JPS59147634A - Formation of insulating film - Google Patents
Formation of insulating filmInfo
- Publication number
- JPS59147634A JPS59147634A JP58020508A JP2050883A JPS59147634A JP S59147634 A JPS59147634 A JP S59147634A JP 58020508 A JP58020508 A JP 58020508A JP 2050883 A JP2050883 A JP 2050883A JP S59147634 A JPS59147634 A JP S59147634A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- insulating film
- evaporation
- gas
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
1、産業上の利用分野
本発明は絶縁膜の形成方法に関し、例えばフォトルミネ
ッセンス特性を示しかつエレクトロルミネッセンス(e
lectroluminescence :以下、E
Lと称する)等の発光素子や太陽電池、フォトセンサー
等に使用可能な絶縁膜の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION 1. Industrial Application Field The present invention relates to a method for forming an insulating film.
electroluminescence: hereinafter referred to as E
The present invention relates to a method for forming an insulating film that can be used in light emitting devices such as (referred to as L), solar cells, photosensors, and the like.
2、従来技術
固体膜に電界を加えることによって電気玉名ルギーを光
エネルギーに変換する方法(EL)ぼ、これまで種々行
なわfしてきており、ディスプレー、EL式子テレビジ
ョン受像機の如き多岐の用途に応用されつつある。例え
ば、U−vt族化合物半導体であるZnS0M1li中
にMnをアクチヘータ(発光中心)として混入せしめた
螢光体薄膜かしられている。この螢光体薄膜を発光体と
するEI。2. Prior art The method of converting electric energy into light energy by applying an electric field to a solid film (EL) has been carried out in various ways, and has a wide variety of applications such as displays and EL television receivers. It is being applied to For example, a phosphor thin film has been produced in which Mn is mixed as an actiheter (luminescence center) into ZnS0M1li, which is a U-vt group compound semiconductor. EI uses this phosphor thin film as a light emitter.
素子は、輝度が高く、寿命も良く、安定して作られるよ
うになってきた。Elements have become highly luminous, have a long lifespan, and can be manufactured stably.
しかしならがら、本発明者が検討を加えた結果、上記の
ELJ子は、特にその絶縁膜について形成方法から生じ
る問題点があることがAl1明した。However, as a result of studies conducted by the present inventors, it has become clear that the above-mentioned ELJ element has problems arising from the formation method, particularly regarding its insulating film.
一般に、IE L素子の絶縁膜(例えばY2O5)は電
圧印加時の絶縁破壊を防ぐ目的で基板と発光層との間に
設けられるが、・その形成方法としては、電?
子ビーム加熱によりY2O5を蒸発せしめて基板上に蒸
着する方法が知られている。その他、絶縁膜の形成には
RFスパッタ法(Ta205、Ba Ti 05、S
i5 N、 S i OJ’A形成用)又は反応性ス
パッタ法(Hf ○7、Pb Ti Oう膜形成用)等
の種々の方法がある。しかしながら、公知の方法はいず
れも、得られた酸化膜ば酸化度が不充分であり、化学量
論的にずれた組成を有したものとなっているから、絶縁
破壊し易いという欠点がある。また、スパッタ法による
場合、多層構造の素子の製造工程時にます下層の股を蒸
着法で成膜した後、蒸着槽から一旦取出してスパッタ装
置に入れて処理することがあるが、スパッタ装置に入れ
る前に外気に触れることから表面に不純物が吸着してし
まい、ピンホールが発生する原因となる。又、スパッタ
による膜自体も充分な膜とはいえない。Generally, an insulating film (for example, Y2O5) of an IEL element is provided between a substrate and a light emitting layer in order to prevent dielectric breakdown when a voltage is applied. A method is known in which Y2O5 is vaporized by laser beam heating and deposited on a substrate. In addition, RF sputtering method (Ta205, BaTi05, S
There are various methods such as i5N, SiOJ'A formation) or reactive sputtering method (Hf○7, PbTiO film formation). However, all of the known methods have the drawback that the obtained oxide film has an insufficient degree of oxidation and has a stoichiometrically deviated composition, making it susceptible to dielectric breakdown. In addition, when using the sputtering method, after the lower layer is formed by vapor deposition during the manufacturing process of a multilayered element, it may be taken out of the vapor deposition tank and placed in a sputtering device for processing. Since it is exposed to the outside air beforehand, impurities are adsorbed on the surface, causing pinholes. Further, the sputtered film itself cannot be said to be a sufficient film.
