JPS59147478A - Semiconductor laser device and manufacture thereof - Google Patents
Semiconductor laser device and manufacture thereofInfo
- Publication number
- JPS59147478A JPS59147478A JP1982383A JP1982383A JPS59147478A JP S59147478 A JPS59147478 A JP S59147478A JP 1982383 A JP1982383 A JP 1982383A JP 1982383 A JP1982383 A JP 1982383A JP S59147478 A JPS59147478 A JP S59147478A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- semiconductor
- width
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2081—Methods of obtaining the confinement using special etching techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は埋め込みへテロ型の半導体レーザ装置およびそ
の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a buried hetero type semiconductor laser device and a manufacturing method thereof.
半導体レーザ装置の高出力化の試みは数多くの提案がな
されている。活性層に接していわゆる光ガイド層を設け
たり、レーザ光の出力端面を透明化することなどがその
代表的な例であるが、まだ十分に高出力化を達成したと
はいい難い。Many proposals have been made to try to increase the output of semiconductor laser devices. Typical examples include providing a so-called optical guide layer in contact with the active layer and making the output end face of the laser beam transparent, but it cannot be said that a sufficiently high output has been achieved yet.
本発明は」−記のような従来技術の実情に鑑みてなされ
たもので、その目的は活性層幅を非常に小さくすること
ができ、したがって高出力化及び高出力で横モードの安
定化を達成できる半導体レーザ装置およびその製造方法
を提供すること番とある。The present invention has been made in view of the actual state of the prior art as described in "-", and its purpose is to make it possible to make the active layer width extremely small, thereby increasing the output power and stabilizing the transverse mode at high output. The objective is to provide a semiconductor laser device that can achieve this goal and a method for manufacturing the same.
すなわち1本発明の半導体レーザ装置は、各層(いわゆ
る第1のクラッド層、光ガイド層、活動層第2のクラッ
ド層等)を成長させた後、断面形状が、−1−辺が下辺
より小である台形状になるような方向に沿ってこの積層
された半導体層のメサストライプを形成する。その後2
つのクラッド層の選択エッチを経て製造される当該素子
は、キャップ層の基板側幅よりも光ガイド層の活性層側
幅が広く、かつ該光ガイド層の活性層側幅よりも基板側
1幅か広くなる。したがって活性層直−にのクラッド層
下端の幅よりも半導体基板側のクラッド層上端の幅が太
き(なるので、これにより活性層幅を非常に小さくする
ことができるものである。That is, in the semiconductor laser device of the present invention, after growing each layer (the so-called first cladding layer, optical guide layer, active layer second cladding layer, etc.), the cross-sectional shape is such that the -1- side is smaller than the lower side. A mesa stripe of the laminated semiconductor layers is formed along a direction in which a trapezoidal shape is formed. After that 2
The device is manufactured by selectively etching two cladding layers, and the width of the light guide layer on the active layer side is wider than the width of the cap layer on the substrate side, and the width of the light guide layer on the substrate side is wider than the width of the active layer side. or become wider. Therefore, the width of the upper end of the cladding layer on the semiconductor substrate side is wider than the width of the lower end of the cladding layer directly adjacent to the active layer, so that the width of the active layer can be made very small.
なお、各クラーソド層、活性層、光ガイド層の性IIt
′1は次の様に選択される。In addition, the properties IIt of each clathode layer, active layer, and optical guide layer
'1 is selected as follows.
第1および第2のクラッド層の屈折率は、活性層の屈折
率よりも小さく設定する。光ガイド層の屈折率は活性層
の屈折率よりも小さく、かつクラッド層の屈折率よりも
大きく設定する。又、少なくとも活性層に接するクラッ
ド層および光ガイド層の両層の禁制帯幅は当該活性層の
それより太き(設定する。こうしてフォトンは活性層と
光ガイド両層中に閉じ込められ、一方、キャリアは活性
層に閉じ込められることとなる。The refractive index of the first and second cladding layers is set smaller than the refractive index of the active layer. The refractive index of the light guide layer is set to be smaller than the refractive index of the active layer and larger than the refractive index of the cladding layer. Furthermore, the forbidden band widths of both the cladding layer and the optical guide layer that are in contact with the active layer are set to be wider than that of the active layer.In this way, photons are confined in both the active layer and the optical guide layer, and on the other hand, The carriers will be confined in the active layer.
