and the load sensor 21, and the pulse signal output means 35 searches for this basic injection amount. By outputting a corresponding pulse signal and controlling the operation of the fuel injection valve 14, the operation is controlled according to the rotation speed and load. 5, where the trap inlet side exhaust temperature T+ detected by is the predetermined lower limit value.
During the period until the temperature reaches 50°C, the increase correction means 32 operates based on the command from the comparison means 36, increases the basic injection amount retrieved by the basic injection amount search means 31, and outputs the pulse signal output means 35. By sending the fuel to the fuel tank, the amount of fuel supplied is increased. Therefore, ignition can be performed quickly, and the rise time of the exhaust gas temperature vTl on the trap inlet side can be shortened. In this period, comparison means 3
Based on the command from 6, the differential calculation means 3T differentiates the trap inlet side exhaust temperature T1 and visually observes the change.
When the differential value is equal to or greater than a predetermined value, that is, when the temperature increase correlation becomes excessive, the reduction correction means 33 is activated based on a command from the comparison means 38. At this time, the injection amount corrected by the increase correction means 32 is changed to the injection amount corrected by the reduction correction means 33.
Therefore, the amount of fuel supplied does not have to be corrected and sent to the pulse signal output means 35, and therefore the degree of increase in the amount of fuel supplied becomes small. Therefore, an excessive temperature rise (overshoot) can be prevented, and a smooth transition to the target value of 600''C can be achieved as shown by the solid line in FIG.

また、トラップ入口側排気温度TI が目標値付近に達
した後、所定の下限値である5 50 ’Cよシ低下し
た場合も増量補正手段32による増量補正がなされ、逆
に所定の上限値である6 50 ’Cを越えた場合は比
較手段39がらの指令に基づいて減量補正手段39が作
動し、これにょシ減量補正が々される。こうして、トラ
ップ入口側温度T、が目標値にフィードバック制御され
、適正々燃焼が持続される。
Further, even if the trap inlet side exhaust gas temperature TI reaches around the target value and then decreases by 550'C, which is the predetermined lower limit value, the increase correction means 32 performs an increase correction, and conversely, when the trap inlet side exhaust gas temperature TI reaches the target value, the increase correction means 32 performs an increase correction. When a certain 650'C is exceeded, the weight loss correction means 39 is operated based on a command from the comparison means 39, and a weight loss correction is performed accordingly. In this way, the trap inlet side temperature T is feedback-controlled to the target value, and proper combustion is maintained.

そして、燃焼開始から一定時間経過すると、燃料噴射弁
14の作動が停止されると共に、リレー138が開放さ
れて燃料ポンプ13の作動が停止される。この後、切換
弁11が切換えられて空気の供給も停止される。これに
よシ再生が終了する。
Then, after a certain period of time has elapsed from the start of combustion, the operation of the fuel injection valve 14 is stopped, the relay 138 is opened, and the operation of the fuel pump 13 is stopped. After this, the switching valve 11 is switched and the supply of air is also stopped. This ends playback.

次に制御装置150マイクロコンピユータニよる具体例
を説明する。
Next, a specific example using the control device 150 microcomputer will be explained.

第5図はハードウェア構成を示し、CPU41、メモリ
ー42及びインタフェース用のPIO43の他、入力側
にはアナログデータをデジタルデータに変換するA/D
変換器44と、複数の入力信号のうち1つを選択的にA
、 / D変換器440入力とするマルチプレクサ45
とが設けられる。
Figure 5 shows the hardware configuration, in addition to the CPU 41, memory 42, and PIO 43 for interface, there is an A/D on the input side that converts analog data to digital data.
A converter 44 and selectively converting one of the plurality of input signals to A.
, /D converter 440 input multiplexer 45
and is provided.

入力信号は、圧力センサ18,19からのアナログ電圧
(P+ 、P2  )、回転数センサ2oからのパルス
信号、負荷センサ21がらのアナログ電圧、?品度セン
サ23からのアナログ電圧(T1)であシ、これらはマ
ルチプレクサ45へ入力される。但し、回転数センサ2
oがらのパルス信号はアナログ電圧に変換するためF/
V変換器46を介してマルチプレクサ45へ入力される
The input signals include analog voltages (P+, P2) from the pressure sensors 18 and 19, a pulse signal from the rotation speed sensor 2o, an analog voltage from the load sensor 21, and ? The analog voltage (T1) from the quality sensor 23 is input to the multiplexer 45. However, rotation speed sensor 2
The pulse signal from O is converted to analog voltage by F/
It is input to multiplexer 45 via V converter 46.

