JPS59179112A - Manufacture of porous membrane body - Google Patents

Manufacture of porous membrane body

Info

Publication number
JPS59179112A
JPS59179112A JP5392083A JP5392083A JPS59179112A JP S59179112 A JPS59179112 A JP S59179112A JP 5392083 A JP5392083 A JP 5392083A JP 5392083 A JP5392083 A JP 5392083A JP S59179112 A JPS59179112 A JP S59179112A
Authority
JP
Japan
Prior art keywords
sol
silicic acid
titanium oxide
porous
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5392083A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5392083A priority Critical patent/JPS59179112A/en
Publication of JPS59179112A publication Critical patent/JPS59179112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a porous diaphragm having a small pore radius with a narrow distribution range and the excellent strength, heat resistance and gas separating performance by molding a mixture of metatitanic acid formed into sol, alumina sol and finely powdered silicic acid, drying and calcining. CONSTITUTION:The 5-30wt% finely powdered silicic acid having 5-50mum mean particle size and 20-50wt% alumina sol. are preferably added to 100wt% titanium oxide. In this case, the finely powdered silicic acid is added to the metatitanic acid sol. and the alumina sol., stirred and calcined. Meanwhile, the alumina sol. can also be added after the metatitanic acid added with the finely powdered silicic acid beforehand is formed into sol. The porous membrane body is obtained by removing the water content from the above-mentioned sol. mixture, molding, drying and calcining. The calcination temp. in this case is regulated to <=1,000 deg.C. In this way, the porous membrane body, provided with pores having 100-200Angstrom pore radius which is suitable for gas separation, can be obtained.

Description

【発明の詳細な説明】 本発明はガスの分離等に使用する多孔質体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous body used for gas separation and the like.

金属粉末あるいはセラミック粉末を焼結したり又はフッ
素樹脂等の有機合成樹脂粉末を圧縮成形して得た多孔質
体を基材とした微小孔径、特に平均数10〜数10OA
+7)超微細な孔を有する多孔質隔膜を用いて1例えば
ガス拡散法により気体を分離濃縮する場合、効率よく行
うためには多孔質隔膜を可能な限り薄くすることが必要
であるが、強度の点から極端に薄くすることはできない
。又、このような場合には任意の形状に成形することは
困難であった。そこで0、ガス拡散の妨害とならないよ
う孔径が大きく、且充分の強度を有するようにある程度
の厚みを有し、ガス透過性の高い多孔質体又は金網様の
もので微細孔を有する薄い多孔質膜を補強し、多層構造
とする方策等がとられている。
A porous body obtained by sintering metal powder or ceramic powder or compression molding organic synthetic resin powder such as fluororesin as a base material with a micropore diameter, especially an average of several 10 to several 10 OA.
+7) When separating and concentrating gas using a porous diaphragm with ultra-fine pores, for example, by the gas diffusion method, it is necessary to make the porous diaphragm as thin as possible in order to perform it efficiently. It is not possible to make it extremely thin. Moreover, in such cases, it is difficult to mold into any desired shape. Therefore, 0 is a porous material with high gas permeability or wire mesh-like material with a thin porous material that has a large pore diameter so as not to interfere with gas diffusion, and a certain thickness to have sufficient strength. Measures are being taken to strengthen the membrane and create a multilayer structure.

例えば多層構造の多孔質膜を管状とするためには各種の
方法があるが、一般にはシート状の多層多孔質隔膜を円
管状に成形加工し、端末をつき合せ溶接あるいは重ね合
せ接着を行っている。しかし、多孔質体が金属のように
柔軟性の高いものでは円管成形も5″r能であるが、−
セラミックのように柔軟性の無いものでは極めて困難で
ある。又、多孔質金属では金属であっても多孔質体であ
るため空孔の存在により強度が無孔質体に比べて低くな
り、円管可能な曲率半径に限度があり、細い管状に図形
することは極めて困難であった。
For example, there are various methods to make a multilayered porous membrane into a tubular shape, but in general, a sheet-like multilayered porous diaphragm is formed into a circular tube shape, and the ends are butt welded or overlapped and bonded. There is. However, if the porous material is highly flexible such as metal, circular tube forming can be performed at 5"r, but -
This is extremely difficult to do with inflexible materials such as ceramics. In addition, since porous metals are porous materials due to the presence of pores, their strength is lower than that of non-porous materials, and there is a limit to the radius of curvature that can be formed into a thin tube. This was extremely difficult.

このような難点を解決する方法として、多孔質支持管と
その内側又は外側に配置したパイプ又は芯金とを同じ円
状に保持して多孔質支持管とパイプ又は芯金とに振動を
与えながら多孔質支持管とパイプ又は芯金との間の空隙
部に気体を吹出させて空隙部内に粉末を均一に充填し、
空隙部内に充填した粉末を多孔質支持管に静圧成形によ
り圧着し、多孔質支持管に粉末の圧着層を形成する管状
多孔質膜の成形法が知られている(特開昭50−774
10号公報)が、粉末を均一に児項すること及び非常に
薄い腋を作表することなど実際には固蛇な点が多い。
One way to solve this problem is to hold the porous support tube and the pipe or core placed inside or outside of it in the same circular shape, and apply vibration to the porous support tube and the pipe or core. Blow out gas into the gap between the porous support tube and the pipe or core metal to uniformly fill the gap with powder,
A method of forming a tubular porous membrane is known in which powder filled in the void is bonded to a porous support tube by static pressure forming to form a compressed layer of powder on the porous support tube (Japanese Patent Laid-Open No. 50-774).
However, in reality, there are many disadvantages such as the ability to uniformly form the powder and the ability to produce very thin axillae.

