JPS59130492A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS59130492A
JPS59130492A JP417583A JP417583A JPS59130492A JP S59130492 A JPS59130492 A JP S59130492A JP 417583 A JP417583 A JP 417583A JP 417583 A JP417583 A JP 417583A JP S59130492 A JPS59130492 A JP S59130492A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
semiconductor layer
semiconductor layers
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP417583A
Other languages
Japanese (ja)
Inventor
Toshihiro Kono
河野 敏弘
So Otoshi
創 大歳
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP417583A priority Critical patent/JPS59130492A/en
Priority to US06/571,578 priority patent/US4602371A/en
Priority to EP19840100453 priority patent/EP0118671A1/en
Priority to CA000445428A priority patent/CA1218136A/en
Publication of JPS59130492A publication Critical patent/JPS59130492A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To contrive the stabilization of high output and transverse mode by a method wherein the first and fourth semiconductor layers are set smaller than the second and third semiconductor layers in refractive indices, and the refractive index of the third semiconductor layer is set larger than that of the second semiconductor layer, and the first and forth semiconducltors are so provided as to have conductivity types reverse to those of each, then, the forbidden band widths of the second and forth semiconductor layers are so set as to be larger than that of the third semiconductor layer at the same time. CONSTITUTION:A mesa stripe 12 is formed. At this time, mesa depth is made to reach a GaAs substrate in order to facilitate a burial growth thereafter. An active layer 4 exposed to the side surface of the stripe by selective etching is removed with H3PO4 series etchant, thus forming a cross-sectional structure. Next, the mesa stripe is filled with a P-Ga0.55Al0.45As layer 7 and an N-Ga0.55Al0.45As layer 8 by liquid epitaxial growth, and the selective diffusion 9 or entire surface diffusion of Zn is performed, afterwards ohmic electrodes 10 and 11 are formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高出力の半導体レーザ装置の構造及びその製法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a high-output semiconductor laser device and its manufacturing method.

〔従来技術〕[Prior art]

半導体レーザ装置の高出力化の試みは数多くの提案がな
されている。活性層に接していわゆる光ガイド層を設け
たシ、レーザ光の出力端面を透明化することなどがその
代表的な例であるが、まだ十分に高出力化を達成したと
はいい難い。
Many proposals have been made to try to increase the output of semiconductor laser devices. Typical examples include providing a so-called optical guide layer in contact with the active layer and making the output end face of the laser beam transparent, but it cannot be said that a sufficiently high output has been achieved yet.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高出力の半導体レーザ装置を提供するも
のである。
An object of the present invention is to provide a high output semiconductor laser device.

本発明の別な目的は高出力でしかも横モードが安定化さ
れた半導体レーザ装置を提供するものである。
Another object of the present invention is to provide a semiconductor laser device with high output and stabilized transverse mode.

本発明の更に別な目的は製造が容易な半導体レーザ装置
の構造およびその製造方法を提供するものである。
Still another object of the present invention is to provide a structure of a semiconductor laser device that is easy to manufacture and a method of manufacturing the same.

〔発明の概要〕[Summary of the invention]

所定の半導体基板の上部に第1.第2.第3および第4
の半導体層が順次接してなる光とじ込め領域を少なくと
も有し、第1および第4の半導体層は第2および第3−
の半導体層よシ屈折率において小さく、且第3の半導体
層の屈折率は第2の半導体層の屈折率よシ犬に設定され
る。少なくとも第1および第4の半導体層は互いに反対
導電型を有する如く設けられる。同時に第2および第4
の半導体層の禁制帯幅は第3の半導体層のそれより犬な
る如くに少なくとも設定される。こうして、キャリアは
第3の半導体層に、一方、フォトンは第2および第3の
半導体層に閉じ込められる。この第2の半導体層は光ガ
イド層、第3の半導体層は活性層、第1および第4の半
導体層はクラッド層と通称されている。具体的な半導体
レーザ装置においては基板と前記光閉じ込め領域の間や
、光閉じ込め領域の上部に更に半導体層を設けるととも
あるが、この場合も本発明の適用が可能であり、本発明
の本質に影響はない。
A first layer is formed on a predetermined semiconductor substrate. Second. 3rd and 4th
The first and fourth semiconductor layers have at least a light trapping region in which the semiconductor layers of
The refractive index of the third semiconductor layer is smaller than that of the second semiconductor layer, and the refractive index of the third semiconductor layer is set to be smaller than that of the second semiconductor layer. At least the first and fourth semiconductor layers are provided to have opposite conductivity types. 2nd and 4th at the same time
The forbidden band width of the semiconductor layer is set to be at least wider than that of the third semiconductor layer. Thus, carriers are confined to the third semiconductor layer, while photons are confined to the second and third semiconductor layers. The second semiconductor layer is commonly called a light guide layer, the third semiconductor layer is called an active layer, and the first and fourth semiconductor layers are called cladding layers. In a specific semiconductor laser device, a semiconductor layer is further provided between the substrate and the optical confinement region or above the optical confinement region, but the present invention can also be applied in this case, and the essence of the present invention is There is no effect on