CPU41は、第6図に示すフローチャートに基づくプ
ログラムに従って動作し、適宜、PIO43を介して、
マルチプレクサ45へのチャンネル指示、A/D変換器
44へのスタート指示を行い、A/D変換器44からの
変換終了を示すEOC信号を受けた後、デジタル変換さ
れたデータを入力させるようになっている。フローチャ
ートについては後述する。
The CPU 41 operates according to a program based on the flowchart shown in FIG.
After giving a channel instruction to the multiplexer 45 and a start instruction to the A/D converter 44, and receiving an EOC signal indicating the end of conversion from the A/D converter 44, digitally converted data is input. ing. The flowchart will be described later.

出力側は、CPU41からPIO43を介しての出力指
令によりグロープラグ用リレー9a、切換弁11及び燃
料ポンプ用リレー13aをそれぞれ作動させるだめのス
イッチ回路47,48.49が設けられる。
On the output side, switch circuits 47, 48, and 49 are provided for operating the glow plug relay 9a, switching valve 11, and fuel pump relay 13a, respectively, in response to an output command from the CPU 41 via the PIO 43.

また、燃料噴射弁14を作動させ、かつ駆動用パルス信
号のパルス幅を制御(デユーティ−制御)するために、
三角波発振器50、ゲート51、D/A変換器52、比
較器53及び増幅器54が設けられる。ここで、ゲート
51はCPU41からPIO43を介しての出力指令に
より燃料ポンプ13の作動と同期して開き、三角波発振
器50の出力(三角波)を比較器53に入力させるよう
に機能し、また、D/’A変換器52はCPU4j内で
演算されPIO43を介して出力される噴射量の制御値
(デジタル値)をアナログ電圧に変換して比較器53に
入力させるように機能する。比較器53は、第7図に示
すように、三角波とアナログ電圧(スライスレベル)と
を比較して、アナログ電圧によってパルス幅の制御され
たパルス信号を形成し、このパルス信号を増幅器54を
介して燃料噴射弁14に出力するように機能する。
Further, in order to operate the fuel injection valve 14 and control the pulse width of the driving pulse signal (duty control),
A triangular wave oscillator 50, a gate 51, a D/A converter 52, a comparator 53, and an amplifier 54 are provided. Here, the gate 51 opens in synchronization with the operation of the fuel pump 13 according to an output command from the CPU 41 via the PIO 43, and functions to input the output (triangular wave) of the triangular wave oscillator 50 to the comparator 53. /'A converter 52 functions to convert the control value (digital value) of the injection amount calculated within the CPU 4j and output via the PIO 43 into an analog voltage and input it to the comparator 53. As shown in FIG. 7, the comparator 53 compares the triangular wave with an analog voltage (slice level), forms a pulse signal whose pulse width is controlled by the analog voltage, and sends this pulse signal through an amplifier 54. It functions to output the fuel to the fuel injection valve 14.

第6図のフローチャートについて説明すると、Slでは
再生時期であるか否かを判定する。具体的には、排気圧
力P+ 、P2を読込んで、(PIP2)/PI を演
算し、これを所定値と比較して、判定を行う。
To explain the flowchart of FIG. 6, in Sl, it is determined whether or not it is reproduction time. Specifically, the exhaust pressure P+ and P2 are read, (PIP2)/PI is calculated, and this is compared with a predetermined value to make a determination.

再生時期であると判定された場合は、S2以降へ進んで
再生を開始する。
If it is determined that it is the reproduction time, the process advances to S2 and thereafter to start reproduction.

S2ではスイッチ回路47及びリレー9aを介してグロ
ープラグ9をオンにする。そして、S3で所定時間(例
えば30秒)ディレィした後、S4でスイッチ回路48
を介して切換弁11をオンにすることによp空気の供給
を開始し、S5でスイッチ回路49及びリレー138を
介して燃料ポンプ13をオンにすると共にゲート51を
開いて燃料噴射弁14を作動させることによシ燃料の供
給を開始する。以降、フローチャートでは省略したが、
回転数と負荷とを読込んで基本噴射量をテーブルルック
アップし、後述する補正を行わない場合は基本噴射量の
制御値をその!、ま、補正を行う場合は補正された噴射
量の制御値をD / A変換器52に出力することによ
υ、燃料噴射弁14による噴射量を制御する。また、フ
ローチャートでは省略したが、グロープラグ9は燃料の
供給開始から所定時間後、又はトラップ入口側排気温度
Ttがある程度上昇した段階でオフにする。
In S2, the glow plug 9 is turned on via the switch circuit 47 and the relay 9a. After delaying for a predetermined time (for example, 30 seconds) in S3, the switch circuit 48 is activated in S4.
The supply of p-air is started by turning on the switching valve 11 via the switch circuit 49 and the relay 138, and the fuel pump 13 is turned on via the switch circuit 49 and the relay 138, and the gate 51 is opened to turn on the fuel injection valve 14. Activation starts supplying fuel. Although omitted in the flowchart from now on,
Read the rotation speed and load, look up the basic injection amount in the table, and if you do not perform the correction described later, change the control value of the basic injection amount to that! In the case of correction, the injection amount by the fuel injection valve 14 is controlled by outputting the corrected injection amount control value to the D/A converter 52. Furthermore, although omitted in the flowchart, the glow plug 9 is turned off after a predetermined time from the start of fuel supply, or when the exhaust gas temperature Tt on the trap inlet side rises to a certain extent.