本発明者等はガスの分離等に使用する多孔質隔膜につい
て上記のような問題点を克服するため以下の研究を行っ
た。
The present inventors conducted the following research in order to overcome the above-mentioned problems regarding porous diaphragms used for gas separation, etc.

先ず、酸化チタン及びアルミナゾルの混合物に微粒子ケ
イ酸を均一に分散し、水分の除去を行った後、押し出し
成形機により膜体を成形し。
First, fine particles of silicic acid are uniformly dispersed in a mixture of titanium oxide and alumina sol, water is removed, and then a membrane is formed using an extrusion molding machine.

乾燥、焼成する。Dry and bake.

酸化チタン焼成品を多孔質膜体として用いることは既に
知られており、多孔質膜体に1要な影響ケ与える細孔半
径、比表面積、結晶形、機械的強度、耐熱性等はその製
造方法や添加物質の有無、b類、lft等によって異な
るため、従来から種々の製造方法が提案されている。
It is already known that fired titanium oxide products can be used as porous membranes, and the pore radius, specific surface area, crystal shape, mechanical strength, heat resistance, etc. that have an important influence on porous membranes depend on the manufacturing process. Various manufacturing methods have been proposed in the past because they differ depending on the method, presence or absence of additives, class B, lft, etc.

例えば、四塩化チタンや硫酸チタンのようなチタン塩類
を中和加水分解した後、生成した水酸化チタンを焼成し
て酸化チタンを形成させる方法によれば、カn水分解に
よって生成する水酸化チタンがオルンテタン酸となりゃ
すく、従ってこれを焼成すればルチル型酸化チタンにな
りやすい。ルチル型酸化チタンは結晶の大キさが後出の
アナターゼ型酸化チタンに比べて大きくなりやす(、こ
れを膜体とする場合、細孔の大きさが大きくなるので好
運しくない。
For example, according to a method in which titanium salts such as titanium tetrachloride or titanium sulfate are neutralized and hydrolyzed and then the generated titanium hydroxide is calcined to form titanium oxide, titanium hydroxide generated by water decomposition can be is likely to become orntetanic acid, and therefore, if this is fired, it is likely to become rutile-type titanium oxide. Rutile-type titanium oxide tends to have larger crystals than anatase-type titanium oxide, which will be described later (this is not a good idea if it is used as a membrane because the pores will be larger).

一方、チタン酸塩を熱加水分解すればメタチタン酸にな
りゃすく、これを焼成すれば他の要因もあるがアナター
ゼ型酸化チタンとなる。アナターゼ型酸化チタンは、ル
チル型酸化チタンに比べ結晶の大きさは小さく、これを
膜体とする場合、細孔の大きさが小さくなるので好まし
い0 多孔体の細孔径は構成Mi晶の大きさ九より規定される
から、アナターゼ型酸化チタンを選択すれば細孔径の小
さい多孔体を得ることができる。しかし、このように水
酸化チタン又は酸化チタンを成形した後、乾燥、焼成す
る方法によれば焼成により酸化チタンの結晶が成長する
ため、細孔半径は数100A以上となり、ガス分より大
幅に太き(なるためガス分離用膜体としては好ましくな
い。
On the other hand, if titanate is thermally hydrolyzed, it becomes metatitanic acid, and if this is fired, it becomes anatase-type titanium oxide, although there are other factors involved. Anatase-type titanium oxide has a smaller crystal size than rutile-type titanium oxide, and when it is used as a membrane, the pore size becomes smaller, so it is preferable.The pore diameter of the porous body is the size of the constituent Mi crystals. Therefore, if anatase type titanium oxide is selected, a porous body with a small pore diameter can be obtained. However, in this method of forming titanium hydroxide or titanium oxide, drying and firing, the pore radius becomes several hundreds of amps or more, which is significantly thicker than that of the gas, because titanium oxide crystals grow during firing. (This makes it undesirable as a membrane for gas separation.

本発明者等は、かかる問題を微粒子ケイ酸を添加するこ
とにより基材となるアナターゼ型酸化チタンの熱安定性
を高(して焼成時の結晶の成長を防ぎ、またアルミナゾ
ルな添加することにより成形を容易とすると同時に、ア
ナターゼ型酸化チタン成形体の酸化チタンの間隙に酸化
チタンよりも更に小さいアルミナゾル(焼成により酸化
アルミナとなる)を充填し成形体の細孔半径を小さくす
ることにより解決できる知見を得た。本方法によれば、
ガス分離に適した細孔半径100〜200A程度の多孔
質体を容易に得ることができる。
The present inventors solved this problem by increasing the thermal stability of anatase titanium oxide, which is the base material, by adding fine-particle silicic acid (to prevent crystal growth during firing), and by adding alumina sol. This can be solved by making molding easier and at the same time filling the gaps between the titanium oxide in the anatase-type titanium oxide molded body with alumina sol (which becomes alumina oxide when fired), which is even smaller than titanium oxide, to reduce the pore radius of the molded body. According to this method,
A porous body with a pore radius of about 100 to 200 A, which is suitable for gas separation, can be easily obtained.

