JPS59158310A - Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine - Google Patents

Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine

Info

Publication number
JPS59158310A
JPS59158310A JP58030976A JP3097683A JPS59158310A JP S59158310 A JPS59158310 A JP S59158310A JP 58030976 A JP58030976 A JP 58030976A JP 3097683 A JP3097683 A JP 3097683A JP S59158310 A JPS59158310 A JP S59158310A
Authority
JP
Japan
Prior art keywords
air
fuel
burner
trap
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58030976A
Other languages
Japanese (ja)
Other versions
JPH0432925B2 (en
Inventor
Yoji Hasegawa
長谷川 洋二
Masaaki Katsumata
勝亦 正晃
Takashi Kawakami
隆 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58030976A priority Critical patent/JPS59158310A/en
Publication of JPS59158310A publication Critical patent/JPS59158310A/en
Publication of JPH0432925B2 publication Critical patent/JPH0432925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/22Timing network

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To improve firing performance of burner by controlling at least one of fuel or air supply to burner thereby making air-fuel ratio immediately after starting of burner thick then making gradually thin to transfer to optimal air- fuel ratio. CONSTITUTION:Upon detection of regeneration timing by means of regenerating timing detecting means 31, an output control means 32 will operate each machinery for burner to start regeneration of trap 3. Here drive pulse having constant duety ratio is provided to fuel control valve 12 to control fuel supply constant, but drive pulse having duty ratio controlled in accordance to predetermined pattern is provided to an air relief valve to control relief air flow or air supply. Air supply is controlled to be constant as time elapses to provide optimal air- fuel ratio.

Description

【発明の詳細な説明】 本発明は内燃機関の排気浄化装置として用いられる排気
微粒子捕集用トラップの再生用バーナーの制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a regeneration burner of an exhaust particulate trap used as an exhaust purification device for an internal combustion engine.

従来の自動車用内燃機関の排気浄化装置として、排気通
路の途中にトラップを設けて排気中のカーボンを主成分
とする微粒子(パーティキュレート)を捕集し、トラッ
プに所定量の微粒子が捕集された段階でトラップの上流
側に設けたバーナーを作動させて排気を加熱し、この加
熱された排気により微粒子を焼却してトラップを再生す
るようにしたものがある。
As a conventional exhaust purification device for internal combustion engines for automobiles, a trap is installed in the middle of the exhaust passage to collect particulates whose main component is carbon in the exhaust, and a predetermined amount of particulates are collected in the trap. At this stage, a burner installed upstream of the trap is activated to heat the exhaust gas, and the heated exhaust gas incinerates particulates to regenerate the trap.

ところで、バーナーを作動させる場合、着火用のグロー
プラグ又はヒータを赤熱させてから燃料と空気の供給を
開始し、着火させて燃焼させるのであるが、確実に着火
燃焼させることが必要で、例えば特願昭57−1070
39号にて提案されているように燃焼筒や蒸発筒の配置
構造に工夫がなされている。
By the way, when operating a burner, the glow plug or heater for ignition is made red hot and then the supply of fuel and air is started to ignite and burn, but it is necessary to ensure ignition and combustion. Gansho 57-1070
As proposed in No. 39, the arrangement structure of the combustion tube and evaporator tube has been devised.

しかし、バーナーの燃焼が開始するまでの間は蒸発筒の
温度が低く、混合気中の燃料は十分霧化されずに吐出さ
れ、また、空気によりグロープラグが冷却されやすいた
め、着火が難しく、特に排気温度の低い低速、低負荷条
件ではこの傾向が著しい。
However, until the burner starts combustion, the temperature of the evaporator tube is low, and the fuel in the mixture is not sufficiently atomized before it is discharged, and the glow plug is easily cooled by air, making ignition difficult. This tendency is particularly noticeable under low speed and low load conditions with low exhaust temperature.

本発明はこのような実状に鑑み、バーナーの作動開始時
の着火性の改善を図ることを目的とし、バーナーへ供給
する燃料と空気との混合気の空燃比を制御することによ
り、詳しくは、バーナーの作動開始直後の着火期間中に
バーナーへの燃料供給量又は空気供給量の少なくとも一
方を制御して、前記期間の初めの空燃比を濃クシ時間経
過と共に薄くして適正空燃比に移行させる空燃比制御手
段を設けることにより、着火性を改善したものである。
In view of these circumstances, the present invention aims to improve the ignition performance at the start of burner operation by controlling the air-fuel ratio of the mixture of fuel and air supplied to the burner. Control at least one of the fuel supply amount or the air supply amount to the burner during the ignition period immediately after the start of operation of the burner, so that the air-fuel ratio at the beginning of the period becomes richer and becomes thinner as time passes to shift to an appropriate air-fuel ratio. The ignitability is improved by providing an air-fuel ratio control means.

