JPS59145007A - Preparation of porous diaphragm for gas separation - Google Patents

Preparation of porous diaphragm for gas separation

Info

Publication number
JPS59145007A
JPS59145007A JP1820583A JP1820583A JPS59145007A JP S59145007 A JPS59145007 A JP S59145007A JP 1820583 A JP1820583 A JP 1820583A JP 1820583 A JP1820583 A JP 1820583A JP S59145007 A JPS59145007 A JP S59145007A
Authority
JP
Japan
Prior art keywords
porous
porous diaphragm
diaphragm
particle size
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1820583A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1820583A priority Critical patent/JPS59145007A/en
Publication of JPS59145007A publication Critical patent/JPS59145007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a diaphragm excellent in strength and gas separability, by molding, drying and baking a mixture of a silica sol or alumina sol fine particle with a specific particle size and a fine particle comprising a material good in moldability. CONSTITUTION:This porous diaphragm is obtained by such a method that an extremely fine silica or alumina sol with a particle size of 30-500Angstrom are well kneaded with a particle good in moldability and having a particle size of 1,000- 10,000Angstrom comprising titania, zirconia, clay or silicon carbide in a water contained state and the kneaded mixture is molded into a porous diaphragm which is, in turn, dried and baked. The obtained diaphragm generates no crack in a drying stage, can be formed into a large molded body and has a fine pore size capable of performing gas separation in good efficiency.

Description

【発明の詳細な説明】 本発明は、ガスの分離等に使用する多孔質隔膜の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a porous diaphragm used for gas separation and the like.

金属粉末あるいはセラミック粉末を焼結したシ、又はフ
ッ素樹脂等の有機合成樹脂粉末を圧縮成形した多孔質体
を基体とした微小孔径、特に平均数10〜数100Xの
超微細な孔を有する多孔質隔膜を用いて、例えばガス拡
散法により気体を分離濃縮する場合、効率よく行うため
には多孔質隔膜を可能な限シ薄くすることが必要である
が、強度の点から極端に薄くすることはできない。又、
このような場合には任意の形状に成形することは困難で
あった。そこで、ガス拡散の妨害とならないよう孔径が
大きく且つ充分の強度を有するようにある程度の厚みを
有するガス透過性の高い多孔質体とするか、又は金網様
のものを用いて微細孔を有する薄い多孔質隔膜を補強し
て多層構造とする方策等がとられている。
Porous material with micro pores, especially ultra-fine pores with an average size of several tens to several hundreds of times When separating and concentrating gases using a diaphragm, for example, by the gas diffusion method, it is necessary to make the porous diaphragm as thin as possible in order to perform it efficiently, but from the viewpoint of strength, it is not recommended to make it extremely thin. Can not. or,
In such cases, it is difficult to mold into any desired shape. Therefore, it is necessary to use a porous material with high gas permeability that has a large pore diameter and a certain thickness to have sufficient strength so as not to impede gas diffusion, or to use a porous material with high gas permeability that has fine pores such as a wire mesh. Measures have been taken to strengthen the porous diaphragm to create a multilayer structure.

例えば、多層構造の多孔質膜を管状とするためには各種
の方法があるが、一般にはシート状の多層多孔質隔膜を
円管状に成形加工し、端末をつき合せ溶接あるいは重ね
合せ接着を行っている。しかし、多孔質体が金属のよう
に柔軟性の高いものでは円管成形も可能であるか、セラ
ミックのように柔軟性のないものでは極めて困難である
。又、多孔質金属では金属であっても多孔質体であるた
め空孔の存在によシ強度が無孔4質体に比べて低くな)
、円管成形可能な曲率半径に限度があシ、細い管状に成
形することは極めて困難であった。
For example, there are various methods for making a multilayered porous membrane into a tubular shape, but in general, a sheet-like multilayered porous diaphragm is formed into a circular tube shape, and the ends are butt welded or overlapped and bonded. ing. However, if the porous material is highly flexible, such as metal, it is possible to form a circular tube, but if the porous material is inflexible, such as ceramic, it is extremely difficult. Also, since porous metals are porous materials, their strength is lower than that of non-porous tetrahedral materials due to the presence of pores.)
However, there was a limit to the radius of curvature that could be formed into a circular tube, and it was extremely difficult to form it into a thin tube.