本発明においては前記第2の半導体層のレーザ光の進行
方向と直交する断面で且pn接合面と平行な方向の幅が
第3の半導体層のそれよシ広くなし、且少なくとも前記
第1〜第4の半導体層をメサストライプ状となし、前記
メサストライプ状半導体層におけるレーザ光の進行方向
と垂直な方向の側壁を第5の半導体層で埋め込む。第5
の半導体層の屈折率は少なくとも第2および第3の半導
体層の屈折率より小ならしめる。この場合、この埋め込
み層は半導体基板にまで達していることが製造上等で好
ましい。また、第5の半導体層を複数層で構成しても良
い。
In the present invention, the width of the second semiconductor layer in a cross section perpendicular to the traveling direction of the laser beam and in the direction parallel to the pn junction surface is wider than that of the third semiconductor layer, and at least the first to The fourth semiconductor layer has a mesa stripe shape, and the sidewall of the mesa stripe semiconductor layer in a direction perpendicular to the traveling direction of the laser beam is embedded with a fifth semiconductor layer. Fifth
The refractive index of the semiconductor layer is made smaller than the refractive index of at least the second and third semiconductor layers. In this case, it is preferable for manufacturing reasons that the buried layer reach the semiconductor substrate. Further, the fifth semiconductor layer may be composed of multiple layers.

光ガイド層の幅が活性′層の′それより犬なるため、光
ガイド層を設けることにも増して高出力化を達成出来る
Since the width of the light guide layer is wider than that of the active layer, higher output can be achieved than by providing a light guide layer.

更に、レーザ光の進行方向に平行な面での断面構造をも
活性層は出力端面に達せず、一方、光ガイド層は出力端
面に達せしめるのがより好ましい。
Furthermore, it is more preferable that the active layer does not reach the output end face even in the cross-sectional structure in a plane parallel to the direction of propagation of the laser beam, while the light guide layer reaches the output end face.

活性層が埋め込み層で覆われているので、光は主に光ガ
イド層より外部に放出され、高山化によシ適しておυ、
且長寿命化にも有利である。
Since the active layer is covered with a buried layer, light is mainly emitted from the light guide layer to the outside, making it suitable for mountain climbing.
It is also advantageous in extending the lifespan.

なお、第」〜第4の半導体層の積層で構成される套光と
じ込め領域の積層順は基板に対し上述と逆の順で行なっ
ても良い。
Note that the stacking order of the mantle light confinement region composed of the stacked layers of the "th" to "fourth" semiconductor layers may be stacked in the reverse order to the above-mentioned order for the substrate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例金弟1図および第2図によシ説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

実施例1 第1図は、本発明の半導体レーザ装置の作製工程を順に
示した断面図である。なお、各図はレーザ光に対し垂直
な面での断面図である。第1図(a)に示す様にn−Q
aAS基板1上に液相エビタキシャル成長法によりn 
−Qa O,55AL6,45 A sクラッドJfl
i (厚さ0.8〜2 μm ) 2 、n−Gao、
t4Ala、26As光ガイド層(厚さ0.4〜3μm
)3、アンドープG”o、5aAto、t4As活性層
(厚さ0.04〜0.4μm)4、I) −Gao、s
s AAo4sA sクラッド層(厚さ0.8〜2μm
)5、およびI) −Ga o、5Ato、2A sキ
ャップ層(厚さ0.5〜1μm)6を順次成長させる。
Example 1 FIG. 1 is a cross-sectional view sequentially showing the manufacturing steps of a semiconductor laser device of the present invention. Note that each figure is a cross-sectional view taken on a plane perpendicular to the laser beam. As shown in Figure 1(a), n-Q
n on the aAS substrate 1 by liquid phase epitaxial growth method.
-Qa O,55AL6,45 A s clad Jfl
i (thickness 0.8-2 μm) 2 , n-Gao,
t4Ala, 26As light guide layer (thickness 0.4-3 μm
) 3, undoped G"o, 5aAto, t4As active layer (thickness 0.04-0.4 μm) 4, I) -Gao,s
s AAo4sA s cladding layer (thickness 0.8 to 2 μm
) 5, and I) -Ga o, 5Ato, 2As cap layer (thickness 0.5-1 μm) 6 are sequentially grown.