次の86〜S8はループを構成しており、S6ではトラ
ップ入口側排気温度Tlが550℃以上であるか否かの
判定を行い、550℃未満の場合に:はS9.SIO,
・・・のサブルーチンを実行する。
The next steps 86 to S8 form a loop, and in S6 it is determined whether the exhaust gas temperature Tl on the trap inlet side is 550°C or higher, and if it is less than 550°C, then step S9. SIO,
...Execute the subroutine.

S7ではトラップ入口側排気温度T1が650℃以下で
あるか否かの判定を行い、650℃を越える場合にはS
16.S17のサブルーチンを実行する。S8では再生
開始から所定時間(例えば10分)経過したか否かの判
定を行い、時間内の場合にはS6へ戻って、これらを繰
返す。
In S7, it is determined whether the exhaust gas temperature T1 on the trap inlet side is below 650°C, and if it exceeds 650°C, S7
16. The subroutine of S17 is executed. In S8, it is determined whether a predetermined time (for example, 10 minutes) has elapsed since the start of reproduction, and if the time has elapsed, the process returns to S6 and repeats these steps.

550℃未満の場合のサブルーチンは、S9で基本噴射
量を減量補正し、S10でトラップ入口側排気温WTt
 を読込んでレジスタAに格納し、811で微小時間デ
ィレィし、S12で再びトラップ入口側排気温度TIを
読込んでレジスタBに格納し、S13でレジスタBの値
とレジスタへの値との差(B−A)が所定値以上である
か否かを判定する。B−Aが所定値未満のときはその1
−まメインルーチンへ戻る。したがってこのときはS9
で増量補正された噴射量に基づいて燃料噴射弁14の作
動が制御され、噴射量が増量される。また、B−Aが所
定値以上のときは温度上昇速度が過大であるので、S1
4へ進んでS9で増量補正された噴射量を減量補正し、
S15で微小時間ディレィした後、メインルーチンへ戻
る。したがつてこのときはS9で増量補正された後S1
4で減量補正された噴射量に基づいて燃料噴射弁14の
作動が制御され、噴射量の増量度合が小さくなる。
In the subroutine when the temperature is less than 550°C, the basic injection amount is reduced in S9, and the trap inlet side exhaust temperature WTt is adjusted in S10.
is read and stored in register A, a minute time delay is performed in 811, the trap inlet side exhaust gas temperature TI is read again in S12 and stored in register B, and in S13 the difference between the value in register B and the value in the register (B -A) is greater than or equal to a predetermined value. 1 when B-A is less than the specified value
- Return to the main routine. Therefore, in this case, S9
The operation of the fuel injection valve 14 is controlled based on the injection amount corrected to increase in step , and the injection amount is increased. Also, when B-A is greater than a predetermined value, the temperature rise rate is excessive, so S1
Proceed to step 4 and correct the injection amount that was corrected to increase in S9 by decreasing it.
After a minute delay in S15, the process returns to the main routine. Therefore, in this case, after the increase is corrected in S9, S1
The operation of the fuel injection valve 14 is controlled based on the injection amount corrected for reduction in step 4, and the degree of increase in the injection amount becomes smaller.

650℃を越える場合のサブルーチンは、S16で基本
噴射量を減量補正し、S17で微小時間ディレィした後
、メインルーチンへ戻る。したがってこの場合はS16
で減量補正された噴射量に基づいて燃料噴射弁14の作
動が制御され、噴射量が減量される。
In the subroutine when the temperature exceeds 650° C., the basic injection amount is corrected to decrease in S16, and after a minute delay is performed in S17, the process returns to the main routine. Therefore, in this case, S16
The operation of the fuel injection valve 14 is controlled based on the injection amount corrected to reduce the injection amount, and the injection amount is reduced.

