JPS5914617A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS5914617A
JPS5914617A JP57123335A JP12333582A JPS5914617A JP S5914617 A JPS5914617 A JP S5914617A JP 57123335 A JP57123335 A JP 57123335A JP 12333582 A JP12333582 A JP 12333582A JP S5914617 A JPS5914617 A JP S5914617A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic recording
magnetic
vertical magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57123335A
Other languages
Japanese (ja)
Other versions
JPH0370362B2 (en
Inventor
Mamoru Sugimoto
守 杉本
Satoshi Nehashi
聡 根橋
Akihiko Kawachi
河内 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57123335A priority Critical patent/JPS5914617A/en
Publication of JPS5914617A publication Critical patent/JPS5914617A/en
Publication of JPH0370362B2 publication Critical patent/JPH0370362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a super-high density magnetic recording medium by adding Ti of the particular rate or less as the third element to the two elements system of Co-Cr. CONSTITUTION:Ti in such an amount up to 10wt% is added to the Co-Cr system. When Ti of 10% or more is added, crystal orientation is rapidly deteriorated and vertical magnetic anisotropy is lowered suddenly. A vertical magnetic recording medium which is outstandingly exceeding a limit of vertical magnetic anisotropy in the two element alloy of Co-Cr can be formed by including Ti of 10wt% or less in the Co-Cr film as described above and moreover a super-high density magnetic recording medium which has drastically improved recording density characteristic can be obtained.

Description

【発明の詳細な説明】 本発明は、磁気記録材料、よシ詳しく述べるならば、コ
バルト・クロム垂直磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to magnetic recording materials, and more particularly to cobalt chromium perpendicular magnetic recording media.

磁気記録媒体は、コンピューターの記憶装置に用いられ
一般に記録媒体の長手方向に磁化させている。しかしな
がらこのような磁化方式では記録密度の高密度化に限界
があシ、はるかに高密度化が可能となる記録媒体の面に
垂直な方向に磁化する方式が提案されている。そして、
磁性薄MIIC対して垂直方向に磁化可能な垂直磁気記
録媒体にはコバルトoクロム(以下CQ −Cfと略記
する)が使用すれ、スパッタリング忙よって基板1忙薄
膜を形成している。
Magnetic recording media are used in computer storage devices and are generally magnetized in the longitudinal direction of the recording media. However, such a magnetization method has a limit in increasing the recording density, and a method has been proposed in which magnetization is performed in a direction perpendicular to the surface of the recording medium, which makes it possible to achieve a much higher density. and,
Cobalt-o-chromium (hereinafter abbreviated as CQ-Cf) is used as a perpendicular magnetic recording medium that can be magnetized in the direction perpendicular to the magnetic thin MIIC, and a thin film is formed on the substrate by sputtering.

垂直記録媒体の作成釦は、膜面垂直方向の反磁界に打勝
つ垂直磁気異方性を付与することが必要である。最密六
方晶コバルトはC軸方向に大きい結晶磁気異方性を有し
ているが、磁化が大きいために形状磁気異方性エネルギ
ーが大きく1、垂直磁気異方性膜は得られない。そのた
め、り・ロムを添加することによシ飽和磁化を減少させ
るとともに、最密六方晶のC軸を基板垂直方向に強く配
向させることによシ垂直磁気異方性膜を作成することが
可能になる。ところが、超高密度磁気記録を実現させた
場合、1つのビ′ットにおける減磁界は、薄膜時の最大
の減磁界4πMJ (Mgは飽和磁化)6よシ相尚減る
筈であシ、必ずしも Km > 2πMg”(Ksは磁化膜の結晶異方性定数
である。) の余計を満たす必要はないと考えられる。
To create a perpendicular recording medium, it is necessary to provide perpendicular magnetic anisotropy that overcomes the demagnetizing field in the direction perpendicular to the film plane. Close-packed hexagonal cobalt has a large magnetocrystalline anisotropy in the C-axis direction, but due to its large magnetization, the shape magnetic anisotropy energy is large1, and a perpendicular magnetic anisotropic film cannot be obtained. Therefore, it is possible to reduce the saturation magnetization by adding Ri-Rom and to create a perpendicular magnetic anisotropic film by strongly aligning the C-axis of the close-packed hexagonal crystal in the direction perpendicular to the substrate. become. However, if ultra-high-density magnetic recording is realized, the demagnetizing field for one bit should be much smaller than the maximum demagnetizing field for thin films, 4πMJ (Mg is saturation magnetization)6; It is considered that there is no need to satisfy the condition Km >2πMg'' (Ks is the crystal anisotropy constant of the magnetized film).