3、発明の目的
本発明の目的は、均質で絶縁破壊し芹い絶縁膜を形成で
きる方法を提供するごとにある。3. OBJECTS OF THE INVENTION An object of the present invention is to provide a method capable of forming a homogeneous insulating film with dielectric breakdown and sharp edges.
4、発明の構成
即ち、本発明による方法は、イオン化又は活性化された
酸化性ガス(特に酸素)を供給した状態で、酸化物(例
えばY2O5)又は金属(例えばAe)からなる范着材
料を蒸発せしめて被蒸着基体上に蒸着させ、これによっ
て酸化物(例えばY2O5又はAe205)からなる絶
縁膜を形成することを特徴とするものである。4. Structure of the invention, that is, the method according to the present invention is to apply a coating material made of an oxide (e.g., Y2O5) or a metal (e.g., Ae) while supplying an ionized or activated oxidizing gas (particularly oxygen). The method is characterized in that it is evaporated and deposited on a substrate to be evaporated, thereby forming an insulating film made of an oxide (for example, Y2O5 or Ae205).
5、実施例 以下、本発明の実施例を図面について詳細に説明する。5. Examples Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
まず第1図について、E L、素子を蒸着法で形成ずた
めの真空蒸着装置の一例を説明する。金属製のペルジャ
ー1内において、基板4を上方に配し、その下方にZn
Si発源7、Mn”iM発源8、Y205蒸発源9、
I TO(I ndium Tin0xide)蒸発源
10を夫々配しおく SL、、32% S3、別は各シ
ャッタである。但、各蒸発源の加熱手段は図示省略した
。First, with reference to FIG. 1, an example of a vacuum evaporation apparatus for forming EL elements by a evaporation method will be described. Inside the metal Pelger 1, the substrate 4 is arranged above, and the Zn is placed below it.
Si source 7, Mn"iM source 8, Y205 evaporation source 9,
ITO (Indium TinOxide) evaporation sources 10 are respectively arranged. SL, 32% S3, and each shutter are different. However, heating means for each evaporation source is omitted from illustration.
そして、ベルシャー1内を9 X 10Torrに真空
に引きながら基板4をヒーター5で150°C程度に加
工41する一力、まず遊発源9を加熱し、シャックS5
を開けてY2O5上記を基板4に向がって60人/mi
nの速度で飛ばず。これと同時に、ヘルジャー
1の側壁に配されたガス導入管11からイオン化又
は活性化された02を供給する。この酸素イオン又は活
性酸素は、導入管11に設けたガス放電管14(周波数
13.56 MHz、300 W)に酸素13を導入し
、ガス放電管14での放電によってイオン化又は活性化
させる。Then, while evacuating the inside of the Belshah 1 to 9 x 10 Torr, the substrate 4 is processed to about 150°C with the heater 5. First, the free emission source 9 is heated, and the shack S5
Open the Y2O5 above towards the board 4 and 60 people/mi
It does not fly at a speed of n. At the same time, Herjar
Ionized or activated 02 is supplied from a gas introduction pipe 11 arranged on the side wall of 1. Oxygen 13 is introduced into a gas discharge tube 14 (frequency 13.56 MHz, 300 W) provided in the introduction tube 11, and the oxygen ions or active oxygen are ionized or activated by discharge in the gas discharge tube 14.