以下に実施例を説明する。Examples will be described below.

第1図において、ディーゼル機関1の排気通路2の途中
に排気微粒子捕集用のハニカム式トラップ3が介装され
、その上流側にl−ラップ再生用のバーナー4が設けら
れる。
In FIG. 1, a honeycomb trap 3 for collecting exhaust particulates is interposed in the middle of an exhaust passage 2 of a diesel engine 1, and a burner 4 for L-lap regeneration is provided upstream thereof.

バーナー4は、多数の排気流通孔を有する燃焼筒5と、
この燃焼筒5内に臨む混合気導管6と、この混合気導管
6の出口端を囲む逆流式蒸発筒7と、着火用のグロープ
ラグ8とを備える。
The burner 4 includes a combustion tube 5 having a large number of exhaust flow holes,
It includes a mixture conduit 6 facing into the combustion tube 5, a reverse flow type evaporator tube 7 surrounding the outlet end of the mixture conduit 6, and a glow plug 8 for ignition.

混合気導管6の入口側は燃料供給管9と空気供給管10
とに分岐しており、燃料供給管9には、図示しない燃料
タンクから燃料を吸入して圧送する電磁式燃料ポンプ1
1と、燃料の供給量を制御する燃料制御弁12とが設け
られる。空気供給管10には、エアポンプ13の吐出口
が電磁式切換弁14を介して接続され、またその途中に
逆止弁15が設けられる。
The inlet side of the mixture conduit 6 is connected to a fuel supply pipe 9 and an air supply pipe 10.
The fuel supply pipe 9 is connected to an electromagnetic fuel pump 1 that sucks fuel from a fuel tank (not shown) and pumps it.
1, and a fuel control valve 12 that controls the amount of fuel supplied. A discharge port of an air pump 13 is connected to the air supply pipe 10 via an electromagnetic switching valve 14, and a check valve 15 is provided in the middle thereof.

エアポンプ13は機関によりプーリ駆動され、その吸入
口は図示しないエアクリーナに接続される。
The air pump 13 is driven by a pulley by an engine, and its suction port is connected to an air cleaner (not shown).

切換弁14は非通電状態でエアポンプ13の吐出口と吸
入口とをつなぎ、通電状態でエアポンプ13の吐出口と
空気供給管10とをつなくように切換ねる。
The switching valve 14 connects the discharge port and the suction port of the air pump 13 in a non-energized state, and connects the discharge port of the air pump 13 and the air supply pipe 10 in a energized state.

そして、空気供給管10の切換弁14と逆止弁15との
間から分岐してエアポンプ13の吸入口につながる空気
逃し管16が設けられ、この空気逃し管16には空気の
逃し量を制御する電磁式空気逃し弁17が設けられる。
An air release pipe 16 is provided which branches from between the switching valve 14 and the check valve 15 of the air supply pipe 10 and connects to the intake port of the air pump 13, and this air release pipe 16 controls the amount of air released. An electromagnetic air relief valve 17 is provided.

ここにおいて、機関の回転数を検出するための回転数セ
ンサ18と、機関の負荷を検出するための負荷センサ1
9とが設けられる。回転数センサ18は燃料噴射ポンプ
20の駆動用歯車20Hに近接させた電磁式ピンクアン
プにより構成され、負荷センサ19 ハ14 料噴射ポ
ンプ20のコントロールレバー20bに連動させたポテ
ンショメータにより構成される。
Here, a rotation speed sensor 18 for detecting the rotation speed of the engine, and a load sensor 1 for detecting the load of the engine.
9 is provided. The rotation speed sensor 18 is constituted by an electromagnetic pink amplifier placed close to the drive gear 20H of the fuel injection pump 20, and is constituted by a potentiometer linked to the control lever 20b of the fuel injection pump 20.

また、差圧センサ21が設けられ、この差圧センサ21
にはトラップ3の上流側排気圧力P1と下流側排気圧力
P2とがそれぞれ圧力導管22.23によって導かれる
。更に、バーナー4の上流に上流側排気温度Toを検出
するための温度センサ24が設けられ、バーナー4の下
流に下流側排気温度T1を検出するための温度センサ2
5が設けられる。そして、これら回転数センサ18、負
荷センサ19、差圧センサ21、温度センサ2i、25
の信号は制御装置30に入力され、この制御装置30に
よりグロープラグ8、燃料ポンプ11、燃料制御弁12
、空気供給用切換弁14及び空気逃し弁17の作動を制
御するようになっている。
Further, a differential pressure sensor 21 is provided, and this differential pressure sensor 21
The upstream exhaust pressure P1 and the downstream exhaust pressure P2 of the trap 3 are respectively guided by pressure conduits 22,23. Further, a temperature sensor 24 is provided upstream of the burner 4 for detecting the upstream exhaust gas temperature To, and a temperature sensor 24 is provided downstream of the burner 4 for detecting the downstream exhaust temperature T1.
5 is provided. These rotation speed sensor 18, load sensor 19, differential pressure sensor 21, temperature sensors 2i, 25
The signal is input to the control device 30, and the control device 30 controls the glow plug 8, fuel pump 11, and fuel control valve 12.
, controls the operation of the air supply switching valve 14 and the air relief valve 17.

