JPS59147605A - Preparation of porous diaphragm for gas separation - Google Patents

Preparation of porous diaphragm for gas separation

Info

Publication number
JPS59147605A
JPS59147605A JP1983283A JP1983283A JPS59147605A JP S59147605 A JPS59147605 A JP S59147605A JP 1983283 A JP1983283 A JP 1983283A JP 1983283 A JP1983283 A JP 1983283A JP S59147605 A JPS59147605 A JP S59147605A
Authority
JP
Japan
Prior art keywords
gas separation
porous
porous diaphragm
diaphragm
alumina sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1983283A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1983283A priority Critical patent/JPS59147605A/en
Publication of JPS59147605A publication Critical patent/JPS59147605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prepare a porous diaphragm of pure alumina having suitable pore size for gas separation and sufficiently high strength by molding and drying a mixture of calcined and uncalcined alumina sol, and calcining the product. CONSTITUTION:A mixture of 25-75wt% calcined alumina sol with residual wt% uncalcined alumina sol is molded and dried; the product is calcined at 500-900 deg.C for 2-24hr to obtain a target porous diaphragm for gas separation. The average pore size of the diaphragm is about 50-300Angstrom . Satisfactory results may be attained when the diaphragm is used for gas separation, for example, selective separation of H2 from a gaseous mixture of H2 and N2.

Description

【発明の詳細な説明】 本発明はガスの分離等に使用する多孔質隔膜の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a porous diaphragm used for gas separation and the like.

金属粉末あるいはセラミック粉末全焼結したり、又はフ
ッ素樹脂等の有機合成樹脂粉末を圧縮成形した多孔質体
音基体とした微小孔径、特に平均数10〜数10OAの
超微細な孔を有する多孔質隔膜を用いて、例えばガス拡
散法によシ気体?分離濃縮する場合、効率よく行うため
には多孔質隔膜全可能な限り薄くすることが必要である
が、強度の点から極端に薄くすることはできない。又、
このような場合には任意の形状に成形することは困難で
あった。
A porous diaphragm with micro pores, especially ultra-fine pores with an average size of several tens to several tens of OA, using a porous body base material made by completely sintering metal powder or ceramic powder, or compression molding organic synthetic resin powder such as fluororesin. For example, by gas diffusion method? When separating and concentrating, it is necessary to make the porous diaphragm as thin as possible in order to perform it efficiently, but from the viewpoint of strength it cannot be made extremely thin. or,
In such cases, it is difficult to mold into any desired shape.

そこで、従来はガス拡散の妨害とならないよう孔径が大
きく、且つ充分の強度を有するように、ある程度の厚み
金有するガス透過性の高い多孔質体、又は金網様のもの
で微細孔會有する薄い多孔質隔膜を補強して多層構造と
する方策等がとられている。
Therefore, in the past, in order to have a large pore size and sufficient strength so as not to interfere with gas diffusion, a porous material with a certain thickness and high gas permeability, or a thin porous material similar to a wire mesh with fine pores was used. Measures have been taken to strengthen the diaphragm and create a multilayer structure.

例えば、多層構造の多孔質膜全管状とするためには各種
の方法があるが、一般にはシート状の多層多孔質隔膜金
円管状に成形加工し、端末をつき合せ溶接あるいは重ね
合せ接着する方法が行われている。しかし、多孔質体が
金属のように柔軟性の高いものでは円管成形も可能であ
るが、セラミックのように柔軟性の無いものでは極めて
困難である。又、多孔質金属では金属であっても多孔質
体であるため、空孔の存在によシ強度が無孔質体に比べ
て低くなり、円管成形可能な曲率半径に限度があυ、細
い管状に成形することは極めて困難であった。
For example, there are various methods for making a multilayered porous membrane into a tubular shape, but generally a sheet-like multilayer porous diaphragm is formed into a circular tube shape, and the ends are butt welded or overlapped and bonded. is being carried out. However, if the porous body is highly flexible such as metal, it is possible to form a circular tube, but if the porous body is inflexible such as ceramic, it is extremely difficult. In addition, since porous metals are porous bodies even if they are metals, their strength is lower than that of non-porous bodies due to the presence of pores, and there is a limit to the radius of curvature that can be formed into circular tubes. It was extremely difficult to form it into a thin tube shape.