また、水酸化チタン又は酸化チタンにシリカを添加して
焼成する方法では組成の均一な混合物を得ることが困難
であり、特にシリカを水酸化チタンに添加する場合には
、水酸化チタンがゲル状であるためシリカを水酸化チタ
ンに均一に分散させることができず、細孔径は大きく、
細孔分布の幅は広くなってしまう。そのため、シリカは
ゾル化したメタチタン酸及びアルミナゾルの混合物に添
加する必要がある。
In addition, with the method of adding silica to titanium hydroxide or titanium oxide and firing it, it is difficult to obtain a mixture with a uniform composition. In particular, when adding silica to titanium hydroxide, the titanium hydroxide becomes gel-like. Therefore, silica cannot be uniformly dispersed in titanium hydroxide, and the pore size is large.
The width of the pore distribution becomes wider. Therefore, silica needs to be added to the mixture of solized metatitanic acid and alumina sol.

本発明は、上記の種々の問題を解決するためになされた
ものであって、微粒子ケイ酸が均一に酸化チタン及びア
ルミナゾル中に分解され、従って細孔半径が小さく、細
好分布幅の狭い、゛強度及び耐熱性にすぐれたガス分離
性能の高い多孔質隔膜を與造する方法を提供することを
目的とする。
The present invention was made in order to solve the various problems mentioned above, and the present invention has been made in order to solve the various problems mentioned above. The object of the present invention is to provide a method for manufacturing a porous diaphragm with excellent strength and heat resistance and high gas separation performance.

すなわち本発明は、ゾル化したメタチタン酸とアルミナ
ゾル及び微粒子ケイ酸の混合物を成形し、乾燥、焼成す
ることを特徴とする多孔質膜体の製造方法に関するもの
である。
That is, the present invention relates to a method for producing a porous membrane body, which is characterized in that a mixture of sol-formed metatitanic acid, alumina sol, and fine-particle silicic acid is formed, dried, and fired.

本発明において用いる微粒子ケイ酸とは、ホワイトカー
ボンの別名でも知られており、比表面積が非常に大きい
点に一つの特徴を有する。
The fine particle silicic acid used in the present invention is also known as white carbon, and one of its characteristics is that it has a very large specific surface area.

この微粒子ケイ酸は湿式法、乾式法いずれの方法によっ
て製造されたものでもよ(、本発明においては通常の市
販品を用いることができる。
This fine particle silicic acid may be produced by either a wet method or a dry method (although in the present invention, ordinary commercially available products can be used).

本発明において微粒子ケイ酸は平均粒径が5〜50fr
Lμであるものが好ましい。微粒子ケイ酸の添加魚は、
酸化チタンに対し5〜50i[i%が膜の性質に悪影響
が出ないので好ましい。
In the present invention, the fine particle silicic acid has an average particle size of 5 to 50 fr.
Preferably, it is Lμ. Fish added with particulate silicic acid is
It is preferable to use 5 to 50 i [i%] of titanium oxide because it does not adversely affect the properties of the film.

本発明で用いるアルミナゾルは、アルミニウム塩やアル
ミン酸塩を中和又は又換分解したり、あるいはアルミニ
ウムアマルガムやアルミニウムアルコキシドを水又は水
蒸気で加水分解する方法のどの方法で得たものでもよい
。アルミナゾルの添加蓋は、酸化チタンに対し20〜5
0重量%が膜の性質に悪影響が出ないので好ましい。
The alumina sol used in the present invention may be obtained by any of the following methods: neutralizing or decomposing aluminum salts or aluminates, or hydrolyzing aluminum amalgams or aluminum alkoxides with water or steam. The addition lid of alumina sol is 20 to 5
A content of 0% by weight is preferable because it does not adversely affect the properties of the film.

本発明の方法において、好ましくは上記のような微粒子
ケイ酸をメタチタン酸ゾルとアルミナゾルに添加し攪拌
混合後焼成するが、また、必要に応じてメタチタン酸に
微粒子ケイ酸を添加した後メタチタン酸をゾル化し、ア
ルミナゾルを添加してもよい。メタチタン酸はゲル状で
あるためゾル化させることにより一層微粒子ケイ酸をメ
タチタン酸中に均一に分散させることができる。
In the method of the present invention, preferably the above-mentioned fine particles of silicic acid are added to the metatitanic acid sol and the alumina sol, and the mixture is stirred and then fired. However, if necessary, the fine particles of silicic acid are added to the metatitanic acid and then the metatitanic acid is added to the metatitanic acid sol. It is also possible to form a sol and add alumina sol. Since metatitanic acid is in the form of a gel, fine particles of silicic acid can be more uniformly dispersed in metatitanic acid by sol formation.

