JPS59147134A - Variable damping force type shock absorber - Google Patents

Variable damping force type shock absorber

Info

Publication number
JPS59147134A
JPS59147134A JP1896483A JP1896483A JPS59147134A JP S59147134 A JPS59147134 A JP S59147134A JP 1896483 A JP1896483 A JP 1896483A JP 1896483 A JP1896483 A JP 1896483A JP S59147134 A JPS59147134 A JP S59147134A
Authority
JP
Japan
Prior art keywords
valve body
shock absorber
piston
damping force
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1896483A
Other languages
Japanese (ja)
Inventor
Naohiko Inoue
井上 直彦
Masahiro Honma
正宏 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1896483A priority Critical patent/JPS59147134A/en
Publication of JPS59147134A publication Critical patent/JPS59147134A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry

Abstract

PURPOSE:To achieve correct control for damping force by constituting the captioned apparatus so that an equal hydraulic pressure is always acts onto the both edges in the stroke direction of a valve body, thus permitting the pressure applied in the stroke direction of the valve body to be always balanced. CONSTITUTION:The spool-shaped valve body 16 is installed in slidable ways into a yoke 14, and the both edges of the valve body are set contiguous to chambers 17 and 18, and a coil 19 is set to surround the valve body 16. The both chambers 17 and 18 are allowed to communicate through the center penetration hole 16a of the valve body 16 and allowed to communicate to a pressure chamber 4 through the transverse hole 8a in a piston 8. A striped groove 16b is formed on the outer peripheral surface of the valve body 16, and a transverse hole 16c for allowing the striped groove to communicate to the penetration hole 16a is formed, and the valve body 16 is supported onto an edge cover 15 by a spring 20. A striped groove 2a is formed on the inner peripheral surface of the piston 2 into which the valve body 16 is fitted, and the communication part 21 for damping vibration whose opening degree is varied by the stroke of the valve body 16 is constituted of the striped grooves 2a and 16b, and the striped groove 2a is allowed to communicate to a pressure chamber 3 through the communication hole 2b on the piston 2.

Description

【発明の詳細な説明】 ショノクアブソーバ、特に振動減衰力を作動条件に応じ
自動的に逐一制御し得るようにした減衰力可変式ショッ
クアブソーバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shock absorber, and particularly to a variable damping force type shock absorber in which vibration damping force can be automatically controlled one by one according to operating conditions.

この種ショツクアブソーバは通常、例えば特開昭57−
158111号公報に示される如く、シリンダ内にピス
トンを摺動自在にII突合して該ピストンの両側に圧力
室を設定し、ヒストン及びシリンダの相対移動中前記面
圧力室間で作動液の制限的置換流動を行なわせて振動減
衰作用を得る連通部を有すると共に、該連通部の開度を
電磁弁により自動制御して減衰力を変化させ得るよう構
成される。
This type of shock absorber is usually used, for example, in
As shown in Japanese Patent No. 158111, a piston is slidably abutted in a cylinder, pressure chambers are set on both sides of the piston, and the working fluid is replaced in a limited manner between the surface pressure chambers during relative movement of the histone and the cylinder. It has a communication section that causes a flow to obtain a vibration damping effect, and is configured so that the degree of opening of the communication section can be automatically controlled by a solenoid valve to change the damping force.

しかしてこの場合、上記電磁弁はその弁体のストローク
方向両端に夫々異なる上記圧力室の圧力を受けることと
なり、又これら圧力室の圧力が夫々ショックアブソーバ
の作動中具なる態様をもって逐一変化するため、弁体に
両者の差Hユに基因する力を受ける。従って、電磁弁が
制?tli他号に正確に応動じ得す、該電磁弁による手
記連通部の開度+lil1 両を不正確にして、正確な
減衰力制御が得られない。
However, in this case, the electromagnetic valve receives different pressures from the pressure chambers at both ends of the valve body in the stroke direction, and the pressures in these pressure chambers change one by one in a manner specific to each other during the operation of the shock absorber. , the valve body receives a force due to the difference H between the two. Therefore, is the solenoid valve controlled? The opening degree of the manual communication portion by the solenoid valve, which can be accurately responded to by TLI et al., is made inaccurate, and accurate damping force control cannot be obtained.

本発明は前記弁体のストローク方向両端に夫々常時同じ
液圧が作用するようjIt成ずれるj′、該弁体のスト
ローク方向にかかる圧力を常時バランスさせ得て、正確
な減製力flr制御が達成され、上述の問題を解決し得
るとの観点から、この着想を具体化した減衰力0■変式
ショックアブソーバを提供しようとするものである。
According to the present invention, it is possible to constantly balance the pressures applied in the stroke direction of the valve body, so that the same hydraulic pressure always acts on both ends of the valve body in the stroke direction. From the viewpoint of achieving the above-mentioned problem and solving the above-mentioned problems, the present invention aims to provide a variable shock absorber with a damping force of 0.0 cm that embodies this idea.