キャップ層としては通常G a A s層が用いられこ
れを用いても良いが、本実施例では埋込み成長において
メサストライプ上にエピタキシャル成長させないことお
よび極力オーミックコンタクトをとりやすくすることを
目的としてQao、BA7o、2AS層とした。次に第
1図(b)の如くメサストライプ12を形成するが、こ
の時メサ深さは以後の埋込み成長を容易にする為Q a
A s基板まで達せしめる。
A GaAs layer is normally used as the cap layer, and it may be used, but in this example, Qao, BA7O was used for the purpose of not epitaxially growing on the mesa stripe during buried growth and to make ohmic contact as easy as possible. , 2AS layer. Next, a mesa stripe 12 is formed as shown in FIG.
Let it reach the As substrate.

SBH構造(Strip Buried 1−iete
rostructure)では、ストライプと直角方向
において光ガイド層幅が活性層幅よりも広くなっている
ことが必要であり、本実施例では第1図(C)に示した
様に選択エツチングによシnおよびpQa o、5sA
to、4 s A sクランド層(2,5)のみを−両
側から1μm程度エツチングした。ここで選択上ツチン
グ液としてはHFを用いた。その後、この選択エツチン
グによシストライプ側面に露出した活性層4をHa P
 04系エツチヤントにより除去し第1図(d)に示す
様な断面構造を形成した。次に液相エピタキシャル成長
によりI)−Gao、5sA7o4sAs層7および1
l−Gao、5sA70.4sAs層8で前記メサスト
ライプを埋込んだ(第1図(e))。この例ではストラ
イプ領域外ずは逆バイアスとなる為、電流はストライプ
領域のみに流れることになる。勿論、SBH構造のレー
ザとしてはこの埋込み層は2層に分けることなく、1層
で埋め込んでも良い。又更に多層として埋め込み層を構
成しても良い。又、この埋込み層はQa O,55AA
o、45AS等で構成された高抵抗層でも良い。第1図
(f)は素子の最終的な断面図でアシ、周知の方法によ
ってZnの選択拡散9あるいは全面拡散を施しだ後オー
ミック電極10.11を形成する。共振器の反射面は結
晶のへき開によって形成した。
SBH structure (Strip Buried 1-iete
rostructure), it is necessary that the width of the optical guide layer is wider than the width of the active layer in the direction perpendicular to the stripes, and in this example, selective etching is performed as shown in FIG. 1(C). and pQa o, 5sA
Only the ground layer (2, 5) was etched by about 1 μm from both sides. Here, HF was selectively used as the tucking liquid. After that, the active layer 4 exposed on the side surface of the stripe by this selective etching is etched with HaP.
It was removed using a 04 series etchant to form a cross-sectional structure as shown in FIG. 1(d). Next, I)-Gao, 5sA7o4sAs layers 7 and 1 were formed by liquid phase epitaxial growth.
The mesa stripe was filled with l-Gao, 5sA, 70.4sAs layer 8 (FIG. 1(e)). In this example, the outside of the stripe region is reverse biased, so current flows only in the stripe region. Of course, in the case of a laser having an SBH structure, this buried layer may not be divided into two layers, but may be buried in one layer. Furthermore, the buried layer may be configured as a multilayer structure. Also, this buried layer is Qa O, 55AA
A high-resistance layer made of 0, 45AS, etc. may also be used. FIG. 1(f) is a final cross-sectional view of the device. After Zn is selectively diffused 9 or entirely diffused by a well-known method, ohmic electrodes 10 and 11 are formed. The reflective surface of the resonator was formed by cleaving the crystal.