そこで、このような難点を解決する方法として、多孔質
支持管とその内側又は外側に配置したパイプ又は芯金と
全同じ円状に保持し、多孔質支持管とパイプ又は芯金と
に振動を与えながら多孔質支持管とパイプ又は芯金との
間の空隙部に気体を噴出させて空隙部内に粉末全均一に
充填し、空隙部内に充填した粉末を多孔質支持管に静圧
成形により圧着し、多孔質支持管に粉末の圧着層を形成
する管状多孔質膜の成形法が知られている(特開昭50
−77410号公報参照)が、粉末を均一に充填するこ
と及び非常に薄い膜を作製することなど実際にd:困難
な点が多い。
Therefore, as a method to solve these difficulties, the porous support tube and the pipe or core placed inside or outside of it are held in the same circular shape, and vibration is applied to the porous support tube and the pipe or core. While applying the pressure, gas is ejected into the gap between the porous support tube and the pipe or core metal to uniformly fill the gap with powder, and the powder filled in the gap is crimped onto the porous support tube by static pressure forming. However, a method for forming a tubular porous membrane by forming a compressed layer of powder on a porous support tube is known (Japanese Unexamined Patent Application Publication No. 1989-1993).
77410), but there are actually many difficulties in filling the powder uniformly and producing a very thin film.

本発明者等は、ガスの分離等に使用する多孔質隔膜につ
いて上記のような問題点を克服するため鋭意研究全実施
した結果、本発明を開発するに至ったものである。
The inventors of the present invention have developed the present invention as a result of conducting extensive research in order to overcome the above-mentioned problems regarding porous diaphragms used for gas separation and the like.

すなわち本発明は、多孔質隔膜の製造において、か焼し
ないアルミナゾルと微粉砕したアルミナゾルのか焼物全
混合し、成形、乾燥、焼成することを特徴とするガス分
離用多孔質膜の製造方法に関するものである。
That is, the present invention relates to a method for producing a porous membrane for gas separation, which comprises completely mixing an uncalcined alumina sol and a calcined product of finely pulverized alumina sol, forming, drying, and firing the porous diaphragm. be.

これまで、アルミナゾル単味の成形においては、アルミ
ナゾルの有するレオロジカルな性質のため、成形が非常
に困難であった。捷た、たとえアルミナゾルの成形物が
できたとしても乾燥、焼成の工程において大きく収縮す
るため、多くのひび割れが発生し、多孔質隔膜として使
用できるようなものを作製することはできなかった。ま
た、微粉砕したアルミナゾルのか焼物単独では、言うま
でもなく粘着性が無いため、多孔質隔膜全製造すること
は不可能である。
Until now, it has been extremely difficult to mold a single alumina sol due to the rheological properties of alumina sol. Even if a molded alumina sol could be made, it would shrink significantly during the drying and firing process, resulting in many cracks, making it impossible to produce a product that could be used as a porous diaphragm. Furthermore, since the calcined product of finely pulverized alumina sol alone does not have adhesive properties, it is impossible to manufacture the entire porous diaphragm.

本発明方法において、か焼アルミナゾルとか焼しないア
ルミナゾルの混合割合は、か焼アルミナゾル25〜75
重量パーセント、残りをか焼しないアルミナゾルとする
場合が好ましい。
In the method of the present invention, the mixing ratio of calcined alumina sol and uncalcined alumina sol is 25 to 75%.
It is preferable that the remainder of the weight percentage be an uncalcined alumina sol.