以F、図示の実施例により本発明の詳細な説明する0 第11J乃至第3図は本発明−実施の態様で、本発明シ
ョックアブソーバは第1図及び第2図に示す如く、シリ
ンダ1内にピストン2を摺動自在に嵌合してピストン2
の両側に圧力室3,4を設定すると共G、−、シリンダ
1内に別にフリーピストン5を摺動自在に圓合して圧力
室3から隔絶されたガス室6を設定する。圧力室3,4
・内には非月二縮性の作動液を刺入し、ガス室6には高
圧ガスを封入する。ピストン2にボルト7でピストンロ
ッド8を結着し、このピストンロッドを圧力室4に貫通
して惇リンダ1の対応端部より液密封止状態で摺動自在
に突出させる。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. 11J to 3 show embodiments of the present invention, and the shock absorber of the present invention is constructed in a cylinder 1 as shown in FIGS. 1 and 2. Slideably fit the piston 2 into the piston 2.
Pressure chambers 3 and 4 are set on both sides of the cylinder 1, and a free piston 5 is slidably fitted inside the cylinder 1 to form a gas chamber 6 isolated from the pressure chamber 3. Pressure chambers 3, 4
・A non-bicompressive working fluid is inserted inside, and high-pressure gas is filled in the gas chamber 6. A piston rod 8 is connected to the piston 2 with a bolt 7, and this piston rod penetrates into the pressure chamber 4 and is slidably projected from the corresponding end of the cylinder 1 in a liquid-tight state.

ピストンロッド8の突出部にその長手方向へ延在するフ
ェライト又はアルニコ等の高質磁性材料で造ったセンサ
9を一部露出させて埋設し、該センサに多極マグネット
を着磁する。このセンサ9に隣接してポール′素子又は
磁気抵抗素子等の磁気感応素子10を対設し、これをア
ーム11によりシリンダlに取付ける。センサ9及び磁
気感応素子10でショックアブソーバ用のストローク検
出器12を構成し、磁気感応素子10はシリンダ1とピ
ストン2及びピストンロッド8との相対往復移動中、即
ちショックアブソーバの往復ストローク中センサ9の持
つ磁束を検出してサイン波形出力を発し、この出力は図
示せざる波形整形処理回路を通って第6図a、bで示す
正負のパルス信号にされた後リード線13より出力され
る。パルス信じ・a 、 bは、磁気感応素子JOの極
性の選択により、例えばショックアブソーバの伸び側で
パルス信号aが先に、縮み側でパルス信号すが先に出力
され、その後は交互にパルス信号a、bが出力されるよ
うになっている。
A sensor 9 made of a high-quality magnetic material such as ferrite or alnico is partially exposed and embedded in the protrusion of the piston rod 8 extending in the longitudinal direction thereof, and a multipolar magnet is magnetized in the sensor. A magnetically sensitive element 10 such as a pole' element or a magnetoresistive element is provided adjacent to the sensor 9, and is attached to the cylinder l by an arm 11. The sensor 9 and the magnetic sensing element 10 constitute a stroke detector 12 for the shock absorber, and the magnetic sensing element 10 detects the sensor 9 during the relative reciprocating movement between the cylinder 1, the piston 2, and the piston rod 8, that is, during the reciprocating stroke of the shock absorber. It detects the magnetic flux possessed by the sensor and generates a sine waveform output, and this output is outputted from the lead wire 13 after passing through a waveform shaping processing circuit (not shown) and converting it into positive and negative pulse signals as shown in FIG. Pulse beliefs a and b are determined by selecting the polarity of the magnetic sensing element JO. For example, pulse signal a is output first on the extension side of the shock absorber, pulse signal A is output first on the contraction side of the shock absorber, and then pulse signals are output alternately. a and b are output.

ピストンロッド8がら速いピストン2の端面にコイルヨ
ーク】4を突設し、その先端開口部を端蓋15で閉塞す
る。ヨーク14・内には第2図に明示する如くその中心
にスプール形の弁体16を摺動自在に設4−1で弁体1
6の両端を室17.18に臨ませると共に、弁体16を
取巻くよう配し−Cフィル19を設ける。室17.18
間を弁体16の中心貫通孔16aにより連通させ、室1
7をピストン8の横孔8aにより圧力室4に通じさぜる
A coil yoke 4 is protruded from the end face of the piston 2, which is faster than the piston rod 8, and its tip opening is closed with an end cover 15. Inside the yoke 14, as shown in FIG. 2, a spool-shaped valve body 16 is slidably provided at the center of the yoke 14.
A C filter 19 is provided so that both ends of the valve body 6 face the chambers 17 and 18, and are arranged to surround the valve body 16. Room 17.18
The center through hole 16a of the valve body 16 communicates between the chambers 1 and 1.
7 is communicated with the pressure chamber 4 through the horizontal hole 8a of the piston 8.

弁体16には史にその外周[alに条溝16bを形成す
ると共に、この条溝を貫通孔1(iaに通しさせる横孔
160を形成し、弁体16をはね2oにより端蓋15に
押付けた図示の位置に弾支する。
A groove 16b is formed on the outer periphery of the valve element 16, and a horizontal hole 160 is formed through the groove through the through hole 1 (ia). It is supported in the position shown in the figure.