メタチタン酸のゾル化の方法は特に制限されず、例えば
メタチタン酸を水洗して硫酸根を大部分除去した佐、塩
酸又は硝酸を加えて一部又は全部をゾル化する。又は、
特に水洗により硫酸根を除かない場合は・メタチタン酸
に塩化バリウム、塩化ストロンチウム、塩化カルシウム
等のアルカリ土類金属の環化物、若しくは硝酸バリウム
、硝酸ストロンチウム、硝酸カルシウム等のアルカリ土
類金属の硝酸塩を添加しつつ、硫酸根を水不溶性のバリ
ウム塩として固定しつつ、一部又は全部をゾル化する。
There are no particular restrictions on the method for solizing metatitanic acid, and for example, after washing metatitanic acid with water to remove most of the sulfuric acid groups, hydrochloric acid or nitric acid is added to partially or completely solify the metatitanic acid. Or
Especially when sulfuric acid roots are not removed by washing with water, add cyclized products of alkaline earth metals such as barium chloride, strontium chloride, and calcium chloride to metatitanic acid, or nitrates of alkaline earth metals such as barium nitrate, strontium nitrate, and calcium nitrate. While adding, the sulfate radical is fixed as a water-insoluble barium salt, and part or all of it is made into a sol.

本発明による多孔質膜体は、上記ゾル混合物から水分を
除去し、従来から知られている任意の方法・例えば押出
成形法により成形した後、乾燥、焼成を行う。この場合
の焼成温度は1000℃以下、好ましくは900″C〜
500 ”(jである。
The porous membrane body according to the present invention is obtained by removing water from the sol mixture, molding it by any conventionally known method such as extrusion molding, and then drying and baking. In this case, the firing temperature is 1000°C or less, preferably 900″C~
500” (j.

このようにして本発明によれは、ガス分離にする多孔質
膜体を得ることができる。
In this way, according to the present invention, a porous membrane body for gas separation can be obtained.

尚、本発明において焼成の雰囲気は何ら制限されず、突
気、燃焼ガス、不活性気体等のいずれであってもよ1.
7−1゜ 以上のようにして本発明により得られる多孔質膜体は微
粒子ケイ酸の存在によりメタチタン酸の焼成時に酸化チ
タンの結晶成長が抑制され、未成長のアナターゼ型結晶
で留まっているため、得られる膜体の細孔径が小さい。
In the present invention, the firing atmosphere is not limited in any way, and may be any one of sudden air, combustion gas, inert gas, etc.1.
7-1° In the porous film body obtained by the present invention as described above, the crystal growth of titanium oxide is suppressed during firing of metatitanic acid due to the presence of fine particles of silicic acid, and it remains as an ungrown anatase type crystal. , the pore diameter of the resulting membrane is small.

また、アルミナゾルは成形時の流動性を高め、メタチタ
ン酸とケイ酸の混合物の場合よりも更に細孔径を小さく
する。こうして機械的強度及び耐熱性にすぐれ、ガス分
離膜として優れた多孔質膜体を得ることができる。
In addition, alumina sol improves fluidity during molding and makes the pore size smaller than in the case of a mixture of metatitanic acid and silicic acid. In this way, a porous membrane body with excellent mechanical strength and heat resistance and excellent as a gas separation membrane can be obtained.

以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1゜ 硫酸法による酸化チタンの製造工程より得られる硫酸チ
タンを熱加水分解してメタチタン酸を得、これを酸化チ
タン換算で1 kgとり出し、これにアルミニウムイン
プロピレートを加水分解して得たアルミナゾルを酸化ア
ルミナ換算で400g混合した。次いで、市販微粒子ケ
イ酸(粒径25mμ) 200.9を添加し、十分に攪
拌混合した後、水分を除去し、押し出し成形機を使用し
て直径4關、肉厚I Tr7!、長さ50cInの管を
成形した。
Example 1 Titanium sulfate obtained from the titanium oxide production process using the sulfuric acid method was thermally hydrolyzed to obtain metatitanic acid, 1 kg of this in terms of titanium oxide was taken out, and aluminum impropylate was hydrolyzed to this. 400 g of the obtained alumina sol was mixed in terms of alumina oxide. Next, commercially available particulate silicic acid (particle size 25 mμ) 200.9 was added, thoroughly stirred and mixed, water was removed, and an extrusion molding machine was used to form a mold with a diameter of 4 mm and a wall thickness of I Tr7! , a tube with a length of 50 cIn was molded.

また比較のために微粒子ケイ酸を添力nしないメタチタ
ン酸とアルミナゾルだけの管も成形した。
For comparison, a tube was also molded using only metatitanic acid and alumina sol without adding fine particles of silicic acid.

成形した2種の管を100℃で12時間乾燥した後、8
00℃の温度で5時間焼成した。焼成によりメタチタン
酸及びアルミナゾルは酸化チタン及び酸化アルミナとな
っていた。
After drying the two types of molded tubes at 100°C for 12 hours,
It was baked at a temperature of 00°C for 5 hours. After firing, the metatitanic acid and alumina sol had become titanium oxide and alumina oxide.