そこで、このような難点を解決する方法として、多孔質
支持管とその内側又は外側に配置したパイプ又は芯金と
を同じ円状に保持して、多孔質支持管とパイプ又は芯金
とに振動を与えながら多孔質支持管とパイプ又は芯金上
の間の空隙部に気体を噴出させて空隙部内に粉末を均一
に充填し、空隙部内に充填した粉末を多孔質支持管に静
圧成形によシ圧着し、多孔質支持管に粉末の圧着層を形
成する管状多孔質膜の成形法が知られている(特開昭5
0−77410号公報参照)が、粉末を均一に充填する
こと及び非常に薄い膜を作製することなど実際には困難
な点が多い。
Therefore, as a method to solve such difficulties, the porous support tube and the pipe or core metal placed inside or outside of it are held in the same circular shape, and the porous support tube and the pipe or core metal are vibrated. The powder is uniformly filled in the gap by blowing gas into the gap between the porous support tube and the top of the pipe or core metal while giving a A method for forming a tubular porous membrane is known, in which the porous membrane is tightly crimped to form a crimped layer of powder on a porous support tube (Japanese Unexamined Patent Publication No.
However, there are many difficulties in practice, such as uniformly filling the powder and producing a very thin film.

本発明者等は、ガスの分離勢に使用する多孔質隔膜につ
いて上記のような問題点を克服するため鋭意研究を実施
した結果、本発明を開発するに至ったものである。
The present inventors conducted intensive research to overcome the above-mentioned problems regarding porous diaphragms used for gas separation, and as a result, they developed the present invention.

本発明は、多孔質隔膜の製造において、シリカゾルある
いはアルミナゾルという粒子径30〜500大の非常に
小さい粒、子と、チタ=乙シ/I/ フェア、粘土、シ
リコンカーパイトドいった成形性が良く、しかも粒子径
1,000〜10,000にの比較的小さい粒子を含水
状態でよく混練した後、圧縮成形法あるいは押し出し成
形法等により希望する多孔質隔膜の形に成形し、その後
、乾燥、焼成を行うことを特徴とするガス分離用多孔質
隔膜の製造方法に関するものである。
In the production of porous diaphragms, the present invention uses very small particles such as silica sol or alumina sol with a particle size of 30 to 500, and moldability such as titanium, clay, and silicon carpite. After kneading well and relatively small particles with a particle size of 1,000 to 10,000 in a water-containing state, they are molded into the desired porous diaphragm shape by compression molding or extrusion molding, and then dried. The present invention relates to a method for manufacturing a porous diaphragm for gas separation, which is characterized by performing firing.

多孔質隔膜を使用してガス分離を効率良く行うためには
、多孔質隔膜の細孔直径は30〜500X、好ましくは
100〜200Xであることが望ましい。また、微粒子
を成形、乾燥、焼成して得られる多孔質体の細孔直径は
、大略多孔質体を形成する微粒子の大きさのオーダーと
なる。
In order to efficiently perform gas separation using a porous diaphragm, it is desirable that the pore diameter of the porous diaphragm is 30 to 500X, preferably 100 to 200X. Furthermore, the pore diameter of the porous body obtained by molding, drying, and firing the fine particles is approximately on the order of the size of the fine particles forming the porous body.

従って、ガス分離性能の良い多孔質隔膜を製造するため
に、シリカゾルあるいはアルミナゾルといった粒子径3
0〜5ooXの粒子を成形。
Therefore, in order to produce a porous diaphragm with good gas separation performance, it is necessary to use silica sol or alumina sol, which has a particle size of 3.
Molding particles of 0 to 5ooX.