弁体16が115:合したピストン2の内周面に条?f
l¥2aを設け、これと条溝16bとで弁体16のスト
ロークにより開度を変化される振動減衰用の連311J
部2]を構1視し、条溝2aをピストン2の連絡孔2b
によって圧力室3に通じさぜる。
The valve body 16 is 115: Is there a line on the inner peripheral surface of the mated piston 2? f
1\2a is provided, and the opening degree is changed by the stroke of the valve body 16 by this and the groove 16b.
section 2], the groove 2a is connected to the communication hole 2b of the piston 2.
The pressure chamber 3 is vented by this.

f、K オ、コイル19に通電するためのリード線22
はピストンロッド8に設けた孔8bに通して外部に取出
す。又、ピストン2には連通孔2C92dを形成し、こ
れら連通孔20.2dに夫々逆向きに配した逆止機能を
兼ねるIJ ’J−フ弁23・24を挿置する。
f, K O, lead wire 22 for energizing the coil 19
is passed through a hole 8b provided in the piston rod 8 and taken out to the outside. Further, communication holes 2C92d are formed in the piston 2, and IJ'J valves 23 and 24, which are arranged in opposite directions and also serve as a check function, are inserted into these communication holes 20.2d, respectively.

上述の構成とした本発明ショックアブソーバは、例えば
車両の懸架糸に用い、る場合、ピストンロッド8の突出
端を車体側に取付けると共に、このピストンロッドから
遠いシリンダlの端部を車輪側に取付けて実用するが、
コイル19への通電を例えば第3図の回路により制御さ
れつつ以下の如くに機能する。
When the shock absorber of the present invention having the above-mentioned structure is used, for example, as a suspension string for a vehicle, the protruding end of the piston rod 8 is attached to the vehicle body side, and the end of the cylinder l far from this piston rod is attached to the wheel side. Although it is practical,
The power supply to the coil 19 is controlled by the circuit shown in FIG. 3, for example, and functions as follows.

即ち第8図において、ショック7′ブソーバストローク
検出器J2は前述した10(り車輪の弾発にともなうシ
ョックアブソーバのストロークに応じ例えば第6図に示
すパルスイd号a、bを出力しており、これがANDゲ
ート25に供給される。一方力形波発生回路26は第6
図に乃くず方形波信号Cを出力しており、これもAND
ゲート25に供給される。従ってANDゲート25は方
形波信号CがHレベル時間中にのみHレベルのパルス信
号aのみをカウンタ回路27に入力する。カウンタ回路
27は方形波信号Cの各室−1−かりて/< )レス信
号aのカウントを開始し、このカウントを方形波(g号
Cの各立下がりで終了する。そのプJウント値各1ショ
ックアブソーツマのストローク速度(こ’Xi Iis
 シ、このカウント(+riを次段のランチ回路28力
ミ方形波信号Cの各立下がりと次の立下がりまでσ)間
メモリしておき、D/A変侠変格回路21こ供給−1°
る。
That is, in FIG. 8, the shock 7' absorber stroke detector J2 outputs, for example, pulse numbers a and b shown in FIG. , this is supplied to the AND gate 25. On the other hand, the force wave generation circuit 26
In the figure, a Nokuzu square wave signal C is output, which is also an AND
The signal is supplied to the gate 25. Therefore, the AND gate 25 inputs only the H level pulse signal a to the counter circuit 27 only during the time when the square wave signal C is at the H level. The counter circuit 27 starts counting the response signal a for each chamber of the square wave signal C, and ends this counting at each falling edge of the square wave signal C. Stroke speed of each shock absorber (Xi Iis
This count (+ri is stored in memory for σ from each fall of the square wave signal C to the next fall of the launch circuit 28 of the next stage) and is supplied to the D/A conversion circuit 21 by -1°.
Ru.

D/A変換回路29はカウント値をアナログ信−藁に変
換シてショックアブソーバくのストロークiM +輩に
関する信号文を演算回路80もこ入力する。
The D/A converter circuit 29 converts the count value into an analog signal and inputs a signal sentence regarding the shock absorber's stroke iM+ to the arithmetic circuit 80.

ショックアブソーバストローク検出器12力)らのパル
ス信壮a 、 bはカウンタ回路31 にも供昶)され
、このカウンタ回路は正ノぐパルスのノぐパルス(m号
aを先に人力した時カウントアンフ゛し、狛/ぐパルス
のパルスIFt号り′5i:先に人力した時カウントク
′Iンンし経!ける。そのカウント値はショックアブソ
ーバくのストロークh(に対応し、これを次段σ) D
 / A変換回路82によりアナログ信号に変換してシ
ョックアブソーバのストローク量に関する信号Xを得る
ことかでき、この信号を演算回路30に(Jj給する。
Pulses a and b from the shock absorber stroke detector 12 are also supplied to a counter circuit 31), and this counter circuit counts the positive pulses (when the m number a is manually applied first). The pulse number IFt of the pulse IFt of the shock absorber pulse is 5i: When the manual force is applied first, the count value is 1. The count value corresponds to the stroke h of the shock absorber, )D
/ A conversion circuit 82 converts it into an analog signal to obtain a signal X related to the stroke amount of the shock absorber, and this signal is supplied to the calculation circuit 30 (Jj).

演算回路30はショックアブソーバくのストローク速度
信号文及びストローク敞信号Xの他Gこ、車両の走行状
態、例えばローリング(操舵)及びヒ。
The arithmetic circuit 30 receives the shock absorber's stroke speed signal and stroke rate signal X, as well as the running state of the vehicle, such as rolling (steering) and hi.