この焼成品をガス分離用膜体として使用するため水銀圧
入法による細孔径分布の測定を行うと同時にガス分離試
験を実施した。
In order to use this fired product as a gas separation membrane, the pore size distribution was measured by mercury intrusion method, and at the same time a gas separation test was conducted.

第1図に水銀圧入法による細孔半径及び細孔容積測定結
果を示す。第1図において横軸は細孔半径、縦軸は細孔
容積である。また図中■は比較品の酸化チタン+酸化ア
ルミニウムのデータであり、■は本発明品の酸化チタン
+酸化アルミニウム+ケイ酸のデータである。
Figure 1 shows the results of measuring pore radius and pore volume by mercury intrusion method. In FIG. 1, the horizontal axis is the pore radius and the vertical axis is the pore volume. Further, in the figure, ■ is the data for the comparative product titanium oxide + aluminum oxide, and ■ is the data for the invention product titanium oxide + aluminum oxide + silicic acid.

ケイ酸を添加した本発明品は平均細孔半径150Aで細
孔分布のシャープな多孔体であるが、ケイ酸を添加しな
い比較品は平均細孔半径は660Aで細孔径分布はブロ
ードとなっている。
The product of the present invention with silicic acid added has an average pore radius of 150A and a sharp pore distribution, whereas the comparative product without silicic acid has an average pore radius of 660A and a broad pore size distribution. There is.

第2図にxi回折スペクトルを示す。1第2図において
横軸は回噺角2θであり、縦軸は強度(任意スケール)
である。図中■は比較品の酸化チタン+酸化アル唐ニウ
ムのX線回折データであり、■は本発明品の酸化テクン
+酸化アルミニウム+ケイ酸のデータである。本発明品
の酸化チタン+酸化アルミニウム+ケイ酸のデータは、
ピークの幅が広いので、酸化チタンの結晶形であるアナ
ターゼ型結晶が未成長のままで留まっていることがわか
る。比較品の酸化チタン+酸化アルミニウムだけのデー
タは、ピークの幅が狭く、アナターゼの結晶がよく成長
していることがわかる。
FIG. 2 shows the xi diffraction spectrum. 1 In Figure 2, the horizontal axis is the rotation angle 2θ, and the vertical axis is the intensity (arbitrary scale).
It is. In the figure, ■ is the X-ray diffraction data of the comparison product titanium oxide + altanium oxide, and ■ is the data of the invention product TECUN oxide + aluminum oxide + silicic acid. The data for titanium oxide + aluminum oxide + silicic acid of the product of the present invention is as follows:
Since the peak width is wide, it can be seen that the anatase type crystal, which is the crystal form of titanium oxide, remains ungrown. The data for the comparative product, titanium oxide + aluminum oxide, shows that the peak width is narrow, indicating that anatase crystals are growing well.

次に、これらの多孔質膜について、ガス分離試験装置を
使用して水素50%、窒素50%の混合ガスについて入
口側圧力s kg / cnI、出口側圧力1 kg 
/ cIIIに設定し、ガス分離試験を実施したところ
、多孔質膜を通過した後のガスのガス組成は本発明品の
酸化チタン十酸化アルはニウム+ケイ酸の場合、水素6
7%、窒素55%であるのに対し、比に品の酸化チタン
+酸化アルミニウムだけの場合には、水素54%、窒素
46−で、本発明品の酸化チタン+酸化アルミニウム+
ケイ酸の多孔質膜の場合に多(水素が透過していること
が確認された。
Next, for these porous membranes, the inlet side pressure s kg/cnI and the outlet side pressure 1 kg for a mixed gas of 50% hydrogen and 50% nitrogen using a gas separation test device.
/cIII, and conducted a gas separation test, and found that the gas composition of the gas after passing through the porous membrane was hydrogen 6, aluminum oxide, titanium oxide, and aluminum silicic acid of the present invention.
7% and nitrogen 55%, whereas in the case of only titanium oxide + aluminum oxide, hydrogen is 54% and nitrogen is 46%, and titanium oxide + aluminum oxide +
It was confirmed that hydrogen permeates through a porous silicic acid membrane.

また同一のガス分離試験装置を使用して水素50%、メ
タン50%の混合ガスについて入口側圧力s kg /
 crA、出口側圧力11G9/C11Fに設定し、ガ
ス分離試験を実施したところ、本発明品の酸化チタン+
酸化アルミニウム+ケイ酸の多孔質膜の場合には、膜透
過後のガス組成は水素63襲、メタン67%であるのに
対し、比較品の酸化チタン+酸化アルミニウムだけの多
孔質膜σ)場合には、膜透過後のガス組成は水素52%
、メタン48%であり、この場合にも本発明品の酸化チ
タン+酸イどアルミニウム+ケイ酸の多孔質膜が多く水
素を透過していることが確認された。
Also, using the same gas separation test equipment, the inlet side pressure s kg / for a mixed gas of 50% hydrogen and 50% methane
crA, the outlet side pressure was set to 11G9/C11F, and a gas separation test was conducted.
In the case of a porous membrane of aluminum oxide + silicic acid, the gas composition after membrane permeation is 63% hydrogen and 67% methane, whereas in the case of the comparative porous membrane σ) of only titanium oxide + aluminum oxide. The gas composition after membrane permeation is 52% hydrogen.
, methane was 48%, and in this case as well, it was confirmed that the porous membrane of titanium oxide + aluminum oxide + silicic acid of the product of the present invention was permeating a large amount of hydrogen.