なお、図中の2はバタフライバルブ、3は真空ボY2O
5からなる絶縁膜(膜厚は例えば2000人)を形成で
きる。この絶縁膜の膜厚は500Å以上(望ましくは1
500〜4000人)あればよいが、厚すぎると後記E
L素子のしきい値電圧が上り、また薄すぎると絶縁破壊
し易(なる。この絶縁膜は従来法には見られない優れた
特性を有したものとなっている。即ち、蒸発源9からY
2O3を飛ばず一方、導入管11から供給される酸素は
イオン化又は活性化されているために、酸素は反応性が
高くなっていて蒸発物質と効率良(反応する。In addition, 2 in the figure is a butterfly valve, and 3 is a vacuum valve Y2O.
An insulating film (with a film thickness of, for example, 2,000 layers) consisting of 5 layers can be formed. The thickness of this insulating film is 500 Å or more (preferably 1
500 to 4000 people) is fine, but if it is too thick, please refer to E below.
The threshold voltage of the L element increases, and if it is too thin, dielectric breakdown is likely to occur.This insulating film has excellent properties not found in conventional methods. Y
On the other hand, since the oxygen supplied from the introduction pipe 11 is ionized or activated, the reactivity of the oxygen is high and it efficiently reacts with the evaporated substance.
従って、得られたY2O5膜は充分に酸化され、その組
成はほぼ化学量的組成となる。酸素の供給量ばペルジャ
ー内の真空度が9 X 10Torrとなるように設定
してよいが、10〜10Torrの範囲であれば充分な
酸化度が得られる。Therefore, the obtained Y2O5 film is sufficiently oxidized and its composition becomes approximately stoichiometric. The amount of oxygen supplied may be set so that the degree of vacuum in the Pel jar becomes 9 x 10 Torr, but a sufficient degree of oxidation can be obtained if the amount is in the range of 10 to 10 Torr.
上記ガス放電管14は高周波放電管として構成するのが
望ましく、例えば第2図、第3図の如くに構成される。The gas discharge tube 14 is preferably constructed as a high-frequency discharge tube, for example as shown in FIGS. 2 and 3.
第2図の高周波放電管は、酸素ガスを流すガラス製の導
入管11と、この酸素導入管11の外周囲を包囲する如
くに設けた冷却用外套管33 (されには冷却水20が
通される)と、こ外套管33の外周面に巻かれた放電電
極31.32とを含む。The high-frequency discharge tube shown in FIG. 2 includes an introduction tube 11 made of glass through which oxygen gas flows, and a cooling jacket tube 33 provided to surround the outer periphery of the oxygen introduction tube 11 (and a cooling water tube 33 through which cooling water 20 flows). ) and discharge electrodes 31 and 32 wound around the outer circumferential surface of the mantle tube 33.
そして、放電領域36における酸素ガス圧が10Tor
r以下に維持された状態で、高周波電源34からの電圧
によって放電電極31と32との間に放電が生起せしめ
られる。ごれによって、酸素ガスの一部分が放電領域3
6内で電離して酸素イオン又は活性酸素が生成し、これ
が導入口21よりペルジャー1内へ導入される。冷却用
外套管33には、冷却水20が流過せしめられ、過熱状
態となることが防止される。上記放電電極31.32ば
夫々リンク状電極であり、両電極の間隔は0.5〜5
cm各内径は2〜10Cmφか適当である。また、放電
管に印加される高周波電圧34頁RF電圧)は任意の高
周波が選択できるか、例えは13.56 MHzの周波
数、100W〜2KW(好まし2くは300W程度)の
出力とすることができる。第3図の高周波放電・管では
、放電電極35は、冷却用外套管33の外周に設けたコ
イル状の電極からなり、コイル内径は2cmφ〜20c
mφが適当である。Then, the oxygen gas pressure in the discharge region 36 is 10 Torr.
A discharge is caused between the discharge electrodes 31 and 32 by the voltage from the high frequency power supply 34 while the voltage is maintained below r. Due to dirt, a portion of the oxygen gas is transferred to the discharge area 3.