ツチング(加減速)の有無、車速等を検出するセンサ3
3からの信号を入力されており、これら入力からショッ
クアブソーバの最適目標減衰力を演算する。
Sensor 3 that detects the presence or absence of twisting (acceleration/deceleration), vehicle speed, etc.
3, and the optimum target damping force of the shock absorber is calculated from these inputs.

一方、三角波発生回路34は第7図に示す三角波信号d
を出力しており、比較器85は演算回路30からの目標
減衰力に関する信号、例えば第7V中L□、L2又はL
8の信号、及び回路34力)らの三角波信号dを入力さ
れ、これらの比較結果力)ら目標減衰力信号がLl 、
L2 、L8の時夫々第7図に8.f、gで示す、<ル
スイ3号を出力する。これ゛らパルス信号e、f又はg
はそのHレベル時[用中トランジスタ36を導通して前
記のコイル19を付勢し、このコイルで弁体16をスト
ロークされる連通部21の開度を以下の如くにチューテ
ィ制御する。
On the other hand, the triangular wave generating circuit 34 generates a triangular wave signal d shown in FIG.
The comparator 85 outputs a signal related to the target damping force from the arithmetic circuit 30, for example, L□, L2 or L in the 7th V.
8 signal and the triangular wave signal d from the circuit 34 are input, and as a result of their comparison, the target damping force signal is Ll,
At L2 and L8, 8. is shown in FIG. 7, respectively. Output <Rusui No. 3, indicated by f and g. These pulse signals e, f or g
When at the H level, the active transistor 36 is turned on to energize the coil 19, and the opening degree of the communicating portion 21, which is stroked by the valve body 16, is controlled by this coil as follows.

即ち、コイル]9の減勢・時弁体16はばね20により
第2図に示す位■ひにされ、条7itj 2 a・16
b間が通しないため連通部21は開度を零にされている
。コイル19のf1勢時弁体16はばわ20に仇して第
2図中−1一方に吸引され、条(fop 2 a 、l
Gb間を通じさせて連通部21を開く。この時作動液は
圧力室8から連絡孔2b、連通部21、横孔1、6 C
! 、 @通孔16a、室17、横孔8aを経て圧力室
4.に、又は圧力室4から逆の経路を経て圧力室3に往
来できる。
That is, when the coil 9 is de-energized, the valve body 16 is held down by the spring 20 to the position shown in FIG.
Since there is no passage between the openings of the communicating portions 21, the opening degree of the communicating portions 21 is set to zero. When the f1 state of the coil 19 is activated, the valve body 16 is attracted to one side of FIG.
The communication section 21 is opened by allowing communication between Gb and Gb. At this time, the hydraulic fluid flows from the pressure chamber 8 to the communication hole 2b, the communication part 21, and the horizontal holes 1 and 6C.
! , @pressure chamber 4 via through hole 16a, chamber 17, and side hole 8a. Alternatively, the pressure chamber 3 can be accessed from the pressure chamber 4 via the reverse route.

ところで、連通部21の開度は第7図にe、f。By the way, the opening degrees of the communication portion 21 are shown in e and f in FIG.

gで例示する如く変化するバルスイ[)号のチューティ
サイクル%(Hレベル時間の割合)により決まり、パル
ス信号がe、f、gの時夫々連通部21の平均開度はA
□、A2 + A3となる。従って、4+通部21の開
度により決まるショックアブソーバの減衰力を演算回路
30により演算したl]標減衷力に設定することができ
る。
It is determined by the duty cycle % (proportion of H level time) of the valve switch [ ) which changes as shown in g, and when the pulse signal is e, f, and g, the average opening degree of the communicating part 21 is A.
□, A2 + A3. Therefore, the damping force of the shock absorber, which is determined by the opening degree of the 4+ passage portion 21, can be set to 1] the damping force calculated by the calculation circuit 30.

かようにして減衰力を自動制御される本発明ショックア
ブソーバにおいて、外力によりショックアブソーバがス
トロークする際は、圧力室3,4間で連通部21を通り
作動液が制限下に置換流動され、このmlJ限が連通部
21の開度により決定されて目標減衰力での作動を行な
うことができる。
In the shock absorber of the present invention, in which the damping force is automatically controlled in this manner, when the shock absorber is stroked by an external force, the hydraulic fluid is displaced and flows under restriction through the communication portion 21 between the pressure chambers 3 and 4. The mlJ limit is determined by the opening degree of the communication portion 21, and operation with the target damping force can be performed.

即ち、車両が良路を走行している場合、当然ストローク
量信号X及びストローク速度信号文は小さく、演算回路
30が目標減衰力信号を第7V中L□で示す如く低くす
る。この時比較器35からの出力パルス信号は第7図に
gで示す如くデユーティ→クイクル%を減少され、連通
部21の平均開度をAつの如く犬キくシてショックアブ
ソーバの減衰力を減少する。従って、車両は安定した走
行を行なうことができる。又、この際、センサ33から
の信号によっても演算回路30は目標減衰力を補正する
から、旋回走行及び加減速時における減衰力を高めて、
この時の車体姿勢変化を最適なものとなしイLチる。
That is, when the vehicle is traveling on a good road, the stroke amount signal X and the stroke speed signal are naturally small, and the arithmetic circuit 30 lowers the target damping force signal as shown by L□ in the seventh V. At this time, the output pulse signal from the comparator 35 is reduced in duty→quickle % as shown by g in FIG. do. Therefore, the vehicle can run stably. Also, at this time, the arithmetic circuit 30 also corrects the target damping force based on the signal from the sensor 33, so the damping force during turning and acceleration/deceleration is increased.
The vehicle body posture change at this time is optimized.