最適な混合割合は、か焼アルミナゾルとか焼しないアル
ミナゾルの重量割合でほぼ等量である。  ・このよう
な混合割合で得られる多孔質隔膜の平均細孔直径は50
〜300A程度であり、これをガスの分離用多孔質隔膜
として使用すれば、良好なガス分離を行うことができる
The optimum mixing ratio is approximately equal weight ratio of calcined alumina sol and uncalcined alumina sol.・The average pore diameter of the porous diaphragm obtained with such a mixing ratio is 50
~300A, and if this is used as a porous diaphragm for gas separation, good gas separation can be achieved.

なお、本発明方法におけるアルミナゾルのが焼け、50
0〜900℃の温度下で、2〜24時間行われる。
In addition, the alumina sol burnt in the method of the present invention, 50
It is carried out at a temperature of 0 to 900°C for 2 to 24 hours.

本発明方法によれば、純粋なアルミナでガス分離可能な
孔径を有する充分に強度の高い多孔質隔膜を容易に製造
することができる。
According to the method of the present invention, it is possible to easily produce a sufficiently strong porous diaphragm made of pure alumina and having a pore size that allows gas separation.

以下、実施例に従い本発明方法全詳細に説明する。Hereinafter, the method of the present invention will be explained in full detail according to Examples.

実施例1 アルミニウムイソプロポキシド500F(z70℃に加
温した温水2000 CCに投入し、攪拌しながら加水
分解した。加水分解終了後、150℃で24時間オート
クレーブ処理を行ったが、1規定塩e’k HC1/A
t0OHのモル比が0.05となるように添加し、95
′Cにおいて24時間解解膠性った。このようにしてア
ルミナゾルを得た後、150℃に保持した乾燥器中に放
置して水分を除去乾固し、ハンマー型微粉砕機により微
粉砕し、ベーマイトの粉体を得た。次に1微粉砕したベ
ーマイトの粉体1600’cにおいて2時間か焼し、γ
−アルミナとした。
Example 1 Aluminum isopropoxide 500F (z) was poured into 2000 CC of warm water heated to 70°C and hydrolyzed with stirring. After the hydrolysis was completed, autoclave treatment was performed at 150°C for 24 hours, but 1N salt e 'k HC1/A
Add so that the molar ratio of t0OH is 0.05, 95
It was peptized for 24 hours at 'C. After obtaining the alumina sol in this manner, it was left in a dryer kept at 150° C. to remove water and dry, and then pulverized using a hammer-type pulverizer to obtain boehmite powder. Next, it was calcined for 2 hours in 1600'c of finely pulverized boehmite powder, and
- Made of alumina.

上記のベーマイトの粉体に少量の水ヲ注加し、厚さ1訓
の平板に成形した。この場合、水を少し多くするとベー
マイトは非常に軟〈なってし1い成形後、形を保持させ
ることが困難であった。ま1c、水が少ない場合にはパ
サパサの状態であり成形は困難であった。更に、適度の
水量でうまく成形できた場合にも、乾燥時に収縮が生じ
、成形体は変形し、ひび割れが生じていた。
A small amount of water was added to the boehmite powder described above, and it was formed into a flat plate with a thickness of 1 inch. In this case, if a little more water was added, the boehmite became very soft and it was difficult to maintain its shape after molding. 1c, when there was little water, it was dry and difficult to mold. Furthermore, even when molding was successfully performed with a moderate amount of water, shrinkage occurred during drying, resulting in deformation and cracking of the molded product.

次に、ベーマイトの粉体50りと、ベーマイトf600
℃においてか焼して得たγ−アルミナ501を混合し、
少量の水を添加して厚さ1配の平板に成形した。この場
合、成形性は非常に良好であった。成形後、自然乾燥し
た。この乾燥時における変形は認められなかった。
Next, 50 pieces of boehmite powder and boehmite f600
Mixing γ-alumina 501 obtained by calcining at °C,
A small amount of water was added to form a flat plate with a thickness of one layer. In this case, moldability was very good. After molding, it was air dried. No deformation was observed during this drying.