6 to generate oxygen ions or active oxygen, which are introduced into the Pelger 1 through the inlet 21. The cooling water 20 is allowed to flow through the cooling jacket tube 33 to prevent it from becoming overheated. The discharge electrodes 31 and 32 are link-shaped electrodes, and the distance between the two electrodes is 0.5 to 5.
The inner diameter of each cm is 2 to 10 cmφ or appropriate. In addition, any high frequency can be selected for the high frequency voltage (RF voltage on page 34) applied to the discharge tube, for example, a frequency of 13.56 MHz and an output of 100 W to 2 KW (preferably around 300 W). I can do it. In the high-frequency discharge tube shown in FIG. 3, the discharge electrode 35 consists of a coil-shaped electrode provided on the outer periphery of the cooling jacket tube 33, and the inner diameter of the coil is 2 cmφ to 20 cm.
mφ is appropriate.
なお、第1図において、排気管3によって酸素放電管1
4からのガス供給とヘルシ゛ヤー1内でのカス消耗量Q
こバランスして排気し、ベルシャー1内を所定の酸素ガ
不分圧に保つ。6は、基板4に近接あるいは接触して設
けた背後電極にバイアス電圧を印加する電源である。背
後電極には直流電圧0〜−1.0にν、あるいは交流電
圧、0〜51(vの範囲の電圧が印加される。5日ヒー
ターであって、例えば20 G ’Cと低/l!11度
範囲に基板4を加熱調整するのに用いられる。In addition, in FIG. 1, the oxygen discharge tube 1 is connected to the exhaust pipe 3.
Gas supply from 4 and waste consumption amount Q in Healthier 1
This is balanced and evacuated to maintain a predetermined oxygen pressure inside the bell shear 1. Reference numeral 6 denotes a power source that applies a bias voltage to a back electrode provided close to or in contact with the substrate 4. A DC voltage in the range of 0 to -1.0 (v) or an AC voltage in the range of 0 to 51 (v) is applied to the rear electrode. It is used to adjust the heating of the substrate 4 to a range of 11 degrees.
第4図、第5図は、上記した方法で形成されたY2O,
膜(図中、41.44で表わず。)を具備したIE L
素子を示す。FIGS. 4 and 5 show Y2O formed by the method described above,
IE L equipped with a membrane (not represented by 41.44 in the figure)
The element is shown.
第4図のEL素子は、ガラス基板4−ヒにまずI゛FO
からなる透明電極43を形成し、この上に絶縁破壊防止
用の厚さ2000人のY2O5層44、厚さ5000へ
の発光層371、絶縁破壊防止用の厚さ2000人のY
205層41、金属電極42を順次被着したものからな
っている。そして、両電極42−43間に電源45を接
続して交流駆動すれば、比較的安定にMn含有Zn S
膜37から高輝度の黄橙色の発光を高効率で得ることが
でき、長寿命のディスプレー用等として好適なものとな
る。ごの素子は勿論、第5図の構造の如くに直流駆動方
式に変更することもできる。The EL element in FIG.
On top of this, a Y2O5 layer 44 with a thickness of 2000 mm to prevent dielectric breakdown, a light emitting layer 371 with a thickness of 5000 mm, and a Y2O5 layer 44 with a thickness of 2000 mm to prevent dielectric breakdown.
205 layers 41 and metal electrodes 42 are sequentially deposited. If the power source 45 is connected between both electrodes 42 and 43 and AC drive is performed, Mn-containing ZnS can be produced relatively stably.
High-intensity yellow-orange light can be obtained from the film 37 with high efficiency, making it suitable for use in long-life displays, etc. Of course, the other elements can be changed to a DC drive system as shown in the structure shown in FIG.