一方、悪路走行や高速走行時は、ストローク信号X及び
ストローク速度信号文が大きくなり、演算回路30は目
標減衰力信号を第7図中L0で示す如く高くする。この
時比較器35からのパルス信号は第7図にeで示す如く
デユーティサイクル%を減少され、連通部21の平均開
度を八〇の如く小さくしてショックアブソーバの減衰力
を減ず奇、。従って、車両は悪路走行及び高速走行でも
乗心地の良い走行を可能にされる。又この際センサ33
からの信号によっても演算回路3oは目標減衰力を補正
するから、旋回走行及び加減速走行時における減衰力を
更に高めて、この時の車体姿勢変化を抑制し、操安性を
向上させることができる。
On the other hand, when driving on a rough road or at high speed, the stroke signal X and the stroke speed signal become large, and the calculation circuit 30 increases the target damping force signal as shown by L0 in FIG. At this time, the duty cycle % of the pulse signal from the comparator 35 is reduced as shown by e in FIG. ,. Therefore, the vehicle can run with good riding comfort even on rough roads and at high speeds. Also, at this time, the sensor 33
Since the calculation circuit 3o also corrects the target damping force based on the signal from can.

なお、かかるショックアブソーバの作ノ月中、ピストン
ロッド8がシリンダ1に対し侵入、侵出し、その体積分
がシリンダ1内に容積変化を生せしめるが、この容積変
化は通常1j(j )l 、室6内におけるガスの圧縮
、膨張により補fatされる。
During the operation of the shock absorber, the piston rod 8 enters and protrudes from the cylinder 1, and this volume causes a change in volume within the cylinder 1, but this change in volume is usually 1j(j)l, Fat is compensated by compression and expansion of the gas in the chamber 6.

ここでコイル19のデユーティ制御系が故1耀して、弁
体16が連通部21を閉じたままにする時は、ショック
アブソーバのストローク中発生する圧力室3又は4内の
圧力がIJ ’J−フ弁23又は24・を開さ、圧力室
3,4間で作動液の往来を可能にし、ショックアブソー
バが作動不能になるのを防止する。又、これらリリーフ
弁23.24は圧力室8,4・間の差圧が一定以一ヒに
ならないよう機能するため、故障時以外でも一方の圧力
室3又はるが異常な高圧になると開き、ショックアブソ
ーバの構成部品が破損したり、過度な減衰力によって車
両の乗心地や操安性が極端に悪くなるのを防止すること
ができる。
Here, when the duty control system of the coil 19 is activated and the valve body 16 keeps the communication portion 21 closed, the pressure inside the pressure chamber 3 or 4 generated during the stroke of the shock absorber is IJ 'J - The valve 23 or 24 is opened to allow hydraulic fluid to flow between the pressure chambers 3 and 4, and to prevent the shock absorber from becoming inoperable. In addition, these relief valves 23 and 24 function so that the differential pressure between the pressure chambers 8 and 4 does not exceed a certain level, so even when one of the pressure chambers 3 or 4 becomes abnormally high pressure, they will open even when there is no malfunction. It is possible to prevent the component parts of the shock absorber from being damaged and the ride comfort and handling of the vehicle from becoming extremely poor due to excessive damping force.

なお、本発明においては、連通部21の開度をIi■述
の如く制御する弁体16のストローク方向一端(室17
に臨む端部)に作用する圧力を、中心貫通孔16aを経
て室18に導ひき、弁体16のストローク方向他端にも
作用きせる構成にしたから、弁体16にかかる圧力のバ
ランスをとることができ、弁体16がこれにかかる圧力
によって力を受けることはない。従って、i71!通部
21の前記開度制御を正確に行ない得で、ショックアブ
ソーバの減衰力を常時正確に目標値にil+lJ御する
ことができ、減衰力可変式ショックアブソーバの信頼性
を向上きせることかできる。
In addition, in the present invention, one end in the stroke direction of the valve body 16 (the chamber 17
The pressure acting on the end facing the valve body 16 is guided to the chamber 18 through the center through hole 16a, and is also applied to the other end of the valve body 16 in the stroke direction, so that the pressure applied to the valve body 16 is balanced. The valve body 16 is not subjected to any force due to the pressure applied thereto. Therefore, i71! Since the opening degree of the passage portion 21 can be controlled accurately, the damping force of the shock absorber can always be accurately controlled to the target value il+lJ, and the reliability of the variable damping force type shock absorber can be improved.

第4・図は本発明の他の例で、図中第2図にお目ると同
(];の部分を同一7,1: 、3.にて7J”<す。
Fig. 4 shows another example of the present invention, in which the same (]; parts as in Fig. 2 are replaced by 7J''< with the same 7, 1:, 3.).