再生開始から所定時間経過した場合は、再生を終了させ
るため、S8から818へ進んで燃料ポンプ13をオフ
にすると共にゲート51を閉じて燃料噴射弁14の作動
を停止させ、燃料の供給を停止する。そして、S19で
所定時間(例えば30秒)ディレィした後、S20で切
換弁11をオフにして空気の供給を停止する。
If a predetermined period of time has elapsed from the start of regeneration, the process proceeds from S8 to 818 to terminate the regeneration, turn off the fuel pump 13, close the gate 51, stop the operation of the fuel injection valve 14, and stop the supply of fuel. do. After a delay of a predetermined time (for example, 30 seconds) in S19, the switching valve 11 is turned off in S20 to stop the air supply.

以上説明したように本発明によれば、バーナーへの燃料
供給開始から着火燃焼によりトラップ入口側排気温度が
所定値に達する゛までの期間、バーナーへの燃料供給量
を増量補正することにより、着火性の改善と立上り時間
の短縮とを図ることができ、壕だ、前記期間内で排気温
間の微分値が所定値以上になったときには更に減量補正
を行うことによシ、温度上昇速度が過大になるのを防止
して、オーバーシュートによるトラップの焼損や溶損を
防止することができるという効果が得られる。
As explained above, according to the present invention, the amount of fuel supplied to the burner is increased during the period from the start of fuel supply to the burner until the trap inlet exhaust temperature reaches a predetermined value due to ignition combustion. In addition, when the differential value between the exhaust gas temperatures exceeds a predetermined value within the above-mentioned period, further weight loss correction is performed to reduce the temperature rise rate. By preventing the trap from becoming too large, it is possible to prevent burnout and melting of the trap due to overshoot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は再生開始後のトラップ入口側排気温度の推移を
示す線図、第2図は本発明の一実施例を中の燃料噴射弁
制御部の機能ブロック図、第5図は第2図における制御
装置の・・−ドウエア構成図、第6図は同上のフローチ
ャート、第7図は同上の信号波形図である。 1・・・排気通路  4・・・トラップ  5・・・バ
ーナー  9・・・グロープラグ  10−・・エアポ
ンプ11・・・切換弁  13・・・燃料ポンプ  1
4・・・燃料噴射弁  15・・・制御装置  18.
19・・・圧力センサ  20・・・回転数センサ  
21・・・負荷センサ  23・・・温度センサ  2
5・・・再生時期検知手段  26・・・出力制御手段
  31・・・基本噴射量検索手段  32・・・増量
補正手段  33゜34・・・減量補正手段  35・
・・ノくルス信号出力手段  3T・・・微分演算手段 特 許 出 願 人 日産自動車株式会社代理人弁理士
笹 島 富二雄 第1図 ン 毒1 戻 1
Fig. 1 is a diagram showing the transition of exhaust gas temperature on the trap inlet side after the start of regeneration, Fig. 2 is a functional block diagram of the fuel injection valve control section in an embodiment of the present invention, and Fig. FIG. 6 is a flow chart of the control device in FIG. 6, and FIG. 7 is a signal waveform diagram of the same. 1...Exhaust passage 4...Trap 5...Burner 9...Glow plug 10-...Air pump 11...Switching valve 13...Fuel pump 1
4...Fuel injection valve 15...Control device 18.
19...Pressure sensor 20...Rotation speed sensor
21...Load sensor 23...Temperature sensor 2
5... Regeneration timing detection means 26... Output control means 31... Basic injection amount search means 32... Increase correction means 33° 34... Reduction correction means 35.
...Norculus signal output means 3T...Differential calculation means Patent Applicant: Nissan Motor Co., Ltd. Representative Patent Attorney Fujio Sasashima Figure 1 Ntoku 1 Return 1

Claims (1)