乾燥、焼成すればよい。しかし、このような微粒子の成
形体は、乾燥の段階において収縮が大きいため、ひび割
れを生じ、大きな成形体を得ることは■難〜である。
It can be dried and fired. However, such a molded product of fine particles undergoes a large shrinkage during the drying stage, and therefore cracks occur, making it difficult to obtain a large molded product.

一方、チタニア、ジルコニア、粘土といった粒子径1,
000〜1o、oooKの粒子を成形。
On the other hand, particles such as titania, zirconia, and clay have a particle size of 1,
Molding particles of 000 to 1o, oooK.

乾燥、焼成する場合、成形体の乾燥の段階における収縮
は大きな問題ではないが、生成する細孔の大きさが数1
00A以上であシ、この成形体(多孔質隔膜)を使用し
てのガス分離は細孔径が大きすぎて効率が悪く、充分な
ガス分離性が得られない。
When drying and firing, shrinkage during the drying stage of the molded product is not a big problem, but the size of the pores that are generated is several orders of magnitude larger.
If it is 00A or more, gas separation using this molded body (porous diaphragm) is inefficient because the pore diameter is too large, and sufficient gas separation performance cannot be obtained.

本発明では、前記したように、シリカゾルあるいはアル
ミナゾルという粒子径30〜500Xの粒子とチタニア
、ジルコニア、粘土、シリコンカーバイドといった粒子
径1,000〜10,000大の成形性の良い粒子を充
分に混合した後、圧縮成形法あるいは押し出し成形法に
よシ任意の形状の多孔質隔膜に成形した後、乾燥、焼成
するため、成形性が良く、かつガス分離性能の良い多孔
質隔膜が得られるのである。
In the present invention, as described above, particles of silica sol or alumina sol with a particle size of 30 to 500X are sufficiently mixed with particles of titania, zirconia, clay, silicon carbide, etc. with a particle size of 1,000 to 10,000 and good moldability. After that, it is molded into a porous diaphragm of any shape by compression molding or extrusion molding, and then dried and fired, resulting in a porous diaphragm with good moldability and gas separation performance. .

本発明で用いる粒子径30〜500Xの粒子。Particles having a particle size of 30 to 500X used in the present invention.

粒子径1,000〜1o、oooKの粒子ともそれぞれ
粒子の大きさはなるべく均一であることが望ましい。粒
子径3o〜s o o4の粒子と粒子径1,000〜1
0,00oXの粒子の混合割合ハ、重量比で20 : 
80〜80 : 200割合が好ましく、成形性あるい
はガス分離性能等考慮した上で、混合する2種類の粒子
の性質にょシ上記範囲内で決定する。
It is desirable that the size of each particle is as uniform as possible for particles with particle diameters of 1,000 to 1o and oooK. Particles with a particle size of 3o~soo4 and a particle size of 1,000~1
The mixing ratio of 0.00oX particles is 20 by weight:
A ratio of 80 to 80:200 is preferable, and the properties of the two types of particles to be mixed are determined within the above range, taking into consideration moldability, gas separation performance, etc.

以下実施例によシ本発明の詳細な説明する。The present invention will be explained in detail by way of examples below.

実施例1 平均粒子径1,500にのチタニアと粒子径2ooXの
アルミナゾルの乾燥物を重量割合で1:1によく混合し
た後、少量の水を加えて押し出し成形できるような軟が
さにし、次いで押し出し成形機によシ厚さ1fi、幅2
0m!nの板状に押し出し成形し、自然乾燥を1日行っ
た後、電気炉中に入れ、t a o ℃/h の昇温速
度で900℃まで加熱し、900℃において2時間保持
した後、炉冷して多孔質隔膜を得た。
Example 1 After thoroughly mixing dry titania with an average particle size of 1,500 and alumina sol with a particle size of 2OOX in a weight ratio of 1:1, a small amount of water was added to make it soft enough to extrude. Then, it was molded into an extruder with a thickness of 1fi and a width of 2.
0m! After extrusion molding into a plate shape of n, air drying for 1 day, put in an electric furnace, heated to 900 ° C at a temperature increase rate of ta o ° C / h, and held at 900 ° C for 2 hours, A porous diaphragm was obtained by cooling in a furnace.