以下1本発明の実施例を第2図及び第3図により詳細に
説明する。Hereinafter, one embodiment of the present invention will be explained in detail with reference to FIGS. 2 and 3.
第1の実施例
第1図+al〜げ)は本発明をGaAtAs系半導体レ
ーザ装置に適用した場合の、第1の実施例の半導体レー
ザ装置の製造方法の各工程を示す断面図である。なお2
図はレーザ光の放射方向について垂直な方向での断面図
である。FIRST EMBODIMENT FIG. 1 is a cross-sectional view showing each step of a method for manufacturing a semiconductor laser device according to a first embodiment when the present invention is applied to a GaAtAs semiconductor laser device. Note 2
The figure is a cross-sectional view taken in a direction perpendicular to the radiation direction of laser light.
ます、(a)図に示すようにn −GaAs基板1」−
に液相エピタキシャル成長法によりn−Ga(+55A
Ag4s Asクラット層2(厚さ0.8〜2 μm
) 、 n −Gao、74 AAo、26 As光ガ
イド層3(0,4〜3μm)、アンドープGELo86
Al−0月As活性層4 (0,04〜0.47’rn
)+ p−Gao、5sAto、<5Asクラッド層5
(0,8〜2μm)、およびp −Gao、B At
0.2 Asキー1’ ツブ層6(05〜1μm)を順
次成長させる。なお、このときn−クランド層2および
p−クラッド層5の屈折率は、活性層4の屈折率よりも
小さく設定する。更に光ガイド層3の屈折率は活性層4
の屈折率よりも小さくn−クラッド層2の屈折率よりも
太き(設定する。また、キャップ層6としては通常Ga
As層が用いられるが7本実施例では、以後の工程であ
る埋込み成長においてメサストライプ」二にエピタキシ
ャル成長させないこと、および極力オーミックコンタク
トをとりやすくすることを目1自として、前述のように
Gao、B /V、o、2 As層とする。(a) As shown in the figure, an n-GaAs substrate 1''-
n-Ga (+55A
Ag4s As crat layer 2 (thickness 0.8-2 μm
), n-Gao, 74 AAo, 26 As optical guide layer 3 (0.4-3 μm), undoped GELo86
Al-0 As active layer 4 (0.04~0.47'rn
) + p-Gao, 5sAto, <5As cladding layer 5
(0.8-2 μm), and p-Gao, B At
0.2 As key 1' Sequential growth of bulge layer 6 (05 to 1 μm). Note that at this time, the refractive index of the n-cladding layer 2 and the p-cladding layer 5 is set to be smaller than the refractive index of the active layer 4. Furthermore, the refractive index of the light guide layer 3 is the same as that of the active layer 4.
The refractive index of the n-cladding layer 2 is smaller than the refractive index of the n-cladding layer 2.
Although an As layer is used, in this example, the purpose is not to epitaxially grow a mesa stripe in the subsequent step of buried growth, and to make it as easy as possible to make ohmic contact. B /V, o, 2 As layer.
次に、(a)図に示した」1記各層を、断面形状が−に
1辺が下辺よりも小である台形状になるような方向に沿
ってエツチングし、 (b1図に示すようなメザストラ
イブを形成する。このメサ形成において、メサ深さは、
以後の工程である埋込み成長を容易にするため、 Ga
As基板1まで達するようにする。なお1本発明の半導
体レーザ装置にあっては、最終的に光ガイド層3の幅が
活性層4の幅よりも広(なっていることが必要である。Next, each layer shown in Figure 1 (a) is etched along the direction so that the cross-sectional shape becomes a trapezoid with one side smaller than the bottom side, and Form a mesa strip.In this mesa formation, the mesa depth is
In order to facilitate the subsequent step of buried growth, Ga
Make sure that it reaches the As substrate 1. In the semiconductor laser device of the present invention, it is necessary that the width of the optical guide layer 3 be wider than the width of the active layer 4.