自然乾燥の後、電気炉中に入れ、+ 00 ’C/hの
昇温速度で900℃1で刃口熱し、90mCにおいて2
時間保持した後、炉冷して、多孔質隔膜全行た。
After air drying, place in an electric furnace and heat at 900°C at a heating rate of +00'C/h.
After holding for a period of time, the mixture was cooled in a furnace and the porous diaphragm was completely removed.

このようにして得た多孔質隔膜について水銀圧入法によ
り細孔径分布金床めた。その結果全第1図に示す。第1
図において、横軸は細孔半径(久)、縦軸は累積細孔容
積(cC7y )を示す。
The porous diaphragm thus obtained was subjected to pore size distribution anvil using mercury intrusion method. The results are shown in Figure 1. 1st
In the figure, the horizontal axis shows the pore radius (distance), and the vertical axis shows the cumulative pore volume (cC7y).

また、測定の結果、試作した多孔質隔膜の平均細孔半径
は210A、細孔容積は0.5 ’[] CC/9であ
ることが判明した。
Further, as a result of measurement, it was found that the average pore radius of the prototype porous diaphragm was 210A, and the pore volume was 0.5'[] CC/9.

この多孔質隔膜について、ガス分離試験装置を使用して
、水素50%、窒素50チの混合ガスについて入口側圧
力3 K17cm2、出口側圧力IK9/Crn2に設
定し、ガス分離試験を実施したところ、多孔質隔膜を通
過した後のガスのガス組成は水素67%、窒素33%で
あることが判明し、多孔質隔膜による水素の選択的透過
が認められた。
Regarding this porous diaphragm, a gas separation test was conducted using a gas separation test device with a mixed gas of 50% hydrogen and 50% nitrogen set at an inlet pressure of 3K17cm2 and an outlet pressure of IK9/Crn2. The gas composition of the gas after passing through the porous diaphragm was found to be 67% hydrogen and 33% nitrogen, indicating that hydrogen selectively permeated through the porous diaphragm.

丑た、同一のガス分離試験装置を使用して、水素50%
、メタン50チの混合ガスについて入口側圧力3 K9
7cm2、出口側圧力1に9/α2に設定し、ガス分離
試験を実施したところ、多孔質隔膜を通過した後のガス
のガス組成は水素63%、メタン3Z係であることが判
明し、この場合にも多孔質隔膜による水素の選択的透過
が認められた。
Ushita, using the same gas separation test equipment, 50% hydrogen
, for a mixed gas of 50 g of methane, the inlet pressure is 3 K9
7cm2, outlet side pressure 1 was set to 9/α2, and a gas separation test was conducted, and it was found that the gas composition of the gas after passing through the porous diaphragm was 63% hydrogen and 3Z methane. In some cases, selective permeation of hydrogen through the porous membrane was also observed.

本実施例からも明らかなように本発明方法によれば、形
状及び強度、更にガス分離性能においても優れた多孔質
隔膜を得ることができる。
As is clear from this example, according to the method of the present invention, it is possible to obtain a porous diaphragm that is excellent in shape, strength, and gas separation performance.

実施例2 市販のアルミナゾル(日並化学製) f I 50℃に
保持した乾燥層中に保持して水分を除去乾固し、ハンマ
ー型微粉砕機により微粉砕し、ベーマイトの粉体に得た
。次に、微粉砕したベーマイトの粉体を600℃におい
て2時間が焼し、γ−アルミナとした。
Example 2 Commercially available alumina sol (manufactured by Hinami Chemical Co., Ltd.) f I It was held in a drying layer kept at 50°C to remove moisture and was pulverized using a hammer-type pulverizer to obtain boehmite powder. . Next, the finely pulverized boehmite powder was baked at 600° C. for 2 hours to obtain γ-alumina.