本実施例によれば、メサ深さが基板まで達している為光
ガイド層(G a 5−xAtXAs )のAtAS濃
度が大きくても(例えばX=0.26)埋込み成長沓 が容易であり、波振波長が可視領域でもSBH構造の形
成可能である。実際、本実施例において、発振波長が7
80nmでかつ50mWまで横モード単一で安定な素子
が得られた。これは、これまで報告されている可視半導
体レーザと比較しても3〜5倍程度高い出力まで横モー
ドが安定しており、極めて優れた素子特性である。
According to this example, since the mesa depth reaches the substrate, buried growth is easy even if the AtAS concentration of the light guide layer (Ga5-xAtXAs) is high (for example, X=0.26), An SBH structure can be formed even if the wave wavelength is in the visible range. In fact, in this example, the oscillation wavelength is 7
A stable device with a single transverse mode was obtained up to 80 nm and 50 mW. Compared to visible semiconductor lasers that have been reported so far, the transverse mode is stable up to an output that is about 3 to 5 times higher, and this is an extremely excellent device characteristic.

実施例2 第2図は、実施例1の上記半導体レーザ装置において、
レーザ光に対して端面を透明化した素子のレーザ光軸に
平行な方向の断面構造を示したものである。図において
第1図と同一の符号は同一の部位を示している。光ガイ
ド層3はレーザ光反射端面まで存在し、一方、活性層4
の端面は上記反射端面よりも内側にある構造となってい
る。製造工程としては第1図(d)に示しだメサストラ
イプ12を形成した後、発光出力端面部分の1) Ga
o、5Ato、2A sキャップ層6、pGao、5s
Ato4sAsクラッド層5および活性層4のみを選択
エツチングにより除去する。その後、実施例1の埋込み
成長と同様にストライプの外部をGaAtAs層で埋込
んだ。
Example 2 FIG. 2 shows the above semiconductor laser device of Example 1,
This figure shows a cross-sectional structure in a direction parallel to the laser optical axis of an element whose end face is made transparent to laser light. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. The light guide layer 3 exists up to the laser beam reflecting end face, while the active layer 4
The end face is located inside the reflecting end face. The manufacturing process is shown in FIG. 1(d). After forming the mesa stripe 12, 1) Ga of the light emitting output end face is formed.
o, 5Ato, 2A s cap layer 6, pGao, 5s
Only the Ato4sAs cladding layer 5 and active layer 4 are removed by selective etching. Thereafter, the outside of the stripe was filled with a GaAtAs layer in the same way as the buried growth in Example 1.

なお、他の工程等は実施例1と同様である。Note that other steps and the like are the same as in Example 1.

本実施例により、発振波長7800m、50mWまで横
モード単一、かつ最大光出力IWの可視半導体レーザ装
置が得られた。
According to this example, a visible semiconductor laser device with an oscillation wavelength of 7800 m, a single transverse mode up to 50 mW, and a maximum optical output IW was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、可視半導体レーザにおいても8BH構
造の形成を可能にした。その結果、発振波長780 n
m、 5−Q、、mWまで横モー ト安定す素子が得ら
れた。
According to the present invention, it is possible to form an 8BH structure even in a visible semiconductor laser. As a result, the oscillation wavelength was 780 n
A device with stable transverse moat up to m, 5-Q, mW was obtained.

また、端面の透明化によシ上記特性に加え最大光出力I
Wの素子が得られ、本発明が高出力化および高出力での
横モード安定化に効果があることが分かる。
In addition to the above characteristics, the maximum light output I
A W element was obtained, and it can be seen that the present invention is effective in increasing the output and stabilizing the transverse mode at high output.