制御装置30は、マイクロコンピュータにより構成され
るが、第2図の機能ブロック図に表わされるように、回
転数センサ18、負荷センサ19及び差圧センサ21に
よって検出される回転数、負荷及び差圧ΔP(−P+ 
 P2)に基づいて再生時期(微粒子の捕集量が所定量
以上)を検知して再生開始信号を発する再生時期検知手
段31と、再生時期検知手段31からの再生開始信号を
受けたときにバーナー4用の各機器を作動させる出力制
御手段32と、再生の開始から所定時間後に温度センサ
24゜25によって検出される排気温度To、TIの温
度差T+Toに基づいてバーナー4の着火の有無を検知
し未着火のときに出力制御手段32に対し再生中止信号
を発する着火検知手段33と、再生時間を監視し所定の
再生時間が経過したときに出力制御手段32に対し再生
停止信号を発する再生停止用タイマー34とを備える。
The control device 30 is composed of a microcomputer, and as shown in the functional block diagram of FIG. ΔP(-P+
P2), a regeneration time detection means 31 detects the regeneration time (the amount of collected particles is equal to or greater than a predetermined amount) and issues a regeneration start signal; The presence or absence of ignition of the burner 4 is detected based on the temperature difference T+To between the exhaust temperature To and TI detected by the output control means 32 that operates each device for the burner 4 and the temperature sensor 24° 25 after a predetermined time from the start of regeneration. ignition detection means 33 that issues a regeneration stop signal to the output control means 32 when no ignition occurs, and a regeneration stop that monitors the regeneration time and issues a regeneration stop signal to the output control means 32 when a predetermined regeneration time has elapsed. and a timer 34.

出力制御手段32は、ディレィ機能等を有しており、バ
ーナー4を作動させて再生を開始させる場合に、先ずグ
ロープラク8を作動させ、次いで燃料ポンプ11、燃料
制御弁12、空気供給用切換弁14及び空気逃し弁17
を作動させるようになっている。
The output control means 32 has a delay function, etc., and when operating the burner 4 to start regeneration, it first operates the glow plaque 8, and then operates the fuel pump 11, fuel control valve 12, and air supply switching valve. 14 and air relief valve 17
It is designed to operate.

そして、燃料制御弁12に対しては、燃料供給量を所定
値に制御すべくデユーティ−比(パルス幅)一定の駆動
パルスを出力するが、空気逃し弁17に対しては、再生
開始直後の着火期間中の空気供給量を減少(空気逃し量
を増大)させ、かつその期間において時間経過と共に空
気供給量を漸増(空気逃し量を漸減)させて所定値に移
行させるように駆動パルスのデユーティ−比を制御する
。すなわち、出力制御手段32中に、第3図の機能ブロ
ック図に表わされるように、空気逃し量設定手段35、
タイマー36、増量補正手段37及び駆動パルス出力手
段38を有しており、着火期間中はタイマー36により
増量補正手段37を作動させて空気逃し量設定手段35
によって設定される空気逃し量を増量補正し、かつ時間
経過と共に補正係数を減少させて空気逃し量を漸減させ
つつ増量補正し、補正された空気逃し量の制御値を駆動
パルス出力手段38に送って、第4図に示すような制御
パターンの駆動パルスを空気逃し弁17に対して出力す
るようになっている。尚、空気逃し弁17はONのとき
開き、OFFで閉じる。
A drive pulse with a constant duty ratio (pulse width) is output to the fuel control valve 12 in order to control the fuel supply amount to a predetermined value, but a drive pulse with a constant duty ratio (pulse width) is output to the air relief valve 17 immediately after the start of regeneration. The duty of the drive pulse is set such that the air supply amount is decreased (increases the air release amount) during the ignition period, and the air supply amount is gradually increased (the air release amount is gradually decreased) during that period to a predetermined value. - Control the ratio. That is, as shown in the functional block diagram of FIG. 3, the output control means 32 includes air release amount setting means 35,
It has a timer 36, an increase correction means 37, and a drive pulse output means 38, and during the ignition period, the timer 36 operates the increase correction means 37 to set the air release amount setting means 35.
The amount of air escaping set by is corrected by increasing the amount of air escaping, and the amount of air escaping is corrected by decreasing the correction coefficient over time to gradually decrease the amount of air escaping, and the control value of the corrected amount of air escaping is sent to the drive pulse output means 38. Then, drive pulses having a control pattern as shown in FIG. 4 are outputted to the air relief valve 17. Note that the air relief valve 17 opens when it is ON and closes when it is OFF.