なお、このように断面形状が台形状となるようなエツチ
ングはいわゆる反応律速型のエツチング液を用いて実現
させる。たとえば、 GaAs基板の例では9表面を(
100)面とし、メサ状に残存させるべき領域にスi・
ライブ状のエツチング用マスクを< o i 1. >
方向に設ける。そして硫酸、過酸化水素およびエチレン
グリコールの混液からなるエツチング液を用いてエツチ
ングする。こうして台形状断面を持つメサ部が実現され
る。他の材料等の場合も同様の考え方で実現される。Note that etching such that the cross-sectional shape becomes trapezoidal is realized using a so-called reaction rate-limiting etching solution. For example, in the case of a GaAs substrate, the 9 surfaces are (
100) surface, and the area to be left in the form of a mesa is
Live etching mask < o i 1. >
Provided in the direction. Then, etching is performed using an etching solution consisting of a mixture of sulfuric acid, hydrogen peroxide, and ethylene glycol. In this way, a mesa portion having a trapezoidal cross section is realized. The same concept can be used for other materials as well.
次に、(C)図に示すように、 n−クラッド層2およ
びp−クラッド層5のみを選択エツチングにより両側か
ら数11m程度エツチングする。ここで9選択エツチン
グ液としてはHFを用いる。Next, as shown in Figure (C), only the n-cladding layer 2 and the p-cladding layer 5 are selectively etched by about several 11 meters from both sides. Here, HF is used as the 9-selection etching solution.
その後、この選択エツチングにより露出した活性層4の
該露出部分をH3po、、系エツチング液により除去し
、(d)図に示すような断面構造を形成する次に、(e
)図に示すように、メサストライプ全体を液相エピタキ
シャル成長法によりp −aao、55 Aj−0,4
5As層7およびn aaO,55AZo、ll!l
As層8で埋込む。すなわち、メサストライプ領域外で
は逆バイアスとなるため、電流は該メサストライプ領域
のみ流れることになる。なお、この埋込み層7,8は高
抵抗半導体層たとえば+ Ga0.55 At0.45
As高抵抗層でもよい。Thereafter, the exposed portion of the active layer 4 exposed by this selective etching is removed using an H3po-based etching solution to form a cross-sectional structure as shown in FIG.
) As shown in the figure, the entire mesa stripe was grown by liquid phase epitaxial growth with p-aao, 55 Aj-0,4
5As layer 7 and naaO, 55AZo, ll! l
Fill with As layer 8. That is, since the bias is reversed outside the mesa stripe region, the current flows only in the mesa stripe region. Note that these buried layers 7 and 8 are high-resistance semiconductor layers, for example, +Ga0.55 At0.45
An As high resistance layer may also be used.
最後に、メサストライブ上にZnの選択拡散9あるいは
全面拡散を施した後、オーミック電極10゜11を形成
し、([)図に示すような最終的な断面図を有する素子
が完成する。Finally, after performing selective diffusion 9 or full-surface diffusion of Zn on the mesa strip, ohmic electrodes 10° 11 are formed, and an element having a final cross-sectional view as shown in the figure ([) is completed.