上記のE■−素子によれば、絶縁膜としてのY2O5t
=44.41が上記したよに均質で化学%論的組成を有
しているので、絶縁破壊に充分爾えるものとなっている
。しかも、膜形成時の基板温度か低いために、温度によ
り膜が悪影響を受けることなく形成可能である。According to the above E■-element, Y2O5t as an insulating film
=44.41 is homogeneous and has a stoichiometric composition as described above, so it is sufficient to prevent dielectric breakdown. Moreover, since the substrate temperature during film formation is low, the film can be formed without being adversely affected by temperature.
このため、Y2O3層は充分な絶絹f]圧を示して長。For this reason, the Y2O3 layer exhibits sufficient tension and is long.
寿命化されると共に、欽厚を11すくしても問題かない
ことから駆動時のしきい値か低下ずろことになる。従っ
てこの絶縁層は、EL素子として要求される性能(比誘
電率が大きくて破壊゛電圧が画いごと)を充部分に尚た
すものとなっている。As the service life is extended, there is no problem even if the thickness is reduced by 11, so the threshold value during driving will decrease. Therefore, this insulating layer satisfactorily satisfies the performance required for an EL element (high dielectric constant and high breakdown voltage).
次に、具体的な実験結果を説明する。Next, specific experimental results will be explained.
従来の蒸着法によるY20 JFiと、本発明の方法に
よるY2Oう層とについ才、夫々絶縁破壊電圧E(電界
強度)と比誘電率εとは次の通りであった。The dielectric breakdown voltage E (electric field strength) and dielectric constant ε of Y20 JFi formed by the conventional vapor deposition method and Y2O layer formed by the method of the present invention were as follows.
破壊電界(V / cm ) 比誘電率ε従来法
3.4 X10 8.5本発明
5.2 X]、0 10.2このように、本
発明の方法で形成された11%は破壊に強く、また同−
jψ−さでば絶縁性が向上していることか分る。特、に
、EL累子に用いる場合、E■、素子の発光に要する電
界は10オーク−(特にI X 1. O〜2 X i
OV/cm)であることを8慮すれば、従来法による
膜では電源電圧の変動等によって膜破壊が牛しることが
あるか、本発明による1模はより高い耐圧を有している
ために破壊が十し難くなっている。Breakdown electric field (V/cm) Relative permittivity ε Conventional method
3.4 X10 8.5 Invention
5.2
It can be seen that the insulation properties are improved by looking at jψ−. In particular, when used in an EL device, the electric field required for emitting light from the device is 10 oaks (especially I
OV/cm), it is possible that membranes made using the conventional method may be damaged due to fluctuations in power supply voltage, etc., or that the model 1 according to the present invention has a higher withstand voltage. It has become much harder to destroy.
また、第4図に示した構成の交流駆動方式のE■、素子
について、Y2Oう層として従来法(電子ヒーム加熱に
よるY2O5の蕉着)と本発明によるものとを比較した
ところ、次の結果かiAられた(但、ri’iJ波数5
KIIz)。In addition, when we compared the conventional method (deposition of Y2O5 by heating with electronic heat) and the method according to the present invention for the Y2O layer using the AC drive type E2 element with the configuration shown in Fig. 4, we found the following results. ri'iA was applied (however, ri'iJ wave number 5
KIIz).