制御装置30の実際のハードウェア構成は第5図に示す
通りであり、図中40はCPU、41はメモリー、42
はインタフェース用のPI3である。
The actual hardware configuration of the control device 30 is as shown in FIG. 5, where 40 is a CPU, 41 is a memory, and 42 is a CPU.
is the PI3 for the interface.

入力側には、アナログデータをデジタルデータに変換す
るA/D変換器43と、複数の入力信号のうち1つを選
択的にA/D変換器43の入力とするマルチプレクサ4
4とが設けられる。入力信号は、回転数センサ18から
のパルス信号、負荷センサ19からのアナログ電圧、差
圧センサ21からのアナログ電圧、温度センサ24及び
25からのアナログ電圧であり、これらはマルチプレク
サ44へ入力される。
On the input side, there is an A/D converter 43 that converts analog data into digital data, and a multiplexer 4 that selectively inputs one of a plurality of input signals to the A/D converter 43.
4 is provided. The input signals are a pulse signal from the rotation speed sensor 18, an analog voltage from the load sensor 19, an analog voltage from the differential pressure sensor 21, and an analog voltage from the temperature sensors 24 and 25, which are input to the multiplexer 44. .

但し、回転数センサ18からのパルス信号はアナログ電
圧に変換するためF/V変換器45を介してマルチプレ
クサ44へ入力される。
However, the pulse signal from the rotation speed sensor 18 is input to the multiplexer 44 via the F/V converter 45 in order to convert it into an analog voltage.

CPU40は、第7図のフローチャー1・に基づくプロ
グラムに従って動作し、適宜PIO42を介して、マル
チプレクサ44へのチャンネル指示、A/D変換器43
へのスタート指示を行い、A/D変換器43からの変換
終了を示すEOC信号を受けた後、デジタル変換された
データを読込むようになって   ゛いる。尚、フロー
チャートについては後述する。
The CPU 40 operates according to a program based on flowchart 1 in FIG.
After receiving the EOC signal indicating the end of conversion from the A/D converter 43, the digitally converted data is read. Note that the flowchart will be described later.

出力側には、CPU40からPIO42を介しての出力
指令によりグロープラグ8、燃料ポンプ11及び空気供
給用切換弁14をそれぞれオンオフ制御するためのスイ
ッチ回路46.47.48が設けられる。
On the output side, switch circuits 46, 47, and 48 are provided for controlling on/off the glow plug 8, fuel pump 11, and air supply switching valve 14, respectively, based on output commands from the CPU 40 via the PIO 42.

また、燃料制御弁12を作動させるために、矩形波発振
器49、ゲート50及び増幅器51が設けられる。
Further, in order to operate the fuel control valve 12, a square wave oscillator 49, a gate 50, and an amplifier 51 are provided.

ここで、ゲート50はCPU40からPI042を介し
ての出力指令により燃料ポンプ11の作動と同期して開
き、矩形波発振器49がらの矩形波を増幅器51に入力
して増幅させ、デユーティ−比一定の駆動パルスを燃料
制御弁12に与える。更に、空気逃し弁17を作動させ
るために、三角波発振器52、ゲート53、D/A変換
器54、比較器55及び増幅器56が設けられる。ここ
で、ゲート53は空気供給用切換弁14の作動と同期し
て開き、三角波発振器52がらの三角波を比較器55に
入力させる。また、D/A変換器54はCPU40から
PIO42を介して出力される空気逃し量の制御値のデ
ジタルデータをアナログ電圧に変換して比較器55に入
力させる。これにより、第6図に示されるように、比較
器55はD/A変換器54からのアナログ電圧(スライ
スレベル)によってパルス幅を制御された信号を出力し
、増幅器56を介して空気逃し弁17に駆動パルスを与
える。
Here, the gate 50 is opened in synchronization with the operation of the fuel pump 11 by an output command from the CPU 40 via the PI 042, and the rectangular wave from the rectangular wave oscillator 49 is input to the amplifier 51 and amplified, and the duty ratio is constant. A driving pulse is applied to the fuel control valve 12. Further, in order to operate the air relief valve 17, a triangular wave oscillator 52, a gate 53, a D/A converter 54, a comparator 55 and an amplifier 56 are provided. Here, the gate 53 opens in synchronization with the operation of the air supply switching valve 14, and the triangular wave from the triangular wave oscillator 52 is inputted to the comparator 55. Further, the D/A converter 54 converts the digital data of the air release amount control value outputted from the CPU 40 via the PIO 42 into an analog voltage, and inputs the analog voltage to the comparator 55 . As a result, as shown in FIG. 6, the comparator 55 outputs a signal whose pulse width is controlled by the analog voltage (slice level) from the D/A converter 54, and the signal is sent to the air relief valve via the amplifier 56. A driving pulse is given to 17.