本発明は、実施例に示した組成だけでなく、各G a□
−x A t X A s層のXはo<x<iの範囲で
適用族化合物半導体たるInGaASP等四元系の半導
体レーザにも適用することができる。更に、実施例と逆
の導電形のp形基板を用いてもよ゛く、この場合はエピ
タキシャル層の導電型を本実施例の逆の導電型にするだ
けでよい。
The present invention applies not only to the compositions shown in the examples, but also to each Ga□
-x A t Furthermore, a p-type substrate having a conductivity type opposite to that of this embodiment may be used, and in this case, it is only necessary to change the conductivity type of the epitaxial layer to the conductivity type opposite to that of this embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレーザ装置の作製工程を示した装
置の断面図、第2図は本発明の別な実施例を示す装置の
断面図で、レーザ光の光軸に平行な面での断面図である
。 1−−・n −Q aAs基板、2− n−Gao、5
sAto、4sAsクラッド層、3−n −Ga c7
4A7o、26 A s光ガイド層、4・・・アンドー
プG a o8s A/Lo、14 A s活性層、5
− p−Qa 0.55 kto4sASクラッド層、
6−1) −Ga04Ato、2ASキャ7プ層、7−
 p−Gao、5sA7o、4sAs層、8−n−Ga
o、5sAto、45As層、9−Z n拡散層、10
・・・nオーミック電極、11・・・pオーミック電極
。 ■  1  図 (a−)                     
     (1))2 □□■ (e>                      
        (4〕第2図
FIG. 1 is a cross-sectional view of the device showing the manufacturing process of the laser device according to the present invention, and FIG. 2 is a cross-sectional view of the device showing another embodiment of the present invention. FIG. 1--n-Q aAs substrate, 2- n-Gao, 5
sAto, 4sAs cladding layer, 3-n-Ga c7
4A7o, 26A s optical guide layer, 4... Undoped Gao8s A/Lo, 14A s active layer, 5
- p-Qa 0.55 kto4s AS cladding layer,
6-1) -Ga04Ato, 2AS cap layer, 7-
p-Gao, 5sA7o, 4sAs layer, 8-n-Ga
o, 5sAto, 45As layer, 9-Z n diffusion layer, 10
...n ohmic electrode, 11...p ohmic electrode. ■ 1 Figure (a-)
(1))2 □□■ (e>
(4) Figure 2

Claims (1)

【特許請求の範囲】 1、所定の半導体基板の上部に第1.第2.第3および
第4の半導体層が順次接してなる光とじ込め領域を少な
くとも有し、第1および第4の半導体層は第2および第
3の半導体層よシ屈折率において小さく、第3の半導体
層の屈折率は第2の半導体層のそれよシ大きく、且第2
および第4の半導体層の禁制帯幅は第3の半導体層のそ
れより大きく、少なくとも第1および第4の半導体層は
互いに反対導電型を有する如くに少なくとも設けられ、
前記光とじ込め領域はメサストライプ状に構成され、そ
のメサスト−ライプの側壁が第5の半導体層で埋め込ま
れ、レーザ光の進行方向と直交する断面で且光とじ込め
領域内に存する接合面と平行な方向の前記第2の半導体
層の幅が前゛記第3の半導体層のそれより広くなされた
ことを特徴とする半導体レーザ装置。 2、前記第2の半導体層の端部はレーザ共振器の反射端
面まで存在し、前記第1の半導体層の端部は前記反射面
よシも内側に存することを特徴とする特許請求の範囲第
1項記載の半導体レーザ装置。 3、所定の半導体基板上部に少なくとも第1.第2、第
3および第4の半導体層を積層する工程を有し、前記第
1および第4の半導体層は第2および第3の半導体層よ
シ屈折率において小さく、第3の半導体層の屈折率は第
2の半導体層のそれよシ大きく、且第2および第4の半
導体層の禁制帯幅は第3−の半導体層のそれよシ大きく
、少なくとも第1および第4の半導体層は互いに反対導
電型を有する如く選択され、更に前記積層半導体層を前
記半導体基板に達する深さを有するメサストライプを形
成する工程、前記第1および第4の半導体層を選択的に
除去し、レーザ光の進行方向と直交する断面で且つ光と
じ込め領域内に存する接合面と平行な方向の幅を小なら
しめる工程、前記第30牛導体層を選択的に除去する工
程、前記メサストライプの側壁に第5の半導体層を形成
する工程を有することを特徴とする半導体レーザ装置の
製造方法。 4、前記メサストライプ側壁に第5の半導体層を形成す
る前に、レーザ光の進行方向における少なくとも第4お
よび第3の半導体層の出力端部
[Claims] 1. A first . Second. The third semiconductor layer has at least a light trapping region in which the third and fourth semiconductor layers are in contact with each other, the first and fourth semiconductor layers have a smaller refractive index than the second and third semiconductor layers, and the third semiconductor layer has a smaller refractive index than the second and third semiconductor layers. The refractive index of the layer is greater than that of the second semiconductor layer, and
and the forbidden band width of the fourth semiconductor layer is larger than that of the third semiconductor layer, and at least the first and fourth semiconductor layers are provided so as to have mutually opposite conductivity types;
The light confinement region is configured in a mesa stripe shape, and the sidewalls of the mesa stripes are embedded with a fifth semiconductor layer, and the cross section perpendicular to the traveling direction of the laser beam is formed with a bonding surface existing within the light confinement region. A semiconductor laser device characterized in that the width of the second semiconductor layer in the parallel direction is wider than that of the third semiconductor layer. 2. Claims characterized in that the end of the second semiconductor layer exists up to the reflective end face of the laser resonator, and the end of the first semiconductor layer exists inside the reflective face as well. The semiconductor laser device according to item 1. 3. At least the first . the step of laminating second, third and fourth semiconductor layers, wherein the first and fourth semiconductor layers have a smaller refractive index than the second and third semiconductor layers; The refractive index is larger than that of the second semiconductor layer, and the forbidden band width of the second and fourth semiconductor layers is larger than that of the third semiconductor layer, and at least the first and fourth semiconductor layers are The first and fourth semiconductor layers are selectively removed, and the first and fourth semiconductor layers are selectively removed, and the laminated semiconductor layers are selected to have opposite conductivity types and have a depth that reaches the semiconductor substrate. a step of reducing the width in a cross section perpendicular to the direction of travel and parallel to the bonding surface existing in the light confinement region; a step of selectively removing the 30th cow conductor layer; A method of manufacturing a semiconductor laser device, comprising the step of forming a fifth semiconductor layer. 4. Before forming the fifth semiconductor layer on the sidewall of the mesa stripe, at least the output ends of the fourth and third semiconductor layers in the traveling direction of the laser beam
JP417583A 1983-01-17 1983-01-17 Semiconductor laser device and manufacture thereof Pending JPS59130492A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP417583A JPS59130492A (en) 1983-01-17 1983-01-17 Semiconductor laser device and manufacture thereof
US06/571,578 US4602371A (en) 1983-01-17 1984-01-17 High output semiconductor laser device utilizing a mesa-stripe optical confinement region
EP19840100453 EP0118671A1 (en) 1983-01-17 1984-01-17 Semiconductor laser device
CA000445428A CA1218136A (en) 1983-01-17 1984-01-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP417583A JPS59130492A (en) 1983-01-17 1983-01-17 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59130492A true JPS59130492A (en) 1984-07-27