本実施例からも明らかなように本発明の多孔質膜の製造
方法によれば、形状及び強度、更にガス分離性能におい
ても優れた多孔質膜を得ることができる。
As is clear from this example, according to the porous membrane manufacturing method of the present invention, it is possible to obtain a porous membrane that is excellent in shape, strength, and gas separation performance.

実施例2 実施例1において別の市販微粒子ケイ酸(粒径20mμ
)を用いた以外は実施例1と全(同様にして多孔質膜を
製造した。
Example 2 In Example 1, another commercially available fine particle silicic acid (particle size 20 mμ
A porous membrane was produced in the same manner as in Example 1 except that (2) was used.

このようにして得た多孔質膜について、カス分離試験装
置を使用して水素50チ、窒素50チの混合ガストにつ
いて入口側圧力s kg / cIII。
For the porous membrane thus obtained, the inlet side pressure s kg/cIII was determined for a mixed gas of 50 g of hydrogen and 50 g of nitrogen using a scum separation test device.

出ロ側圧力1kg/′cdK設定し、ガス分離試験を実
施したところ、膜透過後のガス組成は水素7゜襲、窒素
60φとなり、水素の選択的透過が認められた。
When a gas separation test was carried out with the outlet pressure set at 1 kg/'cdK, the gas composition after permeation through the membrane was 7° hydrogen and 60° nitrogen, and selective permeation of hydrogen was observed.

実施例3 四塩化チタン(酸化チタン換算で10100Oとアルミ
ン酸ソーダ(酸化アルミニウム換算で200g)の混合
溶液に実施例1と同じ市販微粒子ケイ酸100gを添加
し、十分に攪拌混合した後、中和加水分解を行った。次
に、押し出し成形機を使用して直径4 man、肉厚1
間、長さ60cmの管を成形した彼・、100”(iで
12時間乾燥し、soo’cvr−おいて6時間焼成し
た。
Example 3 To a mixed solution of titanium tetrachloride (10,100 O in terms of titanium oxide) and sodium aluminate (200 g in terms of aluminum oxide), 100 g of commercially available fine silicic acid as in Example 1 was added, thoroughly stirred and mixed, and then neutralized. Hydrolysis was carried out.Then, an extruder was used to form a mold with a diameter of 4 man and a wall thickness of 1
A 60 cm long tube was formed, dried at 100" for 12 hours, and fired for 6 hours at soo'cvr.

また、比較のため同様の組成で熱加水分解したものにつ
いても同様に成形し、焼成した。
For comparison, a sample having the same composition and thermally hydrolyzed was also molded and fired in the same manner.

この焼成品をカス分離用膜体として使用するため、水銀
圧入法による細孔径分布の測定を行うと同時に、ガス分
離試験を実施した。
In order to use this fired product as a membrane body for waste separation, the pore size distribution was measured by mercury intrusion method, and at the same time, a gas separation test was conducted.

また、焼成体のX線回折結果によると、酸化チタンの結
晶形は中和加水分解したものではルチル型、熱加水分解
したものではアナターゼ型であった。
Furthermore, according to the results of X-ray diffraction of the fired body, the crystal form of titanium oxide was rutile type when neutralized and hydrolyzed, and anatase type when thermally hydrolyzed.

第3図に水銀圧入法による細孔半径及び細孔容積測定結
果を示す。第3図において、横軸は細孔半径、縦軸は細
孔容積である。図中■、■はそれぞれ中和加水分解して
得た焼成体及び熱加水分解して得た焼成体の細孔分布を
示す。ルチル型酸化チタンとなった焼成体の細孔径は、
アナターゼ型酸化チタン焼成体の細孔径よりも大きいこ
とがわかる。
Figure 3 shows the results of measuring pore radius and pore volume by mercury intrusion method. In FIG. 3, the horizontal axis is the pore radius and the vertical axis is the pore volume. In the figure, ■ and ■ indicate the pore distribution of the fired body obtained by neutralization hydrolysis and the fired body obtained by thermal hydrolysis, respectively. The pore diameter of the fired body that has become rutile-type titanium oxide is
It can be seen that the pore diameter is larger than that of the anatase-type titanium oxide fired body.

次に、多孔質膜について、ガス分離試験装置を使用して
水素50%、窒素50%の混合カスについて入口側圧力
s kg / crll、出口側圧力1 k、9/cn
lに設定し、ガス分離試験を実施したところ。
Next, for the porous membrane, using a gas separation test device, the inlet side pressure s kg/crll and the outlet side pressure 1 k, 9/cn for a mixed gas of 50% hydrogen and 50% nitrogen.
A gas separation test was conducted with the temperature set to 1.