本例では、ピストンロッド8から遠いピストン2の側に
バルブガイド37を突設し、ぞの外周に条溝37aをノ
lf rJすすると共に環状の非磁性材で造った弁体3
8を摺動自在に回合し、これらで弁体38のストローク
により開閉される連通部39を構成する。条溝87aは
バルブガイド37に設けた連絡孔87bにより室]7に
通じさせ、結果として東満37aの底部を連絡孔37b
、室]7及び横孔8aにより圧力室4・に、又条溝37
aの開口部を圧力室3に夫々通しさせる。
In this example, a valve guide 37 is provided protrudingly on the side of the piston 2 that is far from the piston rod 8, a groove 37a is formed on the outer periphery of the valve guide 37, and a valve body 3 made of an annular non-magnetic material is provided.
8 are slidably rotated, and these constitute a communication portion 39 that is opened and closed by the stroke of the valve body 38. The groove 87a communicates with the chamber 7 through a communication hole 87b provided in the valve guide 37, and as a result, the bottom of the east mantle 37a is connected to the communication hole 37b.
, chamber] 7 and the pressure chamber 4 through the horizontal hole 8a, and the groove 37.
The openings of a are made to pass through the pressure chambers 3, respectively.

弁体38をばね4・0により、図示の1lrl <条r
N737aにかぶさって連通部3!ンが1?つじられた
位置に弾支し、゛該弁体38の外周に−・対の珀状永久
イみ石41,4・2を軸方向へ離間して嵌矯する。永久
(a石4・1は外周をS 1jljiに、又内周をN極
に磁化させたものとし、永久イみ石42は逆に外周をN
 hIfiに、又内周をS極に磁化させたものとし、こ
れら永久磁石41,4・2の外周に強磁性材料で造った
筒体43を嵌着する。筒体43の周りに筒形コイルヨー
ク44を同心に配設し、これをピストン2にビス45で
取着する。ヨーク44の内周に一対の環状フィル4.6
 、47を永久磁石4・1,7I・2の外周と対向する
よう軸方向へ離間して1茨着し、これらmイ#46,4
.7を強磁性材料のケース48゜49で包囲する。コイ
ル46.47は夫々付勢時隣り合う端部同士がN極とな
り、反対側端部がS極となるよう互に巻方向を逆とし、
これらコイルの通電用リード線5oをピストンロッド8
の孔8bに通して外部に取出す。
The valve body 38 is held by the spring 4.0 as shown in the figure.
Communication part 3 covers N737a! N is 1? A pair of permanent stones 41, 4 and 2 are fitted onto the outer periphery of the valve body 38, spaced apart in the axial direction. Permanent stone 4.1 has its outer periphery magnetized to S 1jlji and its inner periphery magnetized to N pole, and permanent stone 42 has its outer periphery magnetized to N pole.
The inner periphery of hIfi is magnetized to the S pole, and a cylinder 43 made of a ferromagnetic material is fitted onto the outer periphery of these permanent magnets 41, 4, and 2. A cylindrical coil yoke 44 is arranged concentrically around the cylindrical body 43, and is attached to the piston 2 with screws 45. A pair of annular fills 4.6 are provided on the inner circumference of the yoke 44.
, 47 are attached one piece apart in the axial direction so as to face the outer periphery of the permanent magnets 4, 1, 7I, 2, and these m I #46, 4
.. 7 is surrounded by a case 48°49 of ferromagnetic material. The winding directions of the coils 46 and 47 are reversed so that when energized, adjacent ends become N poles and opposite ends become S poles.
The energizing lead wires 5o of these coils are connected to the piston rod 8.
through the hole 8b and take it out to the outside.

かかる構成の本例ショックアブソーバも、第3図と同様
な第5図に示す如き回路によりコイル4・6.47への
通電を制taすることで、減り力を以下の如く目標値に
調整することができる。
In the shock absorber of this example having such a configuration, the reducing force is adjusted to the target value as shown below by restricting the energization to the coils 4 and 6.47 using a circuit as shown in FIG. 5, which is similar to FIG. 3. be able to.

即ち、第5図において、比較器35がらのパルス信号e
、f又はg(第7図参照)はHレベル時間中トランジス
タ51. 、52を導通してコイル46.4・7を付勢
し、連通部39の1ノ14度をテユーティ制御する。つ
まり、コイル46.47の減勢時弁体38はばね40に
より第4図の位置にされ、連通部39を閉じて条溝37
aを圧力室8から遮断している。ところでコイル46,
470付勢時は、これらが前述した如く隣り合う端部同
士でN極、他端部でS極になるため、コイル46が永久
磁石4.1に、又コイル47が永久磁石42に夫々第4
図中下向きの磁力を与え、弁体38をはね4.0に抗し
同方向へストロークさせる。この時弁体38は条溝37
aを圧力室3に通じさせ、連通部39を開いてW力室8
,4・間における作動液の往来を可能にする。
That is, in FIG. 5, the pulse signal e from the comparator 35
, f or g (see FIG. 7) is the transistor 51. during the H level time. , 52 are electrically connected, the coils 46.4 and 7 are energized, and the 1/14 degree angle of the communication portion 39 is controlled. That is, when the coils 46 and 47 are deenergized, the valve body 38 is moved to the position shown in FIG.
a is isolated from the pressure chamber 8. By the way, the coil 46,
470 is energized, as described above, the adjacent ends become N pole and the other end becomes S pole, so the coil 46 becomes the permanent magnet 4.1, and the coil 47 becomes the permanent magnet 42. 4
Applying a downward magnetic force in the figure, the valve body 38 is stroked in the same direction against the spring 4.0. At this time, the valve body 38 is
a to the pressure chamber 3, and open the communication part 39 to connect the W force chamber 8.
, 4. Allows hydraulic fluid to flow between.