1−記のように本実施例では、基板」−に各層を形成後
、断面形状が」−辺が下辺よりも小である台形状になる
ような方向に沿ってメザストライブを形成するので、そ
の後のクラッド層2,5の選択エツチングを経て製造さ
れる当該半導体レーザ装置は、キャップ層6の基板1側
幅よりも光ガイド層3の活性層4側幅が広く、かつ該光
ガイド層3の活性層4側幅よりも基板1側幅が広くなり
、したがってp−クラッド層5の幅がn−クラッド層2
の幅に比較して相対的に狭くなり、活性層4の幅を非常
に小さく(例えば:bzm)することができる。As described in 1-, in this example, after forming each layer on the substrate, the mesa stripes are formed along the direction such that the cross-sectional shape becomes a trapezoid whose sides are smaller than the bottom sides. The semiconductor laser device manufactured through the subsequent selective etching of the cladding layers 2 and 5 has a width on the active layer 4 side of the optical guide layer 3 wider than a width on the substrate 1 side of the cap layer 6, and a width on the active layer 4 side of the optical guide layer 3. The width of the substrate 1 side is wider than the width of the active layer 4 of
The width of the active layer 4 can be made very small (for example: bzm).
また9本実施例によれば、メサ深さが基板1まで達して
いるため、光ガイド層3 (Gaト−x AzxAs
)のAAAs濃度が大きくても(例えばX=0.26)
、埋込成長が容易であり9発振波長が可視領域でも大出
力可能な構造の形成が可能である。Further, according to the ninth embodiment, since the mesa depth reaches the substrate 1, the optical guide layer 3 (Ga-x Azx As
) even if the AAAs concentration is large (for example, X = 0.26)
, it is possible to form a structure that allows easy buried growth and high output even in the visible range of nine oscillation wavelengths.
なお9本実施例において発振波長が780 nmでかつ
光出力が5QmWまで横モード単一で安定な素子が得ら
れた。これは通常の可視半導体レーザ装置と比較しても
3〜5倍程度高い光出力まで横モードが安定しており、
優れた素子特性である。In this example, a stable device with a single transverse mode was obtained with an oscillation wavelength of 780 nm and an optical output of 5 QmW. The transverse mode is stable up to an optical output that is about 3 to 5 times higher than that of a normal visible semiconductor laser device.
It has excellent device characteristics.
第2の実施例
第2図は5本発明の第2の実施例の半導体レーザ装置の
断面図であるが、第1図においてはレーザ光放射方向が
紙面について垂直な方向なのに対して、この図において
はレーザ光軸方向の断面構造が示しである。Second Embodiment FIG. 2 is a cross-sectional view of a semiconductor laser device according to a second embodiment of the present invention. In contrast to FIG. The cross-sectional structure in the direction of the laser optical axis is shown in FIG.
第2図に示す第2の実施例では、レーザ光に対して端面
を透明化(バンド・ギャップの犬なる材料を用いれば良
い。)してあり、第1の実施例における第1図Fdlに
示すメサストライプを形成“しだ後第2図に示すように
p GaO,B AtO,2Asキャップ層6゜p−G
、qc+、s5A/Lo、l5Asクラット層5および
活性層4の端面部分+2. ]2’のみを選択エツチン
グにより除去する。その後、第1の実施例の埋込み成長
と同様にメサストライプの外部を同種のGaAtAs層
で埋込む(第1図(C))。なお2発光端面の埋め込み
領域12、12’の幅は10μm〜3011m程度を多
用している。In the second embodiment shown in FIG. 2, the end face is made transparent to the laser beam (a material with a narrow band gap may be used). After forming a mesa stripe as shown in FIG.
, qc+, s5A/Lo, l5As end face portion of crat layer 5 and active layer 4 +2. ]2' only is removed by selective etching. Thereafter, the outside of the mesa stripe is buried with a GaAtAs layer of the same type as in the buried growth in the first embodiment (FIG. 1(C)). Note that the width of the buried regions 12, 12' of the two light emitting end faces is often about 10 μm to 3011 m.
余り薄い場合は製造しずらく数μm〜5μm程度が実際
的である。一方、余り厚(でも光が拡散する等つ111
点が大きくなる。If it is too thin, it will be difficult to manufacture, so a thickness of several μm to 5 μm is practical. On the other hand, if it is too thick (but the light will be diffused etc.)
The dot becomes larger.