多孔質膜を通過した後のガス組成は、中和加水分解して
得た焼成体の場合には水素58チ、窒素42%であった
ものが、熱加水分解して得た焼成体の場合には水素70
%、窒素50%であった。
The gas composition after passing through the porous membrane was 58% hydrogen and 42% nitrogen in the case of the fired body obtained by neutralization hydrolysis, but it was 58% hydrogen and 42% nitrogen in the case of the fired body obtained by thermal hydrolysis. hydrogen 70
%, and 50% nitrogen.

本実施例から酸化チタンの結晶形がルチル型となると、
アナターゼ型の場合に比べ結晶の犬き婆が大きくなるた
め、細孔半径が太き(なり、カス分離性能が悪くな゛る
ことか判明した。
From this example, when the crystal form of titanium oxide becomes rutile type,
It was found that because the size of the crystal is larger than in the case of the anatase type, the pore radius becomes thicker (and the sludge separation performance becomes worse).

実施例4 硫酸法による酸化チタンの製造工程より得られる硫酸チ
タンを熱加水分解してメタチタン酸を得、これを酸化チ
タン換算で1 kgとり出し、これにアルミニウムイソ
プロピレートを加水分解して得たアルミナゾルな酸化ア
ルミニウム換算で250g混合した。次いで、実施例1
と同じ市販微粒子ケイ酸100gケ添加し、十分に攪拌
混合した後、押し出し成形機を使用して直径4關、肉厚
1 mm s長さsocmの管を成形した。
Example 4 Titanium sulfate obtained from the titanium oxide production process using the sulfuric acid method was thermally hydrolyzed to obtain metatitanic acid, 1 kg of this in terms of titanium oxide was taken out, and aluminum isopropylate was hydrolyzed to this to obtain metatitanic acid. 250g of alumina sol in terms of aluminum oxide was mixed. Next, Example 1
After adding 100 g of the same commercially available particulate silicic acid and thoroughly stirring and mixing, an extruder was used to mold a tube with a diameter of 4 mm, a wall thickness of 1 mm, and a length of socm.

1だ比較のためアルミナゾルな全(加えない管も成形し
た。
For comparison, a tube without alumina sol was also molded.

このように成形した2釉の管を100℃で12時間乾燥
した後、850℃の温度で5時間焼成した。この焼成品
をガス分離用膜体として使用するため水銀圧入法による
細孔径分布の測定を、行うと同時に、ガス分離試験を実
施した。
The two-glaze tube thus formed was dried at 100°C for 12 hours and then fired at 850°C for 5 hours. In order to use this fired product as a gas separation membrane, the pore size distribution was measured by mercury intrusion method, and at the same time, a gas separation test was conducted.

第4図て水銀圧入法による細孔半径及び細孔容積測定結
果を示す。第4図において、横軸は細孔半径、縦軸は細
孔容積である。また図中■は本発明品の酸化チタン+酸
化アルミニウム+ケイ酸のデータであり、■は比較品の
酸化チタン+ケイ酸のデータである。比較品0アルミナ
ゾル(酸化アルミニウム)を力1えない場合には平均細
孔半径260Aであったものが、本発明品のアルミナゾ
ル(酸化アルミニウム)を加えることにより平均細孔半
径15Aへと小さくなり、父細孔分布はシャープVCな
っていることがわかる。
Figure 4 shows the results of measuring pore radius and pore volume by mercury intrusion method. In FIG. 4, the horizontal axis is the pore radius and the vertical axis is the pore volume. Further, in the figure, ■ is data for titanium oxide + aluminum oxide + silicic acid of the product of the present invention, and ■ is data for titanium oxide + silicic acid of the comparative product. When the comparative product 0 alumina sol (aluminum oxide) was not used, the average pore radius was 260A, but by adding the alumina sol (aluminum oxide) of the present invention, the average pore radius was reduced to 15A, It can be seen that the pore distribution is sharp VC.

次VC2種の多孔質膜についてガス分離試験装置を使用
して水素50%、窒素5゛0%の混合ガスについて入口
側圧力6に、g/crd、ti30側圧力1kg / 
crdに設定し、ガス分離試験′を実施したところ、多
孔質膜を流過した後のガス組成は不発明品の酸化チタン
+酸化アルミニウム+ケイ酸の場合Wは水素69%、窒
素61%であるのに対し、比較品の酸化チタン+ケイ酸
の場合には水素60%、窒素40%となった。
Next, using a gas separation test device for two types of VC porous membranes, for a mixed gas of 50% hydrogen and 50% nitrogen, the inlet side pressure is 6 g/crd, and the ti30 side pressure is 1 kg/
crd and conducted a gas separation test, the gas composition after passing through the porous membrane was 69% hydrogen and 61% nitrogen in the case of uninvented titanium oxide + aluminum oxide + silicic acid. In contrast, the comparative product titanium oxide + silicic acid contained 60% hydrogen and 40% nitrogen.