上記のベーマイトの粉体に少量の水を添加し、厚さ1酬
の平板に成形した。この場合、水を少し多くするとベー
マイトは非常に軟〈なってしまい、成形後、形を保持さ
せることが困難であった。捷た、水が少ない場合にはパ
サパサの状態であり、成形は困難であった。成形のため
の適正な水量の範囲は非常に狭いことが明らかとなった
。また、適正な水量でうまく成形できた場合にも、乾燥
時に収縮が生じ、成形体は変形し、ひび割れが生じてい
た。
A small amount of water was added to the boehmite powder described above, and it was formed into a flat plate with a thickness of 1 square inch. In this case, if a little more water was added, the boehmite became extremely soft, making it difficult to maintain its shape after molding. When the mixture was slender or had little water, it was dry and difficult to mold. It has become clear that the range of appropriate water amounts for molding is very narrow. Further, even when the molding was successfully performed using an appropriate amount of water, shrinkage occurred during drying, and the molded product was deformed and cracked.

次に、ベーマイトの粉体509と、ベーマイ)i600
℃においてが焼して得たγ−アルミナ502を混合し、
少量の水金添加して厚さ1咽の平板に成形した。成形時
の成形性は非常に良好であった。成形後、自然乾燥した
が、乾燥時の変形は認められなかった。
Next, boehmite powder 509 and boehmite) i600
Mixing γ-alumina 502 obtained by calcining at °C,
A small amount of water and gold was added and formed into a flat plate with a thickness of one inch. The moldability during molding was very good. After molding, it was air-dried, but no deformation was observed during drying.

自然乾燥の後、電気炉中に入れ、100℃/hの昇温速
度で900℃まで刀目熱し、900℃において2時間保
持した後、炉冷して多孔質隔膜を得た。
After natural drying, it was placed in an electric furnace and heated to 900°C at a heating rate of 100°C/h, held at 900°C for 2 hours, and then cooled in the oven to obtain a porous diaphragm.

このようにして得た多孔質隔膜について水銀圧入法によ
り細孔径分布を求めた。その結果を第2図に示す。第2
図において、横軸は細孔半径(A)、縦軸は累積細孔容
積(CO/f )を示す。
The pore size distribution of the porous diaphragm thus obtained was determined by mercury intrusion method. The results are shown in FIG. Second
In the figure, the horizontal axis shows the pore radius (A), and the vertical axis shows the cumulative pore volume (CO/f).

また、測定の結果、試作した多孔質隔膜の、平均細孔半
径は70A、細孔容積は0.520O/9であることが
判明した。
Further, as a result of measurement, it was found that the average pore radius of the prototype porous diaphragm was 70A, and the pore volume was 0.520O/9.

との多孔質隔膜について、ガス分離試験装置全使用して
、水素50%、窒素50%の混合ガスについて入口側圧
力3に9/cn12、出口側圧力IK97cm2に設定
し、ガス分離試験全実施したところ、多孔質隔膜を通過
した後のガスのガス組成は水素70%、窒素30%であ
り、多孔質隔膜による水素の選択的透過が認められた。
All gas separation tests were conducted on the porous diaphragm using the gas separation test equipment, setting the inlet side pressure to 3 to 9/cn12 and the outlet side pressure to IK97cm2 for a mixed gas of 50% hydrogen and 50% nitrogen. However, the gas composition of the gas after passing through the porous diaphragm was 70% hydrogen and 30% nitrogen, and selective permeation of hydrogen through the porous diaphragm was observed.

′!、た、同一のガス分離試験装置全使用して、水素5
0%、メタン50%の混合ガスについて入口側圧力3 
K17cm2、出口側圧力IK9/(1)2に設定し、
ガス分離試験を実施したところ、多孔質隔膜を通過した
後のガスのガス組成は水素65係、メタン35%となり
、この場合にも多孔質隔膜による水素の選択的透過が認
められた。
′! , using the same gas separation test equipment, hydrogen 5
Inlet side pressure 3 for mixed gas of 0% and 50% methane
Set K17cm2, outlet side pressure IK9/(1)2,
When a gas separation test was conducted, the gas composition of the gas after passing through the porous diaphragm was 65% hydrogen and 35% methane, and selective permeation of hydrogen through the porous diaphragm was also observed in this case.