また比較のための多孔質隔膜として、平均粒子径1.5
0OAのチタニアのみを使用して、上記と同様に多孔質
隔膜を得た。
In addition, as a porous diaphragm for comparison, an average particle size of 1.5
A porous diaphragm was obtained as above using only 0OA of titania.

このようにして得た2種の多孔質隔膜について水銀圧入
法によυ細孔径分布を求めた。その結果を第1図に示す
。第1図において、横軸は細孔半径(え)、縦軸は累積
細孔容積(ac/、)を示し、1はチタニアだけの比較
多孔質隔膜であシ、2はチタニアとアルミナゾルの混合
物の本発明による多孔質隔膜である。
The υ pore size distribution of the two types of porous membranes thus obtained was determined by mercury intrusion method. The results are shown in FIG. In Figure 1, the horizontal axis shows the pore radius (e), and the vertical axis shows the cumulative pore volume (ac/,), where 1 is a comparison porous diaphragm made only of titania, and 2 is a mixture of titania and alumina sol. A porous diaphragm according to the present invention.

また、チタニアだけの比較多孔質隔膜は、平均細孔半径
が51s Og、細孔容積が0.15 rx−/yであ
るのに比べ、チタニアとアルミナゾルの混合物の本発明
だよる多孔質隔膜では、平均細孔半径が14oX、細孔
容積が0.275 cr、/y テあった。
In addition, the comparison porous diaphragm made only of titania has an average pore radius of 51 s Og and a pore volume of 0.15 rx-/y, whereas the porous diaphragm of the present invention made of a mixture of titania and alumina sol has an average pore radius of 51 s Og and a pore volume of 0.15 rx-/y. The average pore radius was 14oX, and the pore volume was 0.275 cr/y.

このような2種の多孔質隔膜について、ガス分離試験装
置を使用して、水素50チ、窒素50係の混合ガスにつ
いて入ロ側圧力5Kg/am2.出ロ側圧力1にり/c
rn2に設定し、ガス分離試験を実施したところ、チタ
ニアだけの比較多孔質隔膜では水素53%、窒素47%
の出口ガス組成であったのに比べ、チタニアとアルミナ
ゾルの混合物の本発明による多孔質隔膜では水素71%
、窒素29q6の出口ガス組成であシ、本発明による多
孔質隔膜のガス分離性能が優れていることが明らかとな
った。
For these two types of porous diaphragms, using a gas separation test device, a mixed gas of 50 parts hydrogen and 50 parts nitrogen was tested at an inlet pressure of 5 kg/am2. Outlet side pressure 1/c
When a gas separation test was conducted with the setting set to rn2, a comparison porous membrane made only of titania had 53% hydrogen and 47% nitrogen.
The porous diaphragm of the present invention made of a mixture of titania and alumina sol had an exit gas composition of 71% hydrogen.
It was revealed that the gas separation performance of the porous diaphragm according to the present invention was excellent when the outlet gas composition was 29q6 and 29q6 nitrogen.