本実施例から多孔質体の細孔径を小さくするためアルミ
ナゾルが有効であることがわかる。
This example shows that alumina sol is effective for reducing the pore diameter of a porous body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第4図は本発明の実施例で得られた多
孔質膜体の細孔径分布及び細孔容積を示す図表である。 第2図は多孔質膜体のアナターゼ型酸化チタンについて
ケイ酸を添加した場合としない場合のX線N折パターン
の違いを示す図表である。 復代理人  内  1)    明 復代理人  萩  原  亮  − 図 〜 妊 (6ん)−量1m (仝15つ)陣峰glf’ 用ψ
FIG. 1, FIG. 3, and FIG. 4 are charts showing the pore size distribution and pore volume of porous membranes obtained in Examples of the present invention. FIG. 2 is a chart showing the difference in the X-ray N-fold pattern of anatase-type titanium oxide of a porous membrane with and without addition of silicic acid. Sub-agent 1) Clear agent Ryo Hagiwara - Figure ~ Pregnancy (6 mm) - Amount 1 m (15 pieces) Jinho glf' ψ

Claims (1)

【特許請求の範囲】[Claims] ゾル化したメタチタン酸とアルミナゾル及び微粒子ケイ
酸の混合物を成形し、乾燥、焼成することを特徴とする
多孔質膜体の製造方法。
A method for producing a porous membrane body, which comprises forming a mixture of sol-formed metatitanic acid, alumina sol, and fine-particle silicic acid, drying, and firing.
JP5392083A 1983-03-31 1983-03-31 Manufacture of porous membrane body Pending JPS59179112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5392083A JPS59179112A (en) 1983-03-31 1983-03-31 Manufacture of porous membrane body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5392083A JPS59179112A (en) 1983-03-31 1983-03-31 Manufacture of porous membrane body

Publications (1)

Publication Number Publication Date
JPS59179112A true JPS59179112A (en) 1984-10-11

Family

ID=12956148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5392083A Pending JPS59179112A (en) 1983-03-31 1983-03-31 Manufacture of porous membrane body

Country Status (1)

Country Link
JP (1) JPS59179112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959233A (en) * 1982-09-28 1984-04-05 Mitsui Kensaku Toishi Kk Ceramic hollow yarn body for filtering bacterial cell
US5139540A (en) * 1991-07-24 1992-08-18 Texaco Inc. Membrane separation of gases
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
US5183482A (en) * 1991-06-19 1993-02-02 Texaco Inc. Separation by membrane techniques
WO2005023403A1 (en) * 2003-09-04 2005-03-17 Korea Research Institute Of Chemical Technology Titania composite membrane for water/alcohol separation, and preparation thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959233A (en) * 1982-09-28 1984-04-05 Mitsui Kensaku Toishi Kk Ceramic hollow yarn body for filtering bacterial cell
US5183482A (en) * 1991-06-19 1993-02-02 Texaco Inc. Separation by membrane techniques
US5139540A (en) * 1991-07-24 1992-08-18 Texaco Inc. Membrane separation of gases
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
WO2005023403A1 (en) * 2003-09-04 2005-03-17 Korea Research Institute Of Chemical Technology Titania composite membrane for water/alcohol separation, and preparation thereof
JP2007503995A (en) * 2003-09-04 2007-03-01 コリア リサーチ インスティテュートオフ゛ ケミカル テクノロシ゛ー Titania composite membrane for water / alcohol separation and method for producing the same
US7655277B2 (en) 2003-09-04 2010-02-02 Korea Research Institute Of Chemical Technology Titania composite membrane for water/alcohol separation, and preparation thereof

Similar Documents

Publication Publication Date Title
US5851649A (en) Inorganic porous sintered body and filter
Zhao et al. Highly adsorptive, MOF‐functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition
JP5108525B2 (en) Method for producing zeolite membrane
JP4855582B2 (en) Mesoporous silica, mesoporous silica composite and production method thereof
JP2024016125A (en) Method for separating ammonia and zeolite
JPS62160121A (en) Porous diaphragm
JPH08509199A (en) Method for manufacturing porous ceramic material
CN106745034A (en) A kind of method of molecular sieves of double template one-step synthesis SSZ 13 and its application
JP3757115B2 (en) Zeolite seed crystal and method for producing zeolite membrane using the seed crystal
JPS59179112A (en) Manufacture of porous membrane body
WO2016158580A1 (en) Ddr-type zeolite seed crystal and method for manufacturing ddr-type zeolite membrane
Essien et al. Highly porous silica network prepared from sodium metasilicate
JP2000237561A (en) Fer type zeolite membrane, its production and method for concentrating organic acid using the same
CN109319806A (en) A kind of method of the integral formula SSZ-13 molecular sieve of mixed templates dry glue
Madhusoodana et al. Preparation of ZSM-5 zeolite honeycomb monoliths using microporous silica obtained from metakaolinite
JPH11240777A (en) Alpha-alumina porous aggregated sintered compact, its production and use thereof
JP2016190200A (en) Manufacturing method for zeolite film
JP5366189B2 (en) Method for producing zeolite material comprising zeolite or zeolite membrane
JP6902661B2 (en) Gas separation method
WO1998016467A1 (en) Porous inorganic composite and method for separating metal elements using the same
CN110240492A (en) A kind of preparation method of the ceramic separation film supporter of acid and alkali-resistance
JP7394607B2 (en) Crystal axis oriented zeolite membrane and its manufacturing method
JP4239255B2 (en) Titanium oxide porous sintered body, production method and use thereof
JPS6127091B2 (en)
JPS5969424A (en) Manufacture of alumina having low bulk density