ところで、連jli部89の開度は前述した例と同(」
;、第7図にe 、 f + gで例示する如く変化す
るパルス信号のデユー゛ティサイクル%により決まり、
連通部39の開度で決まるショックアブソーバの減衰力
を演算回路30により演算した目標値に制御、 するこ
とができる。
By the way, the opening degree of the connecting part 89 is the same as in the example described above.
, is determined by the duty cycle % of the pulse signal that changes as illustrated by e, f + g in Fig. 7,
The damping force of the shock absorber, which is determined by the opening degree of the communication portion 39, can be controlled to a target value calculated by the calculation circuit 30.

かかる本例の構成においても、減衰力制御用弁体38が
そのストローク方向両端に同じ汗、力室3内の圧力を受
けるため、弁体88に圧力による力が及ばず、上記の減
衰力制御を常時正確に得ることができる。
In the configuration of this example as well, since the damping force control valve body 38 receives the same sweat and pressure in the force chamber 3 at both ends in the stroke direction, the force due to the pressure does not reach the valve body 88, and the damping force control described above is not performed. can be obtained accurately at all times.

なお、本例の如く永久磁石41 、4.2を2個]組と
し、コイル46.47もこれに対応して2個1組として
設ければ、弁体38の作動力が増し、のに必要とする駆
動力が小さく永久磁石4・1゜4・2のl1IJtt化
とコイルの低インダクタンス化が可能となって、減衰力
制御作用の応答性が向上し、当該作用の高速化を果たし
イ1φて好都合である。
In addition, if the permanent magnets 41 and 4.2 are arranged as a set of two as in this example, and the coils 46 and 47 are also arranged as a set of two, the operating force of the valve body 38 will increase. The required driving force is small, making it possible to use l1IJtt for the permanent magnets 4, 1, 4, 2 and lowering the inductance of the coil, improving the responsiveness of the damping force control action and speeding up the action. 1φ is convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ショックアブソーバの縦断側面図、 第2図は同じくその要部拡大断面図、 第3図は第1図に示すショックアブソーバの電子制御回
路図、 第4図は本発明の他の例を示す第2図と同様の要部拡大
断面図、 @5図は第4・図に示すショックアブソーバの電子制御
回路図、 第6図及び第7図は第3図及び第5図に示す制御回路中
における各tl(信号のタイムチャートである。 ■・・・シリンダ     2・・・ピストン3.4・
・・・圧力’4      s・・・ピストン四ソド9
・・・ショックアブソーバストロークセンサ10・・・
磁気感応素子 12・・・ショックアブソーバストローク検出器14・
・・コイルヨーク   J5・・・端蓋16・・・弁体
       19・・・フィル20・・・ばね   
    21・・・連通部23.24・・・リリーフ弁
  25・・・ANDゲート26・・・方形波発生回路
  27.31・・・カウンタ回路2B・・・ランチ回
路    29.32・・・D/A変換回路30・・・
目標減衰力演幹回路 33・・・車両走行状態検出センサ 35・・・比’tffl器        36. 5
1. 52・・・トランジスタ37・・・バルブガイド
   38・・・弁体89・・・連通部      4
・0・・・ばね41、42・・・永久磁石   43・
・・筒体4喝4・・・フィルヨーク46.47・・・フ
ィル4・8,49・・・フィルケース。 特許出願人 日産自動車株式会社 第1図 第2図
Fig. 1 is a vertical sectional side view of the shock absorber of the present invention, Fig. 2 is an enlarged sectional view of the main parts thereof, Fig. 3 is an electronic control circuit diagram of the shock absorber shown in Fig. 1, and Fig. 4 is a diagram of the shock absorber of the present invention. Figure 5 is an electronic control circuit diagram of the shock absorber shown in Figures 4 and 7. Figures 6 and 7 are shown in Figures 3 and 5. This is a time chart of each tl (signal) in the control circuit shown.■...Cylinder 2...Piston 3.4.
...Pressure '4 s... Piston four strokes 9
...Shock absorber stroke sensor 10...
Magnetic sensing element 12...Shock absorber stroke detector 14...
...Coil yoke J5...End cover 16...Valve body 19...Fill 20...Spring
21... Communication portion 23.24... Relief valve 25... AND gate 26... Square wave generation circuit 27.31... Counter circuit 2B... Launch circuit 29.32... D/ A conversion circuit 30...
Target damping force vector circuit 33...Vehicle running state detection sensor 35...Ratio 'tffl device 36. 5
1. 52...Transistor 37...Valve guide 38...Valve body 89...Communication part 4
・0...Springs 41, 42...Permanent magnet 43・
...Cylinder body 4 4...Fill yoke 46.47...Fill 4, 8, 49...Fill case. Patent applicant Nissan Motor Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] L シリンダ内にピストンを摺動自在に嵌合して該ピス
トンの両側に圧力室を設定し、ピストン及びシリンダの
相対移動中前記面圧力室間で作動液の制限的置換流動を
行なわせて振動減衰作用を得る連通部を有すると共に、
該連通部の開度を、自動制御される弁体゛のストローク
により変えて減衰力を変化させ得るようにしたショック
アブソーバにおいで、前記弁体のストローク方向両端に
夫々、圧力バランスをとるため常時同じ液圧を作用させ
るよう構成したことを特徴とする減衰力可変式ショック
アブソーバ。
A piston is slidably fitted into the L cylinder, pressure chambers are provided on both sides of the piston, and during relative movement of the piston and cylinder, limited displacement flow of hydraulic fluid is performed between the surface pressure chambers to generate vibrations. It has a communication part that obtains a damping effect, and
In a shock absorber in which the damping force can be changed by changing the opening degree of the communicating portion by the stroke of the valve body which is automatically controlled, the pressure is constantly balanced at both ends of the valve body in the stroke direction. A variable damping force shock absorber characterized by being configured to apply the same hydraulic pressure.
JP1896483A 1983-02-09 1983-02-09 Variable damping force type shock absorber Pending JPS59147134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1896483A JPS59147134A (en) 1983-02-09 1983-02-09 Variable damping force type shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1896483A JPS59147134A (en) 1983-02-09 1983-02-09 Variable damping force type shock absorber