【特許請求の範囲】[Claims] 排気通路に設けられて排気中の微粒子を捕集するトラッ
プと、トラップの上流に設けられるトラップ再生用バー
ナーと、トラップに所定量の微粒子が捕集されたことを
検知してバーナーを作動させる制御装置とを備える内燃
機関において、バーナーとトラップとの間の排気温度を
検出する排気温度検出手段と、排気温度検出手段の検出
値を微分する微分演算手段と、バーナーへの燃料供給開
始から着火燃焼により排気温度検出手段による検出値が
所定値に達するまでの期間バーナーへの燃料供給量を増
量補正する増量補正手段と、前記期間中で微分演算手段
による微分値が所定値以上になったときにバーナーへの
燃料供給量を前記増量補正された値よりも小さな値に減
量補正する減量補正手段とを設けたことを特徴とする内
燃機関における排気微粒子捕集用トラップの再生用バー
ナーの制御装置。
A trap installed in the exhaust passage to collect particulates in the exhaust, a trap regeneration burner installed upstream of the trap, and a control that activates the burner when it detects that a predetermined amount of particulates have been collected in the trap. an internal combustion engine comprising: an exhaust temperature detection means for detecting the exhaust temperature between the burner and the trap; a differential calculation means for differentiating the detected value of the exhaust temperature detection means; increasing correction means for increasing the amount of fuel supplied to the burner for a period until the detected value by the exhaust temperature detecting means reaches a predetermined value; 1. A control device for a burner for regenerating an exhaust particulate trap in an internal combustion engine, comprising a reduction correction means for reducing the amount of fuel supplied to the burner to a value smaller than the value corrected for the increase.
JP58022038A 1983-02-15 1983-02-15 Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine Granted JPS59147814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022038A JPS59147814A (en) 1983-02-15 1983-02-15 Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022038A JPS59147814A (en) 1983-02-15 1983-02-15 Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59147814A true JPS59147814A (en) 1984-08-24
JPH0151888B2 JPH0151888B2 (en) 1989-11-07

Family

ID=12071772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022038A Granted JPS59147814A (en) 1983-02-15 1983-02-15 Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59147814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228613A (en) * 1986-03-31 1987-10-07 Tsuchiya Mfg Co Ltd Exhaust gas filter regenerator for internal combustion engine
KR20030096939A (en) * 2002-06-18 2003-12-31 현대자동차주식회사 regeneration system of filter for eliminating particulate material of diesel engine
JP2011220252A (en) * 2010-04-12 2011-11-04 Hino Motors Ltd Method and device for controlling combustion temperature increase of after-treatment burner system
CN105240097A (en) * 2015-10-27 2016-01-13 潍柴动力股份有限公司 DPF regeneration temperature control method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179315A (en) * 1981-04-28 1982-11-04 Hino Motors Ltd Exhaust-gas cleaner for internal-combustion engine
JPS5813114A (en) * 1981-07-14 1983-01-25 Nissan Motor Co Ltd Particulate collection device of diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179315A (en) * 1981-04-28 1982-11-04 Hino Motors Ltd Exhaust-gas cleaner for internal-combustion engine
JPS5813114A (en) * 1981-07-14 1983-01-25 Nissan Motor Co Ltd Particulate collection device of diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228613A (en) * 1986-03-31 1987-10-07 Tsuchiya Mfg Co Ltd Exhaust gas filter regenerator for internal combustion engine
KR20030096939A (en) * 2002-06-18 2003-12-31 현대자동차주식회사 regeneration system of filter for eliminating particulate material of diesel engine
JP2011220252A (en) * 2010-04-12 2011-11-04 Hino Motors Ltd Method and device for controlling combustion temperature increase of after-treatment burner system
CN105240097A (en) * 2015-10-27 2016-01-13 潍柴动力股份有限公司 DPF regeneration temperature control method and device

Also Published As

Publication number Publication date
JPH0151888B2 (en) 1989-11-07

Similar Documents

Publication Publication Date Title
JPH0432924B2 (en)
KR20030022043A (en) Exhaust emission control device for engine
JPS59147814A (en) Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine
JPH04308309A (en) Particulate filter regenerative device of diesel engine
JPH0367013A (en) Particulate catching device of diesel engine
JPS59158310A (en) Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine
JPH0450417A (en) Exhaust gas purifying device foe engine
JPS6365808B2 (en)
JPH0337005B2 (en)
JPH0517372Y2 (en)
JP2589593Y2 (en) Diesel engine exhaust purification system
JPH0550571B2 (en)
JPH0429846B2 (en)
JPH0324819Y2 (en)
JPS63106318A (en) Regenerator for particulate trap
JPS59153912A (en) Regenerative burner control device in exhaust fine particle trap in internal-combustion engine
JPS59153913A (en) Regenerative burner control device in exhaust particle trap in internal-combustion engine
JPH04255518A (en) Exhaust particulate collector for internal combustion engine
JPS59134316A (en) Regenerating burner controller for exhaust particle collecting trap in internal-combustion engine
JPH0137136Y2 (en)
JPH062530A (en) Exhaust emission control device for internal combustion engine
JPS59155522A (en) Control device of burner for regenerating exhaust particulate collecting trap in internal-combustion engine
JPH0432211B2 (en)
JP2797319B2 (en) Particulate trap reburning device
JPH07253012A (en) Exhaust fine particle processing device of internal combustion engine