このようにしてできた第2の実施例の素子にあっては、
光ガイド層3はレーザ共振器の反射端面まて存在し、活
性層4の端面は該反射端面よりも内側にある構造となっ
ている。In the device of the second embodiment made in this way,
The optical guide layer 3 is located at the reflective end face of the laser resonator, and the end face of the active layer 4 is located inside the reflective end face.
本実施例により5発振波長780 nm 、光出力50
mWまて横モード単一、かつ最大光出力J、 Wのii
J視半導体レーしが得られた。すなわち1本実施例が高
出力化および高出力での横モード安定化にかなり効果か
あることがわかる。In this example, the 5 oscillation wavelength is 780 nm and the optical output is 50 nm.
mW single transverse mode and maximum optical output J, W ii
A J-view semiconductor laser was obtained. In other words, it can be seen that this embodiment is quite effective in increasing the output and stabilizing the transverse mode at high output.
なお1本発明は、」−記第1.第2の実施例に示した組
成だけてなく、各Ga]−xAtxAs層のXはQ<x
≦1の範囲で適用可能である。また、 GaAtAs系
のみならずInGaAsP等四元系の半導体レーザ装置
にも適用することができる。さらに、p形基板を用いて
もよく、この場合はエピタキシャル層の導電型をすべて
」1記実施例の逆の導電型にするたけでよい。In addition, 1. the present invention is as follows. In addition to the composition shown in the second embodiment, X of each Ga]-xAtxAs layer is Q<x
Applicable within the range of ≦1. Furthermore, it can be applied not only to GaAtAs-based semiconductor laser devices but also to quaternary-based semiconductor laser devices such as InGaAsP. Furthermore, a p-type substrate may be used, in which case all the conductivity types of the epitaxial layers need only be set to the opposite conductivity type to that in the first embodiment.
以−1−説明したように5本発明においては、メサスト
ライプを断面形状が−に1辺が下辺より小である台形状
になるような方向に形成することによって後の選択エツ
チング工程でp−クラッド層幅がn −クラッド層幅に
対して相対的に狭くなるので、活性層幅を非常に小さく
することができる。したがって9本発明によれば、高出
力化および高出力での横モード安定化を達成できる半導
体レーザ装置を歩留り良く得ることができる効果がある
。As explained below, in the present invention, the mesa stripe is formed in a direction such that the cross-sectional shape is trapezoidal with one side smaller than the lower side, so that p- Since the cladding layer width is relatively narrow with respect to the n-cladding layer width, the active layer width can be made very small. Therefore, according to the present invention, a semiconductor laser device capable of achieving high output and transverse mode stabilization at high output can be obtained with a high yield.
第3図は本発明に対する比較例を示す断面図である。図
はメサストライプ部のみを示したものである。図におい
て、1はn −GaAs基板、2はn−GaAAAsク
ラッド層、3はn−GaΔAAs光ガイド層4はGaA
tAs活性層、5はp −GaAtAsクラッド層。FIG. 3 is a sectional view showing a comparative example to the present invention. The figure shows only the mesa stripe section. In the figure, 1 is an n-GaAs substrate, 2 is an n-GaAAAs cladding layer, 3 is an n-GaΔAAAs optical guide layer 4 is a GaAs
tAs active layer, 5 a p-GaAtAs cladding layer.