実施例2 平均粒子径2.50OAのカオリン(粘土)と粒子径2
00xのアルミナゾルの乾燥物を重量割合で1:2によ
く混合した後、少量の水を加えて押し出し成形できるよ
うな軟かさにし、次いで押し出し成形機により厚さ1喘
9幅20閣の板状に押し出し成形し、自然乾燥を1日行
った後、電気炉中に入れ100℃/h の昇温速度で9
00℃まで加熱し、900℃において2時間保持した後
、炉冷して多孔質隔膜を得た。
Example 2 Kaolin (clay) with an average particle size of 2.50OA and particle size 2
After thoroughly mixing dry 00x alumina sol in a weight ratio of 1:2, add a small amount of water to make it soft enough to extrude, and then use an extrusion molding machine to form a plate with a thickness of 1 mm and a width of 20 mm. After extrusion molding into
The mixture was heated to 00°C, held at 900°C for 2 hours, and then cooled in a furnace to obtain a porous diaphragm.

また、比較のための多孔質隔膜として、平均粒子径2,
5ooXのカオリンのみを使用して上記と同様に多孔質
隔膜を得た。
In addition, as a porous diaphragm for comparison, an average particle size of 2,
A porous diaphragm was obtained in the same manner as above using only 5ooX kaolin.

このようにして得た2種の多孔質隔膜について水銀圧入
法によシ細孔径分布を求めた。その結果を第2図に示す
。第2図において、横軸は細孔半径(X)、縦軸は累積
細孔容積(Cc/、)を示し、31′i、カオリンだけ
の比較多孔質隔膜であシ、4はカオリンとアルミナゾル
の混合物の本発明による多孔質隔膜であする。
The pore size distribution of the two types of porous diaphragms thus obtained was determined by mercury intrusion method. The results are shown in FIG. In Fig. 2, the horizontal axis shows the pore radius (X), and the vertical axis shows the cumulative pore volume (Cc/, A porous diaphragm according to the invention of a mixture of.

また、カオリンだけの比較多孔質隔膜では、平均細孔半
径が73oX、細孔容積がo、11cc/。
In addition, a comparative porous diaphragm made only of kaolin had an average pore radius of 73° and a pore volume of 11 cc/.

であるのに比べ、カオリンとアルミナゾルの混合物の本
発明による多孔質隔膜では、平均細孔径が140χ、細
孔容積が0.28 CI−/yであった。
In comparison, the porous diaphragm of the present invention made of a mixture of kaolin and alumina sol had an average pore diameter of 140.chi. and a pore volume of 0.28 CI-/y.

このような2種の多孔質隔膜について、ガス分離試験装
置を使用して、水素50チ、窒素50チの混合ガスにつ
いて入口側圧力5 K17cm2.出口側圧力1Kq/
cm2に設定し、ガス分離試験を実施したところ、カオ
リンだけの比較多孔質隔膜では水素51%、窒素49%
の出口ガス組成であったのに比べ、カオリンとアルミナ
ゾルの混合物の本発明による多孔質隔膜では水素73チ
For these two types of porous diaphragms, a gas separation test device was used to test a mixed gas of 50 cm of hydrogen and 50 cm of nitrogen at an inlet side pressure of 5 K17 cm2. Outlet side pressure 1Kq/
cm2 and conducted a gas separation test, a comparative porous membrane made only of kaolin had 51% hydrogen and 49% nitrogen.
compared to 73% hydrogen in the porous membrane of the present invention made of a mixture of kaolin and alumina sol.

窒素27チの出口ガス組成となシ、本発明による多孔質
隔膜のガス分離性能が優れていることが明らかとなった
It became clear that the gas separation performance of the porous diaphragm according to the present invention was excellent when the outlet gas composition was 27% nitrogen.

実施例3 平均粒子径3.oooXのジルコニアと粒子径3oXの
シリカゾルの乾燥物を重量割合で1=1によく混合した
後、少量の水を加えて押し出し成形できるような軟かさ
にし、次いで押し出し成形機によシ厚さ1咽2幅20簡
の板状に押し出し成形し、自然乾燥を1日行った後、電
気炉中に入れ100℃/hの昇温速度で1,200℃ま
で加熱し、1,200℃において2時間保持した後、炉
冷して多孔質隔膜を得た。
Example 3 Average particle size 3. After thoroughly mixing oooX zirconia and dry silica sol with a particle size of 3oX in a weight ratio of 1=1, add a small amount of water to make it soft enough to extrude, and then put it in an extruder to a thickness of 1 It was extruded into a plate shape with a width of 20 mm, air-dried for 1 day, then placed in an electric furnace and heated to 1,200°C at a temperature increase rate of 100°C/h. After holding for a period of time, the mixture was cooled in a furnace to obtain a porous diaphragm.