次に第7図のフローチャートを参照しつつ作用を説明す
る。
Next, the operation will be explained with reference to the flowchart in FIG.

再生時期検知手段31の機能はフローチャートの31に
相当し、トラップ3における微粒子の捕集量が所定量に
達して再生′時期となったか否かの判定を行う。詳しく
は、回転数N、負荷り及び差圧ΔPを読込み、回転数N
と負荷りとからこれらに応じて予め定められている差圧
の限界値f  (N。
The function of the regeneration time detection means 31 corresponds to 31 in the flowchart, and determines whether the amount of particles collected in the trap 3 has reached a predetermined amount and it is time for regeneration. For details, read the rotation speed N, load and differential pressure ΔP, and set the rotation speed N.
The limit value of the differential pressure f (N.

L)をテーブルルックアンプし、差圧ΔPと限界値f 
 (N、L)とを比較することにより、差圧ΔPが限界
値f  (N、L)以上のときに再生時期であると判定
する。
L) is table-look-amplified and the differential pressure ΔP and limit value f
(N, L), it is determined that it is time for regeneration when the differential pressure ΔP is equal to or greater than the limit value f (N, L).

このようにして再生時期検知手段31により再生時期で
あると検知されたときは、再生開始信号が発せられ、こ
れにより出力制御手段32がバーナー用の各機器を作動
させてトラップ3の再生を開始する。これがフローチャ
ートのS2〜S4に相当する。詳しくは、先ずグロープ
ラグ8をオン(S2)にし、一定時間ディレィ (S3
)して、着火に必要な温度まで上昇させた後、燃料ポン
プ11及び燃料制御弁12を作動させて燃料の供給を開
始すると共に、空気供給用切換弁14及び空気逃し弁1
7を作動させて空気の供給を開始する(S4)。
In this way, when the regeneration time detection means 31 detects that it is the regeneration time, a regeneration start signal is issued, and the output control means 32 starts regeneration of the trap 3 by operating each device for the burner. do. This corresponds to S2 to S4 in the flowchart. For details, first turn on the glow plug 8 (S2), and then wait for a certain period of time (S3).
) to raise the temperature to the level required for ignition, the fuel pump 11 and fuel control valve 12 are operated to start supplying fuel, and the air supply switching valve 14 and air relief valve 1 are activated.
7 to start supplying air (S4).

これにより、バーナー4の混合気導管6から燃料と空気
との混合気が噴出し、逆流式蒸発筒7を介して燃焼筒5
内に送り込まれる。このとき、グロープラグ8の熱で着
火し、燃焼を開始する。
As a result, a mixture of fuel and air is ejected from the mixture conduit 6 of the burner 4 and passes through the backflow type evaporator tube 7 to the combustion tube 5.
sent inside. At this time, the heat of the glow plug 8 ignites and starts combustion.

この際、燃料制御弁12に対してはデユーティ−比一定
の駆動パルスが与えられ、燃料供給量は一定に制御され
るが、空気逃し弁17に対しては予め定められたパター
ンでデユーティ−比を制御された駆動パルスが与えられ
、これに基づいて空気逃し量したがって空気供給量が制
御される。
At this time, a driving pulse with a constant duty ratio is applied to the fuel control valve 12, and the fuel supply amount is controlled to be constant, but the duty ratio is applied to the air relief valve 17 in a predetermined pattern. A controlled drive pulse is given, and based on this, the amount of air escape and therefore the amount of air supplied is controlled.

すなわち、出力制御手段32の空気逃し量設定手段35
による空気逃し量の設定値が、再生開始直後にはタイマ
ー36により規定される時間、増量補正手段37により
増量補正され、かつその時間内で時間経過と共に漸減す
るよう補正されて、駆動パルス出力手段38から空気逃
し弁17に対し第4図に示したような制御パターンで駆
動パルスが出力される。これがフローチャー1−のS5
.S6に相当する。
That is, the air release amount setting means 35 of the output control means 32
Immediately after the start of regeneration, the set value of the air release amount is increased by the increase correction means 37 for a time specified by the timer 36, and is corrected so that it gradually decreases as time passes within that time, and the drive pulse output means Drive pulses are output from 38 to the air relief valve 17 in a control pattern as shown in FIG. This is S5 of flowchar 1-
.. Corresponds to S6.