(iはp−GaAtAsキャンプ層である。ところで、
この゛1″、導体レーザ装置においては、上記各層を成
長させた後、これらの各層を全体としてメサ状に工7ヂ
ング形成するとき、完成したメサストライプの断面形状
か、1−辺が下辺より大である逆台形状になるような方
向に沿って該メサストライプを形成する。その後、2つ
のクラッド層2,5のみを選択エッヂして、第1図に示
すようなメサ形状を得ている。しかしながら、このよう
に形成される図・示のようなメサ形状を有する半導体レ
ーザ装置にあっては、p−クラッド層5の下端の幅より
もn −クラット層2の」一端の幅の方が狭くなり2選
択エッヂを続けると該n−クラッド層2の」1端の部分
が非常に狭(なって折れてしまうこともあるので。(i is the p-GaAtAs camp layer. By the way,
In this ``1'' conductor laser device, after growing each of the above layers, when forming these layers as a whole into a mesa shape, the cross-sectional shape of the completed mesa stripe or the 1-side is lower than the lower side. The mesa stripe is formed along a direction that forms an inverted trapezoid shape.Then, only the two cladding layers 2 and 5 are selectively edged to obtain a mesa shape as shown in FIG. However, in a semiconductor laser device formed in this manner and having a mesa shape as shown in the figures, the width of one end of the n-cladding layer 2 is wider than the width of the lower end of the p-cladding layer 5. becomes narrow, and if two selected edges are continued, one end of the n-cladding layer 2 becomes very narrow and may break.
、i& p−クラッド層5の直下の活性層4の幅を数μ
m以下に小さくすることか困Mlliとなる。したがっ
て高出力゛11導体レーザ装置の横モードを安定化させ
る−1−で、望ましくない不都合がある。, the width of the active layer 4 directly under the i&p-cladding layer 5 is several μ.
It would be difficult to make it smaller than m. Therefore, there are undesirable disadvantages in stabilizing the transverse mode of a high-power 11-conductor laser device.
本発明ではこうした問題点も十分に解決されている。The present invention satisfactorily solves these problems.
第1図+al〜([)は本発明の第1の実施例の半導体
レーザ装置の製造方法の各工程を示す断面図、第2図は
本発明の第2の実施例の半導体レーザ装置のレーザ光軸
に平行な面での断面図、第3図は比較例を示すストライ
プ部の断面図である。
1・・・基板 2,5・・クラッド層3・
・光ガイド層 4・・活性層6・・・キャップ層
7,8・・埋込み層9・・・Zn拡散層
]0. H・・・オーミック電極
代理人弁理士 中利純之助
矛3 図
−415−FIG. 1 +al~([) is a sectional view showing each step of the manufacturing method of the semiconductor laser device according to the first embodiment of the present invention, and FIG. 2 is a laser of the semiconductor laser device according to the second embodiment of the present invention. A sectional view taken along a plane parallel to the optical axis, and FIG. 3 is a sectional view of a stripe portion showing a comparative example. 1...Substrate 2,5...Clad layer 3...
- Light guide layer 4... Active layer 6... Cap layer 7, 8... Buried layer 9... Zn diffusion layer] 0. H... Ohmic Electrode Representative Patent Attorney Junnosuke Nakatoshi 3 Figure -415-
Claims (6)
び第4の半導体層が互いに接してなる積層からなる光閉
じ込め領域を少な(とも有し、前記第3の半導体層は前
記第2および第4の半導体層と比較して屈折率が大きく
、fiif記第2の半導体層の屈折率は前記第3の半導
体層のそれより小さく1.1第1の半導体層のそれより
大きく、前記第3の半導体層の禁制帯幅が前記第2およ
び第4の半導体層のそれより小さく設定され、1」、前
記光閉じ込め領域の実質的にレーザ光の進行方向に平行
な面を持つ側部を半導体層で埋め込まれた構造を有する
半導体レーザ装置において、前記第3の半導体層と前記
第4の半導体層とはその接する面において両者の幅は略
等しく 、 −1−1,前記第4の半導体層の幅が第3
の半導体層に接する面での幅よりこれと反対側における
面での幅が大なることを特徴とする半導体レーザ装置。(1) A first . Second. The third and fourth semiconductor layers have a small optical confinement region formed by stacking layers in contact with each other, and the third semiconductor layer has a larger refractive index than the second and fourth semiconductor layers. , fiif, the refractive index of the second semiconductor layer is smaller than that of the third semiconductor layer, and 1.1 is larger than that of the first semiconductor layer, and the forbidden band width of the third semiconductor layer is smaller than that of the third semiconductor layer. In a semiconductor laser device having a structure in which a side portion of the optical confinement region having a surface substantially parallel to the traveling direction of the laser beam is embedded with a semiconductor layer, the side portion of the optical confinement region is set to be smaller than that of the fourth semiconductor layer. , the third semiconductor layer and the fourth semiconductor layer have substantially the same width on their contact surfaces, -1-1, the width of the fourth semiconductor layer has the third width
A semiconductor laser device characterized in that a width on a surface opposite to the semiconductor layer is larger than a width on a surface in contact with the semiconductor layer.