また比較のための多孔質隔膜として平均粒子径3.oo
oKのジルコニアのみを使用して上記と同様にして多孔
質隔膜を得た。
For comparison, a porous diaphragm with an average particle diameter of 3. oo
A porous diaphragm was obtained in the same manner as above using only OK zirconia.

このようにして得た2種の多孔質隔膜について水銀圧入
法によシ細孔径分布を求めた。その結果を第3図に示す
。第3図において、横軸は細孔半径(A)−、縦軸は累
積細孔容積(cc/、)を示し、5はジルコニア単味の
比較多孔質隔膜であシ、6はジルコニアとシリカゾルの
混合物の本発明忙よる多孔質隔膜である。
The pore size distribution of the two types of porous diaphragms thus obtained was determined by mercury intrusion method. The results are shown in FIG. In Fig. 3, the horizontal axis shows the pore radius (A)-, the vertical axis shows the cumulative pore volume (cc/,), 5 is a comparison porous diaphragm made of only zirconia, and 6 is a porous diaphragm made of zirconia and silica sol. A porous diaphragm according to the present invention is a mixture of the following.

また、ジルコニアだけの比較多孔質隔膜では、平均細孔
半径が74oK、細孔容積がQ、15ct/りであるの
に比べ、ジルコニアとシリカゾルの混合物の本発明によ
る多孔質隔膜では、平均細孔半径が2oom、細孔容積
が0.21 oC/yとなった。
In addition, the comparative porous diaphragm made only of zirconia had an average pore radius of 74°K and a pore volume of Q, 15 ct/liter, whereas the porous diaphragm of the present invention made of a mixture of zirconia and silica sol had an average pore radius of 74°K and a pore volume of 15 ct/liter. The radius was 2 oom and the pore volume was 0.21 oC/y.

なお、ジルコニアとシリカゾルの混合物の本発明による
多孔質隔膜では、細孔半径の分布が5aXとaaaXの
2ケ所にある。
In addition, in the porous diaphragm according to the present invention made of a mixture of zirconia and silica sol, the pore radius distribution is in two locations, 5aX and aaaX.

このような2種の多孔質隔膜について、ガス分離試験装
置を使用して、水素50%、メタン50係の混合ガスに
ついて入口側圧力3Kg/cm2゜出口側圧力1に9/
c1n”に設定し、ガス分離試験を実施したところ、ジ
ルコニアだけの比較多孔質[Eでは水素52%、メタン
48%の出口ガス組成であったのに比べ、ジルコニアと
シリカゾルの混合物の本発明による多孔質隔膜では水素
65%、メタン35チの出口ガス組成となシ、本発明に
よる多孔質隔膜のガス分離性能が優れているととが明ら
かとなった。
For these two types of porous diaphragms, using a gas separation test device, a mixed gas of 50% hydrogen and 50% methane was tested with an inlet pressure of 3 kg/cm2 and an outlet pressure of 1/9 kg/cm2.
When a gas separation test was carried out with the zirconia sol set at It was revealed that the porous diaphragm had an outlet gas composition of 65% hydrogen and 35% methane, and that the porous diaphragm according to the present invention had an excellent gas separation performance.