Publications (1)

Publication Number Publication Date
JPS59147134A true JPS59147134A (en) 1984-08-23

Family

ID=11986330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1896483A Pending JPS59147134A (en) 1983-02-09 1983-02-09 Variable damping force type shock absorber

Country Status (1)

Country Link
JP (1) JPS59147134A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184248A (en) * 1985-11-05 1987-08-12 コニ・ビー・ブイ Electrically adjustable shock absorber
EP0350061A2 (en) * 1988-07-08 1990-01-10 Nippondenso Co., Ltd. Shock absorber with adjustable damping force
JPH0325043U (en) * 1989-07-20 1991-03-14
EP0297194B1 (en) * 1987-06-19 1992-08-12 La Industrial Plastica Y Metalurgica, S.A. Variable rate shock absorber
EP0966385A2 (en) * 1997-03-13 1999-12-29 Cannondale Corporation Electronic suspension system for a wheeled vehicle
DE102010045114B4 (en) 2010-09-13 2019-12-19 Grammer Aktiengesellschaft Method for operating a vehicle damping device for a vehicle seat / a vehicle cabin and vehicle damping device for a vehicle seat / a vehicle cabin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184248A (en) * 1985-11-05 1987-08-12 コニ・ビー・ブイ Electrically adjustable shock absorber
JPH0461979B2 (en) * 1985-11-05 1992-10-02 Koni Bv
EP0297194B1 (en) * 1987-06-19 1992-08-12 La Industrial Plastica Y Metalurgica, S.A. Variable rate shock absorber
EP0350061A2 (en) * 1988-07-08 1990-01-10 Nippondenso Co., Ltd. Shock absorber with adjustable damping force
US5078239A (en) * 1988-07-08 1992-01-07 Nippondenso Co., Ltd. Shock absorber with adjustable damping force
JPH0325043U (en) * 1989-07-20 1991-03-14
EP0966385A2 (en) * 1997-03-13 1999-12-29 Cannondale Corporation Electronic suspension system for a wheeled vehicle
EP0966385A4 (en) * 1997-03-13 2005-01-12 Cannondale Corp Electronic suspension system for a wheeled vehicle
DE102010045114B4 (en) 2010-09-13 2019-12-19 Grammer Aktiengesellschaft Method for operating a vehicle damping device for a vehicle seat / a vehicle cabin and vehicle damping device for a vehicle seat / a vehicle cabin

Similar Documents

Publication Publication Date Title
US20220281282A1 (en) Methods and apparatus for controlling a fluid damper
US5251729A (en) Vehicle suspension damper with relative velocity sensor having controlled flux path
DE10392253B4 (en) Magnetically neutral displacement (torque) transducer for a ferromagnetic element with coil (s) and magnetic field sensor (s)
US3040217A (en) Electromagnetic actuator
JPH0417289B2 (en)
JPH0361777A (en) Solenoid valve using permanent magnet
EP0672224A4 (en) Magnetorheological valve and devices incorporating magnetorheological elements.
TWI588380B (en) Shock absorber for a bicycle
JPH01106721A (en) Shock absorber
JPH03176217A (en) Speed transducer for vehicle suspension device
JPS59147134A (en) Variable damping force type shock absorber
JP2010023602A (en) Suspension device
JP2009150411A (en) Variable damping force damper
CN105313632B (en) Vibration insulating system
EP0397702A1 (en) A variable rate shock absorber and system therefor.
GB1317967A (en) Null adjuster for magnetically operated torque motors
JPH03271011A (en) Variable damping force shock absorber
JP4447018B2 (en) Variable damping force damper
US5007659A (en) Internal damping force sensor
JP2007271046A (en) Magnetic viscous fluid damper
JPS6367057B2 (en)
JPH0544757A (en) Suspension device
US7234482B2 (en) Servovalve with torque motor
JP2549063Y2 (en) Electromagnetic suspension device
JPH10246270A (en) Suspension device for vehicle