層が前記基板まで達していることを特徴とする特許請求
の範囲第1項記載の半導体レーザ装置。(2) The semiconductor laser device according to claim 1, wherein the semiconductor layer filling the side surface of the optical confinement region reaches the substrate.
端面まで存在しており、且前記第3の半導体層の端面の
少な(とも一方が前記積層された半導体層の端面よりも
内側にあることを特徴とする特許請求の範囲第1項又は
第2項記載の半導体レーザ装置。(3) The second semiconductor layer is present up to the end face of the stacked semiconductor layers, and the third semiconductor layer has a small end face (one of which is located inside the end face of the stacked semiconductor layers); A semiconductor laser device according to claim 1 or 2, characterized in that:
れて成ることを特徴とする特許請求の範囲第1項〜第3
項のいずれかに記載の半導体レーザ装置。(4) Claims 1 to 3, characterized in that a semiconductor layer is further laminated on the fourth semiconductor layer.
3. The semiconductor laser device according to any one of the items.
および第4の半導体層を順次積層して形成する工程。 該積層された半導体層をその断面形状が前記基板側で幅
が広く、該基板と反対側で幅が狭い台形状なるストライ
ブ形状に加工する工程。 前記第1および第4の半導体層を選択的にエツチングし
2両半導体層の幅を前記第2の半導体層の幅より狭くす
る]二程。 前記選択エツチングにより露出した前記第3の半導体層
の露出部分の少なくとも一部をエツチングにより除去す
る」二程。 前記ストライブ状の半導体積層の実質的にレーザ光の進
行方向と平行な面を持つ側部を少なくとも1つの半導体
層で埋め込む工程を少なくともイ1し、11.前記第3
の半導体層は前記第2および第4の半導体層と比較して
屈折率か大きく、前記第2の半導体層の屈折率は前記第
3の半導体層のそれより小さく11.第1の半導体層の
それより大きく。 前記第3の半導体層の禁制帯幅が前記第2および第4の
半導体層のそれより小さく設定されてなることを特徴と
する半導体レーザ装置の製造方法。(5) "Predetermined substrate" is small in two parts (both 1st, 2nd and 3rd)
and a step of sequentially stacking and forming a fourth semiconductor layer. Processing the laminated semiconductor layers into a trapezoidal stripe shape with a cross-sectional shape that is wide on the side of the substrate and narrow on the side opposite to the substrate. Selectively etching the first and fourth semiconductor layers to make the widths of both semiconductor layers narrower than the width of the second semiconductor layer] Step 2. 2. At least a portion of the exposed portion of the third semiconductor layer exposed by the selective etching is removed by etching. 11. embedding at least one semiconductor layer in a side portion of the striped semiconductor stack having a surface substantially parallel to the traveling direction of the laser beam; 11. Said third
11. The semiconductor layer has a larger refractive index than the second and fourth semiconductor layers, and the second semiconductor layer has a smaller refractive index than the third semiconductor layer. larger than that of the first semiconductor layer. A method for manufacturing a semiconductor laser device, characterized in that the forbidden band width of the third semiconductor layer is set smaller than that of the second and fourth semiconductor layers.