実施例4 平均粒子径2.oooXのシリコンカーバイドと粒子径
solのアルミナゾルの乾燥物を重量割合で1:1によ
く混合した後、少量の水を加えて押し出し成形できるよ
うな軟かさとし、次いで押し出し成形機によシ厚さ1m
、幅20+mの板状に押し出し成形し、自然乾燥を1日
行った後、電気炉中に入れ100℃/h の昇温速度で
1,500℃まで加熱し、1,500℃において2時間
保持した後、炉冷して多孔質隔膜を得た。
Example 4 Average particle size 2. After thoroughly mixing oooX silicon carbide and dry alumina sol with a particle size of 1:1 in a weight ratio of 1:1, add a small amount of water to make it soft enough to extrude, and then put it into an extruder to give it a thickness. 1m
, extruded into a plate shape with a width of 20+ m, air-dried for 1 day, then placed in an electric furnace and heated to 1,500°C at a temperature increase rate of 100°C/h, and held at 1,500°C for 2 hours. After that, the mixture was cooled in a furnace to obtain a porous diaphragm.

また比較のための多孔質隔膜として平均粒子径2,00
0Aのシリコンカーバイドのみを使用し、上記と同様に
して多孔質隔膜を得た。
In addition, as a porous diaphragm for comparison, the average particle size was 2,000.
A porous diaphragm was obtained in the same manner as above using only 0A silicon carbide.

このようにして得た2種の多孔質隔膜について水銀圧入
法によシ細孔径分布を求めた。その結果を第4図に示す
。第4図において、横軸は細孔半径(X)、縦軸は累積
細孔容積(工h)を示し、7はシリコンカーバイド単味
の比較多孔質隔膜であシ、8はシリコンカーバイドとア
ルミナゾルの混合物の本発明による多孔質隔膜である。
The pore size distribution of the two types of porous diaphragms thus obtained was determined by mercury intrusion method. The results are shown in FIG. In Fig. 4, the horizontal axis shows the pore radius (X) and the vertical axis shows the cumulative pore volume (H), 7 is a comparative porous diaphragm made of silicon carbide alone, and 8 is a comparative porous diaphragm made of silicon carbide and alumina sol. A porous diaphragm according to the invention of a mixture of.

また、シリコンカーバイドだけの比較多孔質隔膜では、
平均細孔半径が430χ、細孔容積が0.20ω/1 
であるのに比べ、シリコンカーバイドとアルミナゾルの
混合物の本発明による多孔質隔膜では、平均細孔半径が
1soX、細孔容積が0.25cc/p  となった。
In addition, with a comparative porous diaphragm made only of silicon carbide,
Average pore radius is 430χ, pore volume is 0.20ω/1
In contrast, the porous diaphragm of the present invention made of a mixture of silicon carbide and alumina sol had an average pore radius of 1soX and a pore volume of 0.25 cc/p.

なお、シリコンカーバイドとアルミナゾルの混合物の本
発明による多孔質隔膜では細孔半径の分布が60λと2
50xの2ケ所にある。
In addition, in the porous diaphragm according to the present invention made of a mixture of silicon carbide and alumina sol, the distribution of pore radius is 60λ and 2.
There are two locations at 50x.

このような28I!の多孔質隔膜について、ガス分離試
験装置を使用して、水素5o%、−酸化炭素50%の混
合ガスについて入口側圧力3KgZ側2.出ロ側圧力1
Kg/cm2に設定し、ガス分離試験を実施したところ
、シリコンカーバイドだけの比較多孔質隔膜では水素5
4係、−酸化炭素464の出口ガス組成でめったのに比
べ、シリコンカニバイトとアルミナゾルの混合物の本発
明による多孔質隔膜では水素72%、−酸化炭素28%
の出口ガス組成となシ、本発明にょる多孔質隔膜のガス
分離性能が優れていることが明らかとなった。
28I like this! Regarding the porous diaphragm, using a gas separation test device, a mixed gas of 50% hydrogen and 50% carbon oxide was tested at an inlet pressure of 3 kg on the Z side. Outlet side pressure 1
When a gas separation test was carried out using a gas separation test of 5 kg/cm2, it was found that a comparative porous membrane made only of silicon carbide had hydrogen of 5.
Part 4, -72% hydrogen and 28% carbon oxide in the porous diaphragm according to the invention of a mixture of silicon cannibite and alumina sol, compared to rarely with an exit gas composition of 464 -carbon oxides.
It became clear that the gas separation performance of the porous diaphragm according to the present invention was excellent with respect to the outlet gas composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の方法にょル試作した多孔質隔
膜の細孔径分布を示す図である。 復代理人  内  1)   明 復代理人  萩  原  亮  − 第1図 第2図 細 孔 卒 径 (入) 細孔半径(入) 細孔半径値)
FIGS. 1 to 4 are diagrams showing the pore size distribution of a porous diaphragm experimentally produced using the method of the present invention. Sub-agent 1) Meiji agent Ryo Hagiwara - Figure 1 Figure 2 Pore diameter (in) Pore radius (in) Pore radius value)