したがって、再生開始直後の空気逃し弁17による空気
逃し量が大となり、時間と共に漸減する。
Therefore, the amount of air released by the air release valve 17 immediately after the start of regeneration becomes large, and gradually decreases with time.

逆にみれば、再生開始直後の空気供給量が小となり、時
間と共に漸増する。空燃比でみれば、再生開始直後か濃
く、時間と共に薄くなって適正値となる。
Conversely, the amount of air supplied is small immediately after the start of regeneration, and gradually increases over time. Looking at the air-fuel ratio, it is rich right after the start of regeneration, and becomes leaner over time until it reaches an appropriate value.

このように再生開始直後の空燃比か濃くなることによっ
て、着火を確実かつ速やかに行わせることができる。ま
た、空気供給量が少なくなると、空気による冷却が少な
くなるので、このことによっても着火性能を改善できる
In this way, by increasing the air-fuel ratio immediately after the start of regeneration, ignition can be performed reliably and quickly. Furthermore, when the air supply amount decreases, cooling by air decreases, and this also improves ignition performance.

そして、再生開始から所定時間経過すると、タイマー3
6による増量補正手段37の作動が終了し、以降は空気
供給量も一定に制御されて適正空ahヒとなる。また、
グロープラグ8はオフとなる(フローチャートではS7
)。
Then, when a predetermined period of time has elapsed from the start of playback, the timer 3
The operation of the increase correction means 37 according to step 6 is completed, and thereafter the air supply amount is also controlled to be constant, and the air supply becomes appropriate. Also,
The glow plug 8 is turned off (S7 in the flowchart).
).

このようにしてバーナー4での着火がなされて燃焼が開
始されると、この燃焼熱により燃焼筒5内に流入する排
気を加熱する。そして、この加熱された排気がl−ラ・
ノブ3内を通過することGこより、トラップ3に捕集さ
れている微粒子が燃焼し焼却される。
When the burner 4 is ignited and combustion starts in this way, the combustion heat heats the exhaust gas flowing into the combustion tube 5. Then, this heated exhaust gas
By passing through the knob 3, the particulates collected in the trap 3 are combusted and incinerated.

この間においては、着火検知手段33による着火の有無
の検知と、再生停止用タイマー344こよる再生時間の
監視とが行われる。これがフローチャートの38.39
に相当し、S8で排気温度T o 。
During this period, the ignition detection means 33 detects whether or not there is ignition, and the regeneration stop timer 344 monitors the regeneration time. This is 38.39 of the flowchart
corresponds to the exhaust temperature T o in S8.

T1を読込んでそれらの温度差TI−Tθが例えば10
0℃以上であるか否かを判定し、100’C以上であれ
ば着火しているものとみなして、次Gこ進み、S9で所
定の再生時間が経過したか否かを判定し、時間内であれ
ば、S8へ戻ってこれらの判定を繰り返す。
Read T1 and find out that the temperature difference TI-Tθ is, for example, 10
It is determined whether or not the temperature is 0°C or higher, and if it is 100°C or higher, it is assumed that the ignition has occurred, and the process proceeds to the next G. In S9, it is determined whether or not a predetermined regeneration time has elapsed, and the If it is, the process returns to S8 and these determinations are repeated.

温度差T+  Toが100℃に達しなし)場合(よ、
着火検知手段33によって未着火又は失火と判断され、
着火検知手段33から出力制御手段32に再生中止信号
か発せられ、これにより燃料ポンプ11、燃料制御弁1
2、空気供給用切換弁14及び空気逃し弁17の作動が
停止される。これがフローチャートのSllに相当する
If the temperature difference T + To does not reach 100℃ (yo,
The ignition detection means 33 determines that there is no ignition or misfire,
A regeneration stop signal is issued from the ignition detection means 33 to the output control means 32, and as a result, the fuel pump 11 and the fuel control valve 1
2. The operation of the air supply switching valve 14 and the air relief valve 17 is stopped. This corresponds to Sll in the flowchart.

所定の再生時間が経過した場合に、再生停止用タイマー
34から出力制御手段32に再生停止信号が発せられ、
これにより燃料ポンプ11、燃料制御弁12、空気供給
用切換弁14及び空気逃し弁17の作動か停止される。
When a predetermined playback time has elapsed, a playback stop signal is issued from the playback stop timer 34 to the output control means 32,
As a result, the operation of the fuel pump 11, fuel control valve 12, air supply switching valve 14, and air relief valve 17 is stopped.