も−・つの半導体層で埋め込むに先立って。 少なくとも前記第3の半導体層の光放射面端の少なくと
も一方の表面を除去するニJ二程を有することを特徴と
する特許請求の範囲第5項記載の半導体レーザ装置の製
造方法。(6) Prior to burying the sidewalls of the striped semiconductor stack with at least -. semiconductor layers. 6. The method of manufacturing a semiconductor laser device according to claim 5, further comprising a step of removing at least one of the ends of the light emitting surface of the third semiconductor layer.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1982383A JPS59147478A (en) | 1983-02-10 | 1983-02-10 | Semiconductor laser device and manufacture thereof |
US06/571,578 US4602371A (en) | 1983-01-17 | 1984-01-17 | High output semiconductor laser device utilizing a mesa-stripe optical confinement region |
CA000445428A CA1218136A (en) | 1983-01-17 | 1984-01-17 | Semiconductor laser device |
EP19840100453 EP0118671A1 (en) | 1983-01-17 | 1984-01-17 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1982383A JPS59147478A (en) | 1983-02-10 | 1983-02-10 | Semiconductor laser device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59147478A true JPS59147478A (en) | 1984-08-23 |
Family
ID=12010027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1982383A Pending JPS59147478A (en) | 1983-01-17 | 1983-02-10 | Semiconductor laser device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59147478A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991013480A1 (en) * | 1990-02-28 | 1991-09-05 | Fujitsu Limited | Mesa buried type optical semiconductor device and manufacture thereof |
US5190676A (en) * | 1989-11-30 | 1993-03-02 | Kao Corporation | High-speed spinning oil composition containing an organophosphoric ester salt and an oxyalkylene polymer |
-
1983
- 1983-02-10 JP JP1982383A patent/JPS59147478A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190676A (en) * | 1989-11-30 | 1993-03-02 | Kao Corporation | High-speed spinning oil composition containing an organophosphoric ester salt and an oxyalkylene polymer |
WO1991013480A1 (en) * | 1990-02-28 | 1991-09-05 | Fujitsu Limited | Mesa buried type optical semiconductor device and manufacture thereof |
JPH03250684A (en) * | 1990-02-28 | 1991-11-08 | Fujitsu Ltd | Manufacture of mesa buried type optical semiconductor device |
US5362674A (en) * | 1990-02-28 | 1994-11-08 | Fujitsu Limited | Method of producing a mesa embedded type optical semiconductor device including an embedded layer at its side wall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4426702A (en) | Semiconductor laser device | |
US5126804A (en) | Light interactive heterojunction semiconductor device | |
JP4690515B2 (en) | Optical modulator, semiconductor optical device, and manufacturing method thereof | |
US5144633A (en) | Semiconductor laser and manufacturing method thereof | |
US4602371A (en) | High output semiconductor laser device utilizing a mesa-stripe optical confinement region | |
JPS59147478A (en) | Semiconductor laser device and manufacture thereof | |
JPH02156588A (en) | Semiconductor laser and its manufacture | |
JPS589592B2 (en) | Method for manufacturing semiconductor light emitting device | |
JP2003177367A (en) | Semiconductor optical element | |
JPS59145590A (en) | Semiconductor laser device | |
JPS59130492A (en) | Semiconductor laser device and manufacture thereof | |
JP4164248B2 (en) | Semiconductor element, manufacturing method thereof, and semiconductor optical device | |
JP2712970B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH01192184A (en) | Manufacture of buried type semiconductor laser | |
JPH07312462A (en) | Surface laser beam emitting diode and manufacturing method thereof | |
JPH03174793A (en) | Semiconductor laser | |
JP4024319B2 (en) | Semiconductor light emitting device | |
JPH0983077A (en) | Semiconductor optical device | |
JP2684930B2 (en) | Phase-lock laser array and manufacturing method thereof | |
EP0118671A1 (en) | Semiconductor laser device | |
JP2000244073A (en) | Multi-wavelength integrated semiconductor laser device | |
JPH07122813A (en) | Manufacture of semiconductor laser | |
JPH0680869B2 (en) | Semiconductor laser device | |
JPS6354234B2 (en) | ||
JPS63287080A (en) | Manufacture of semiconductor laser |