Claims (1)

【特許請求の範囲】[Claims] 粒子径30〜500Aのシリカゾル又はアルミナゾルの
微粒子と粒子径1,000〜10.000χの成形性の
よい微粒子を混合した後、成形、乾燥、焼成することを
特徴とするガス分離用多孔質隔膜の製造方法。
A porous diaphragm for gas separation characterized in that fine particles of silica sol or alumina sol with a particle size of 30 to 500A and fine particles with good moldability of a particle size of 1,000 to 10,000χ are mixed, then molded, dried, and fired. Production method.
JP1820583A 1983-02-08 1983-02-08 Preparation of porous diaphragm for gas separation Pending JPS59145007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1820583A JPS59145007A (en) 1983-02-08 1983-02-08 Preparation of porous diaphragm for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1820583A JPS59145007A (en) 1983-02-08 1983-02-08 Preparation of porous diaphragm for gas separation

Publications (1)

Publication Number Publication Date
JPS59145007A true JPS59145007A (en) 1984-08-20

Family

ID=11965134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1820583A Pending JPS59145007A (en) 1983-02-08 1983-02-08 Preparation of porous diaphragm for gas separation

Country Status (1)

Country Link
JP (1) JPS59145007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases

Similar Documents

Publication Publication Date Title
US20110033772A1 (en) Sintered porous structure and method of making same
JPH08510159A (en) Method for producing ceramic hollow fibers, especially hollow fiber membranes for microfiltration, ultrafiltration and gas separation
JPS62160121A (en) Porous diaphragm
Monash et al. Various fabrication methods of porous ceramic supports for membrane applications
JPS61500221A (en) Porous material and tubular filter made of the material
Zhang et al. Fabrication and characterization of dense BaCo0. 7Fe0. 2Nb0. 1O3− δ tubular membrane by slip casting techniques
JPS61238303A (en) Preparation of microporous membrane
JPS59145007A (en) Preparation of porous diaphragm for gas separation
GB2204064A (en) Producing sintered porous metal articles centrifugal casting
JPS5959224A (en) Preparation of porous diaphragm
CN106474937A (en) firing process of porous stainless steel membrane
JP3745374B2 (en) Metal filters for high temperature applications
JPS59179112A (en) Manufacture of porous membrane body
JP2002282629A (en) Method for manufacturing multilayer-structured ceramic filter
JPS59147605A (en) Preparation of porous diaphragm for gas separation
RU2579713C2 (en) Method of producing of filtration material
JPS6127091B2 (en)
JPS5910306A (en) Porous diaphragm
JP3195875B2 (en) Ceramic separation membrane
CN113695577B (en) Ti-Ti 5 Si 3 Porous inner wall gradient membrane tube and preparation method thereof
JPS59109203A (en) Porous membrane
JPS5992001A (en) Preparation of porous diaphragm
JPH03202106A (en) Size separation device
JPH04338180A (en) Production of porous zirconia substrate
JP2001206785A (en) Method of producing silicon carbide porous body