Family

ID=11577376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP417583A Pending JPS59130492A (en) 1983-01-17 1983-01-17 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59130492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777148A (en) * 1985-01-30 1988-10-11 Massachusetts Institute Of Technology Process for making a mesa GaInAsP/InP distributed feedback laser
US5082799A (en) * 1990-09-14 1992-01-21 Gte Laboratories Incorporated Method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
US5222091A (en) * 1990-09-14 1993-06-22 Gte Laboratories Incorporated Structure for indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777148A (en) * 1985-01-30 1988-10-11 Massachusetts Institute Of Technology Process for making a mesa GaInAsP/InP distributed feedback laser
US5082799A (en) * 1990-09-14 1992-01-21 Gte Laboratories Incorporated Method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
WO1992005576A1 (en) * 1990-09-14 1992-04-02 Gte Laboratories Incorporated New structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
US5222091A (en) * 1990-09-14 1993-06-22 Gte Laboratories Incorporated Structure for indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor

Similar Documents

Publication Publication Date Title
JPS59130492A (en) Semiconductor laser device and manufacture thereof
JP2537924B2 (en) Semiconductor laser
JPH0462195B2 (en)
JPS61164287A (en) Semiconductor laser
JPH0648742B2 (en) Method for manufacturing semiconductor laser
JPH0799373A (en) Semiconductor laser device
JPS59227177A (en) Semiconductor laser
JPS59147478A (en) Semiconductor laser device and manufacture thereof
JPS59145590A (en) Semiconductor laser device
JPH03104292A (en) Semiconductor laser
JPH0437598B2 (en)
JPS61112392A (en) Semiconductor laser and manufacture thereof
JP3145234B2 (en) Method for manufacturing super luminescent diode element
JPS596588A (en) Semiconductor laser
JPH0983077A (en) Semiconductor optical device
JPH0136276B2 (en)
JPS59200484A (en) Semiconductor laser
JPH07122813A (en) Manufacture of semiconductor laser
JP2908124B2 (en) Semiconductor laser device and method of manufacturing the same
JPH05175599A (en) Semiconductor laser and manufacture thereof
JP2000353862A (en) Manufacture of semiconductor laminated structure
JPS62102583A (en) Buried structure semiconductor laser
JPH0927653A (en) Semiconductor laser element
JPH0233993A (en) Semiconductor laser
JPH06302914A (en) Semiconductor light emitting device and its manufacture