これがフローチャートのSIOに相当する。これにより
再生が終了する。
This corresponds to SIO in the flowchart. This ends the playback.

尚、この実施例では燃料供給量を一定とし空気供給量を
減少させて空燃比を濃くするようにしたが、逆に空気供
給量を一定とし燃料供給量を増大させて空燃比を濃くす
るようにしてもよい。但し、空気供給量を減少させる方
が空気による冷却が少なくなるので着火性の改善に好適
である。
In this embodiment, the fuel supply amount is kept constant and the air supply amount is decreased to make the air-fuel ratio richer. However, it is also possible to keep the air supply amount constant and increase the fuel supply amount to make the air-fuel ratio richer. You can also do this. However, reducing the amount of air supplied is more suitable for improving ignitability since cooling by air is reduced.

また、燃料供給量及び空気供給量を回転数、負荷等の運
転条件に応じて制御する場合には、運転条件に応じて決
定される燃料供給量又は空気供給量を補正するようにす
ればよい。
In addition, when controlling the fuel supply amount and air supply amount according to operating conditions such as rotation speed and load, it is sufficient to correct the fuel supply amount or air supply amount determined according to the operating conditions. .

以上説明しように本発明によれば、バーナーの作動開始
直後の着火期間中にその初めの空iJtを濃くし、時間
経過と共に薄くして適正空燃比に移行させるように制御
することとしたため、着火を確実かつ速やかに行わせる
ことができるという効果が得られる。
As explained above, according to the present invention, the initial air iJt is concentrated during the ignition period immediately after the start of burner operation, and is controlled to become thinner with the passage of time to shift to the appropriate air-fuel ratio. The effect is that the process can be performed reliably and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は第1
図における制御装置の機能ブロック図、第3図は第2図
における出力制御手段中の空気逃し弁制御部の機能ブロ
ック図、第4図は空気逃し弁への駆動パルスの信号波形
図、第5図は同上の制御装置のハードウェア構成図、第
6図は第5図における空気逃し弁制御部の信号波形図、
第7図は同上の制御装置のフローチャートである。 1・・・ディーゼル機関  2・・・排気通路3・・・
トラップ  4・・・バーナー  8・・・グロープラ
グ  11・・・燃料ポンプ  12・・・燃料制御弁
13・・・エアポンプ  14・・・空気供給用切換弁
17・・・空気逃し弁  3o・・・制御装置特許出願
人  日産自動車株式会社 代理人  弁理士 笹 島 冨二雄
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is a functional block diagram of the air relief valve control section in the output control means in FIG. 2, FIG. 4 is a signal waveform diagram of the drive pulse to the air relief valve, and FIG. The figure is a hardware configuration diagram of the same control device as above, and Figure 6 is a signal waveform diagram of the air relief valve control section in Figure 5.
FIG. 7 is a flowchart of the above control device. 1...Diesel engine 2...Exhaust passage 3...
Trap 4... Burner 8... Glow plug 11... Fuel pump 12... Fuel control valve 13... Air pump 14... Air supply switching valve 17... Air relief valve 3o... Control device patent applicant Nissan Motor Co., Ltd. Patent attorney Fujio Sasashima

Claims (1)

【特許請求の範囲】[Claims] 排気通路に介装されて排気中の微粒子を捕集するトラッ
プと、トラップの上流に設けられるトラップ再生用バー
ナーと、バーナーの作動を制御する制御装置とを備える
内燃機関において、バーナー′″′ニヤ動開始直後の着
火期間中にバーナーへの燃料供給量又は空気供給量の少
なくとも一方を制御して、前記期間の初めの空燃比を濃
くし時間経過と共に薄くして適正空燃比に移行させる空
燃比制御手段を設けたことを特徴とする内燃機関におけ
る排気微粒子捕集用トラップの再生用バーナーの制御装
置。
In an internal combustion engine that is equipped with a trap that is installed in an exhaust passage to collect particulates in the exhaust, a burner for regenerating the trap that is installed upstream of the trap, and a control device that controls the operation of the burner, An air-fuel ratio in which at least one of the fuel supply amount or air supply amount to the burner is controlled during the ignition period immediately after the start of the operation, so that the air-fuel ratio at the beginning of the period is enriched and becomes thinner with the passage of time to shift to an appropriate air-fuel ratio. 1. A control device for a burner for regenerating a trap for collecting exhaust particulates in an internal combustion engine, characterized in that the control device is provided with a control means.
JP58030976A 1983-02-28 1983-02-28 Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine Granted JPS59158310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030976A JPS59158310A (en) 1983-02-28 1983-02-28 Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030976A JPS59158310A (en) 1983-02-28 1983-02-28 Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59158310A true JPS59158310A (en) 1984-09-07
JPH0432925B2 JPH0432925B2 (en) 1992-06-01