しきい値電圧(■) 輝度(カンデラ/腎)従来法
195 714本発明 165
.78.2これによれば、本発明によるE
I7素子はしきい値電圧か低く、かつ発光の輝度も向]
ニしているごとが分る。この輝度については更に、経時
変化を測定したが、従来法による素子では第6図の如く
に時間と共に輝度の劣化を生じるが、本発明による素子
は?(\7図の如く経時変化か殆どないことが分った・
なお、第4図、第5図の素子において、上記ではY2O
5層41.44を本発明による茎着法で形成することに
ついて説明したが、他の各層43.37.42にも同一
の茎着装置で連続約0こ形成することがてさる。即ち、
l 10層43は、第1図のシャッタ=S11を開けて
ITO芸発/J、’:NOから酸素イオン(導入管11
からの)の導入下ITOを蒸着させることによって形成
される。このtrot=43も、Y2051fiと同様
に充分な酸化度を有しているために透明度の良い導電膜
となっている。また、発光層37ば、シャッターS1、
S2を開けてZn S及びMnの各蒸気を飛翔させ、基
板上に共蔑着することによって形成される。このとき基
h’lA度は1.00〜500℃がよく、Mnの范発量
はZn Sに対し0601〜1重量%が望ましい。Threshold voltage (■) Luminance (candela/renal) Conventional method
195 714 Present invention 165
.. 78.2 According to this, E according to the invention
The I7 element has a low threshold voltage and a high luminance of light emission]
I can see that you are doing this. Regarding this luminance, we also measured the change over time, and in the device using the conventional method, the luminance deteriorates over time as shown in Fig. 6, but what about the device according to the present invention? (As shown in Figure 7, it was found that there was almost no change over time.) In addition, in the elements shown in Figures 4 and 5, Y2O
Although it has been described that the five layers 41, 44 are formed by the stem attaching method according to the present invention, it is also possible to continuously form approximately 0 layers of each of the other layers 43, 37, and 42 using the same stem attaching device. That is,
l 10 layer 43 opens the shutter=S11 in FIG.
It is formed by depositing ITO under the introduction of (from). This trot=43 also has a sufficient degree of oxidation like Y2051fi, so it is a conductive film with good transparency. Further, the light emitting layer 37b, the shutter S1,
It is formed by opening S2 to allow Zn, S and Mn vapors to fly out and deposit them together on the substrate. At this time, the basic h'lA degree is preferably 1.00 to 500°C, and the amount of Mn flashing is preferably 0601 to 1% by weight relative to ZnS.
このようGこ、同一の蒸着装置内で、各層を連続形成し
ているために、素子の作成作業が能率向」ニされ、かつ
下層の形成後に上パイを形成するときに装置外へ一旦取
り出すこともないことから不純物による表面汚染の問題
がなくなり、ピンホールの発生もない。In this way, since each layer is formed successively in the same vapor deposition apparatus, the device creation work is made more efficient, and when the upper layer is formed after the lower layer is formed, it is removed from the apparatus once. This eliminates the problem of surface contamination due to impurities and eliminates the occurrence of pinholes.
また、第2図及び第3図に示した高周波放電性は、次の
如き特長を有している。Furthermore, the high frequency discharge properties shown in FIGS. 2 and 3 have the following features.
(↓)、放電部では放電電極31.32を放電領域36
に接しない位置に設けることができる。従って放電時に
電極31.32がボンバードされることはなく、電極材
料がカス中に混入し7て蒸着膜を汚染することがない。(↓), in the discharge part, the discharge electrodes 31 and 32 are connected to the discharge area 36
It can be installed in a position that does not touch the Therefore, the electrodes 31 and 32 are not bombarded during discharge, and the electrode material does not mix into the waste and contaminate the deposited film.
(2)、放電電極31.32をベルシャー外に設けたの
で、上記に加えて電極材料による膜711染の問題が更
に解消され、膜質を著しく安定化することができる。し
かも、電極が蒸着物質の蒸気て汚染されることもなく、
防着手段が全く不要となる。(2) Since the discharge electrodes 31 and 32 are provided outside the bell shear, in addition to the above problem, the problem of staining of the film 711 due to the electrode material is further resolved, and the film quality can be significantly stabilized. Moreover, the electrodes are not contaminated by the vapor of the vapor deposited material.
No anti-fouling measures are required at all.
(3)、加えて、放電電極に対する冷却手段(上記の例
では水冷用外套管)を容易に設けることができ、かつ放
電電極を空冷によって冷却場ることも可能である。(3) In addition, a cooling means for the discharge electrode (in the above example, a water-cooled jacket tube) can be easily provided, and the discharge electrode can also be cooled by air cooling.