本実施例からも明らかなように、本発明方法によれば、
形状及び強度、更にガス分離性能においても優れた多孔
質隔膜を得ることができる。
As is clear from this example, according to the method of the present invention,
A porous diaphragm excellent in shape, strength, and gas separation performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明方法により試作した多孔質隔膜
の細孔径分布を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIGS. 1 and 2 are diagrams showing the pore size distribution of a porous diaphragm prototyped by the method of the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] アルミナゾルをか焼したものとか焼しない状態のアルミ
ナゾルを混合して成形、乾燥、焼成することを特徴とす
るガス分離用多孔質隔膜の製造方法。
A method for producing a porous diaphragm for gas separation, which comprises mixing calcined alumina sol and uncalcined alumina sol, forming, drying, and firing the mixture.
JP1983283A 1983-02-10 1983-02-10 Preparation of porous diaphragm for gas separation Pending JPS59147605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983283A JPS59147605A (en) 1983-02-10 1983-02-10 Preparation of porous diaphragm for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983283A JPS59147605A (en) 1983-02-10 1983-02-10 Preparation of porous diaphragm for gas separation

Publications (1)

Publication Number Publication Date
JPS59147605A true JPS59147605A (en) 1984-08-24

Family

ID=12010256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983283A Pending JPS59147605A (en) 1983-02-10 1983-02-10 Preparation of porous diaphragm for gas separation

Country Status (1)

Country Link
JP (1) JPS59147605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139540A (en) * 1991-07-24 1992-08-18 Texaco Inc. Membrane separation of gases
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
US5183482A (en) * 1991-06-19 1993-02-02 Texaco Inc. Separation by membrane techniques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183482A (en) * 1991-06-19 1993-02-02 Texaco Inc. Separation by membrane techniques
US5139540A (en) * 1991-07-24 1992-08-18 Texaco Inc. Membrane separation of gases
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases

Similar Documents

Publication Publication Date Title
CN106278368A (en) A kind of composite molecular sieve film and its preparation method and application
JP2002316026A (en) Method for preparing supported zeolite membrane by temperature-controlled crystallization
CA2748197A1 (en) Sheet gasket and production method thereof
CN107901468B (en) Solid propellant rocket composite material casing forming method
JPS59147605A (en) Preparation of porous diaphragm for gas separation
JPS63171610A (en) Production of porous ceramic membrane
CN105251374A (en) Preparation method of nanoscale surface defect crystal seed induced SAPO-34 molecular sieve membrane
JPH0423658B2 (en)
Cho et al. Separation of CO2 by modified γ-Al2O3 membranes at high temperature
JPS61238303A (en) Preparation of microporous membrane
US3966885A (en) Methods and materials for joining silicon powder structures
GB2204064A (en) Producing sintered porous metal articles centrifugal casting
CA2494990C (en) Production method for zeolite shaped body and production method for zeolite layered composite
JPS5959224A (en) Preparation of porous diaphragm
JPS614509A (en) Bundle fixing plate of porous glass membrane thin tube
JPS6127091B2 (en)
JP2642860B2 (en) Inorganic xerogel membrane, method for producing the same, and gas separation membrane comprising inorganic xerogel membrane
JPS59145007A (en) Preparation of porous diaphragm for gas separation
JP2004509784A (en) Cold isostatic pressing
JPH05123548A (en) Production of hydrogen separation membrane
US6712131B1 (en) Method for producing an exchanger and exchanger
JPS59107988A (en) Manufacture of porous diaphragm
JPS59179112A (en) Manufacture of porous membrane body
JPS59102403A (en) Production of porous diaphragm
JP3618001B2 (en) Porous open cell concrete molded body and method for producing the same composite