Family

ID=12318685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030976A Granted JPS59158310A (en) 1983-02-28 1983-02-28 Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59158310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030413A (en) * 1983-07-29 1985-02-16 Mitsubishi Motors Corp Regenerating device of microparticulate filter for diesel-engine
JPS60104710A (en) * 1983-11-09 1985-06-10 Hitachi Ltd Purifying device for exhaust of diesel engine
WO2010040923A1 (en) * 2008-10-10 2010-04-15 Jean-Claude Fayard Burner for the regeneration of internal combustion engine particle filters and the heating of the catalytic system and exhaust line incorporating such a burner
WO2013105437A1 (en) * 2012-01-12 2013-07-18 日野自動車 株式会社 Engine exhaust purification device
JP2013160144A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Method of determining ignition/misfire of fuel and exhaust heating device
KR101539130B1 (en) * 2008-07-10 2015-07-23 히다찌 겐끼 가부시키가이샤 Construction machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124653A (en) * 1980-03-04 1981-09-30 Nippon Soken Inc Carbon particle removing apparatus for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124653A (en) * 1980-03-04 1981-09-30 Nippon Soken Inc Carbon particle removing apparatus for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030413A (en) * 1983-07-29 1985-02-16 Mitsubishi Motors Corp Regenerating device of microparticulate filter for diesel-engine
JPS60104710A (en) * 1983-11-09 1985-06-10 Hitachi Ltd Purifying device for exhaust of diesel engine
KR101539130B1 (en) * 2008-07-10 2015-07-23 히다찌 겐끼 가부시키가이샤 Construction machine
WO2010040923A1 (en) * 2008-10-10 2010-04-15 Jean-Claude Fayard Burner for the regeneration of internal combustion engine particle filters and the heating of the catalytic system and exhaust line incorporating such a burner
FR2937083A1 (en) * 2008-10-10 2010-04-16 Jean Claude Fayard BURNER FOR THE REGENERATION OF INTERNAL COMBUSTION ENGINE PARTICLE FILTERS AND CATALYTIC SYSTEM TEMPERATURE AND EXHAUST LINE INTEGRATING SUCH A BURNER
FR2937082A1 (en) * 2008-10-10 2010-04-16 Jean Claude Fayard BURNER FOR REGENERATING PARTICLE FILTERS OF INTERNAL COMBUSTION ENGINE AND CATALYTIC SYSTEM TEMPERATURE AND EXHAUST LINE INTEGRATING SUCH BURNER.
WO2013105437A1 (en) * 2012-01-12 2013-07-18 日野自動車 株式会社 Engine exhaust purification device
JP2013160144A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Method of determining ignition/misfire of fuel and exhaust heating device

Also Published As

Publication number Publication date
JPH0432925B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
US8261535B2 (en) Enhanced post injection control system for diesel particulate filters
JPS61123709A (en) Controller for internal-combustion engine provided with exhaust gas particulate emission control function
US20050204731A1 (en) Regeneration of diesel particulate filter
US20040144069A1 (en) Exhaust gas purifying system
US8539759B2 (en) Regeneration control system for a particulate filter
JP2004353529A (en) Exhaust emission control system
JP2007040221A (en) Exhaust emission control device
JPS59153914A (en) Regenerative burner control device in exhaust particle trap in internal-combustion engine
JPS59158310A (en) Regenerative burner controller for micro exhaust particle catching trap for internal-combustion engine
JPS62162762A (en) Exhaust gas purifier for diesel engine
JPH04308309A (en) Particulate filter regenerative device of diesel engine
KR20160050201A (en) Apparatus and method for regenerating diesel particular matter filter
JPS59134315A (en) Regenerating burner controller for exhaust particle collecting trap in internal-combustion engine
JPS59147814A (en) Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine
JPS6320805Y2 (en)
JPS60216018A (en) Regenerating device for diesel particulate trap member
JPH0324819Y2 (en)
JPS59147813A (en) Regenerating burner control device for trap collecting exhaust fine particle in internal-combustion engine
JPS6337471Y2 (en)
JPS59155522A (en) Control device of burner for regenerating exhaust particulate collecting trap in internal-combustion engine
JPH04255518A (en) Exhaust particulate collector for internal combustion engine
JPH0461165B2 (en)
JPH0478809B2 (en)
JPH0673310U (en) Exhaust gas purification device for diesel engine
JPS6141940Y2 (en)