(4)、特に公知のRFイオンブレーティング法番J社
べて、放電管ではへルシャー内の真空度に依存すること
なく、充分な量の活性ガスを生ゼし2めることかできる
から、ヘルシャー内の真空度を変えることなく、導入カ
ス量と排気量を調整ずろことにより放電管内のカス、圧
を設定でき、このために放電が安定化する。(4) In particular, with the well-known RF ion blating method, a discharge tube can produce a sufficient amount of active gas without depending on the degree of vacuum in the Hölscher. By adjusting the amount of sludge introduced and the amount of exhaust without changing the degree of vacuum inside the Hölscher, the sludge and pressure inside the discharge tube can be set, thereby stabilizing the discharge.
以上、本発明を例示したが、上述の例は本発明の技術的
思想に基いて更に変形が可能である。Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.
例えば、絶縁膜を形成するための蒸発源として改、上述
のY2O5以外にも、BaTi 05、Ph TiC)
、 A ez○う、 Ta205、 HfO2、S
1 02、 Ti 02、S町艶等の酸化物、Y
、Ba、Pb、A6.Ta。For example, in addition to the above-mentioned Y2O5, BaTi05, PhTiC) can be used as an evaporation source for forming an insulating film.
, Aez○u, Ta205, HfO2, S
1 02, Ti 02, S town oxides, Y
, Ba, Pb, A6. Ta.
Hf 、Ti 、’ Sm等の金属を使用することか
できる。また1、酸化性ガスは酸素だけでなく、例えば
酸素を含んだ、蒸着膜に無害なガス(例えば空気、アル
ゴン等)であってよい。Metals such as Hf, Ti, Sm, etc. can be used. Further, 1. The oxidizing gas is not limited to oxygen, but may be a gas containing oxygen and harmless to the deposited film (for example, air, argon, etc.).
6、発明の効果
本発明は上述の如く、酸化性カスをイオン化又は活性化
して供給しながら酸化物又は金属を蒸着しているので、
酸化反応が充分に進行し、得られた絶縁膜は酸化度が化
学量論的となって充分なものとなる。従って、絶縁耐圧
か向上し、均質性が向上した絶縁膜が得られる。6. Effects of the invention As described above, the present invention deposits oxides or metals while supplying oxidizing scum by ionizing or activating it.
The oxidation reaction progresses sufficiently, and the resulting insulating film has a stoichiometric degree of oxidation. Therefore, an insulating film with improved dielectric strength and improved homogeneity can be obtained.
図面は本発明の実施例を示′3−ものであって、第1図
は蒸着装置の概略断面図、
第2図、第3図は高周波カス放電管の二側の各断面図、
第4図、第5図ばEL素子の二側の各断面図、第6図は
従来法による1= l−素子の輝度の経時変化を示すグ
ラフ、
第7図は本発明の方法によるE L素子の輝度の経時変
化を示すグラフ
である。
なお、図面に示された符号において、
4−−−−−−一基板
7−−−−1 n S蒸発源
3−−M n蒸発源
9’−−−YzO5蒸発源
1、0−−−−−I T O蒸発源
11−−−−一カス導入管
13−・=−酸化性ガス
14−−−−ガス放電管
37−−−−−発光層
41 、4 4−−−一 奢色縁層
42− 電極
43−’−”’−ドVO透明電極
である。
代理人 弁理士 逢 坂 宏(他1名)第4V
第50The drawings show embodiments of the present invention, in which Fig. 1 is a schematic sectional view of a vapor deposition apparatus, Figs. 2 and 3 are sectional views of two sides of a high-frequency scum discharge tube, and 4. Figure 5 is a cross-sectional view of the two sides of the EL element, Figure 6 is a graph showing the change in luminance over time of a 1=l-element according to the conventional method, and Figure 7 is a graph showing the change in luminance over time of the EL element according to the method of the present invention. It is a graph showing a change in luminance over time. In addition, in the symbols shown in the drawings, 4------1 substrate 7--1 n S evaporation source 3--M n evaporation source 9'---YzO5 evaporation source 1, 0-- --I TO evaporation source 11 --- One waste introduction tube 13 --- Oxidizing gas 14 --- Gas discharge tube 37 --- Light emitting layer 41, 4 4 --- One Dark color Edge layer 42- Electrode 43-'-"'-do VO transparent electrode. Agent: Patent attorney Hiroshi Aisaka (and 1 other person) 4th V 50th
Claims (1)
態で、酸化物又は金属からなる蒸着材料を楚発せしめて
被芸着基体上に蒸着させ、これによって酸化物からなる
絶縁膜を形成することを特徴とする絶縁膜の形成方法。 2、酸化性ガスをイオン化又は活性化するために高周波
放電管を特徴する特許請求の範囲の第1項に記載した方
法。[Scope of Claims] 1. While supplying an ionized or activated oxidizing gas, a vapor deposition material made of an oxide or metal is evaporated onto a substrate to be deposited, thereby making a vapor deposition material made of an oxide A method for forming an insulating film, the method comprising forming an insulating film. 2. The method according to claim 1, characterized by a high frequency discharge tube for ionizing or activating the oxidizing gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58020508A JPS59147634A (en) | 1983-02-09 | 1983-02-09 | Formation of insulating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58020508A JPS59147634A (en) | 1983-02-09 | 1983-02-09 | Formation of insulating film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59147634A true JPS59147634A (en) | 1984-08-24 |
Family
ID=12029100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58020508A Pending JPS59147634A (en) | 1983-02-09 | 1983-02-09 | Formation of insulating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59147634A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62160694A (en) * | 1986-01-08 | 1987-07-16 | 株式会社小松製作所 | Thin film el device and manufacture of the same |
-
1983
- 1983-02-09 JP JP58020508A patent/JPS59147634A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62160694A (en) * | 1986-01-08 | 1987-07-16 | 株式会社小松製作所 | Thin film el device and manufacture of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0977469B1 (en) | Improved transparent, flexible permeability barrier for organic electroluminescent devices | |
TWI434420B (en) | Thin film transistors using thin film semiconductor materials | |
US7977255B1 (en) | Method and system for depositing a thin-film transistor | |
JP4889195B2 (en) | Gas barrier transparent resin substrate, flexible display element using gas barrier transparent resin substrate, and method for producing gas barrier transparent resin substrate | |
US4842705A (en) | Method for manufacturing transparent conductive indium-tin oxide layers | |
JP2007290916A (en) | Oxide sintered compact, transparent oxide film, gas barrier transparent resin substrate, gas barrier transparent conductive resin substrate and flexible display element | |
KR20070050143A (en) | Methods for fabricating transparent conductive oxide electrode | |
JPH08197676A (en) | Method and equipment for manufacturing plastic film with barrier layer | |
JP2005340225A (en) | Organic el device | |
JP3719797B2 (en) | Method for forming conductive thin film on organic thin film surface | |
JPS59147634A (en) | Formation of insulating film | |
JP2001326071A (en) | Manufacturing method of passivation film for organic led element | |
WO2006043333A1 (en) | Gas barrier transparent resin substrate, method for manufacture thereof, and flexible display element using gas barrier transparent resin substrate | |
JPS5824915B2 (en) | Thin film EL element | |
JPS62287074A (en) | Roll coater device | |
JPH1083887A (en) | Manufacture of thin-film electroluminescent element | |
JPS6329396B2 (en) | ||
JPS6226869A (en) | Manufacture of photovoltaic device | |
JPS59101795A (en) | Electroluminescence thin film display device | |
JPH1110780A (en) | Transfer arent conductive laminate | |
JP2000111931A (en) | Substrate with ito transparent conductive film and liquid crystal display element using the same | |
JP2002069616A (en) | Production method for thin film of anatase-type titanium oxide | |
CN115679259A (en) | IZO film preparation method and physical vapor deposition equipment | |
JP2009004103A (en) | Manufacturing method of organic light emitting device | |
JPS62185316A (en) | Formation of electrode |