一方、CQ−Cr垂直磁化膜は、バルクの場合コバルト
の飽和磁化が、クロム含有量が増える釦従い、直続的に
減少するのに対し、その直続よシやや高い飽和磁化の減
少傾向を示していることから、結晶粒界にクロムが偏折
していることが予想され、最近、膜の断面のオージェ電
子分光分析によって、実証された。つまシ、飽和磁化を
下げ、減磁界を小さくするために1結晶粒中に適度にク
ロムが混入することと、結晶粒界にクロムが偏折し、非
磁性層を形成することによって、磁壁移動による磁化機
構を減少させ、結晶粒間を磁気的に分離させて、単磁区
粒子の磁化回転のみにすることが、理想的な垂直磁気記
録媒体と考えられる。
On the other hand, in the case of a CQ-Cr perpendicularly magnetized film, the saturation magnetization of cobalt decreases continuously as the chromium content increases, whereas the saturation magnetization of the CQ-Cr perpendicularly magnetized film shows a slightly higher decreasing tendency than that of the chromium content. From this, it was predicted that chromium was polarized at the grain boundaries, and this was recently confirmed by Auger electron spectroscopy analysis of a cross section of the film. In order to lower the saturation magnetization and reduce the demagnetizing field, a moderate amount of chromium is mixed into each crystal grain, and chromium is polarized at the grain boundaries and forms a nonmagnetic layer, which causes domain wall movement. An ideal perpendicular magnetic recording medium would be to reduce the magnetization mechanism due to the magnetic field, magnetically separate crystal grains, and only rotate the magnetization of single domain grains.

従来のCo −Cr垂直磁化記録媒体は、膜の垂直異方
性(特にこむでは垂直異方性磁界HEで表わす。
Conventional Co--Cr perpendicular magnetization recording media exhibit perpendicular anisotropy of the film (in particular, the perpendicular anisotropy field is expressed by the perpendicular anisotropy magnetic field HE).

)を上げると垂直方向の保磁力Hc(1)も上昇してし
まう。
), the vertical coercive force Hc(1) also increases.

4インチcoターゲットにCfペレットをおいて、12
.5μm厚のポリイミドにRFマグネトロンスパッタ形
成させた例を以下忙記す。
Place a Cf pellet on a 4 inch co target and
.. An example in which 5 μm thick polyimide was formed by RF magnetron sputtering will be described below.

例1 初期真空度 3 X lO−’ torr投入電
力  IK7 70mA 時   間   IAosr における膜特性は 例2 初期真空度 3.5 X 14)−”torr投
入電力  2Kv127?7!A 時   間   LOmin における膜特性は であった。これは、投入電力を変えた場合の例であるが
、基板加熱した場合も同様の傾向を示す。
Example 1: Initial degree of vacuum: 3 X lO-' torr Input power: IK7 70mA Time IAosr: Example 2: Initial vacuum: 3.5 This is an example when the input power is changed, but the same tendency is shown when the substrate is heated.

つまシ、熱が膜形成時にかかることによって、保磁力H
cも、異方性磁界Hzも上昇する。とζろがこれは、現
実に非常に不都合である。垂直記録媒体は、例2のよう
に高H,Kが当然望ましいのであるが、HC(L)が大
きくなシすぎると、フェライト、パーマロイ、センダス
ト、アモルファス軟磁性体等を用いた磁気ヘッドでは飽
和させる為に、ヘッドに流す電流を非常に大きくしなけ
ればならない。たとえ、飽和記録できても消去が困難で
あったシ、オーバーライド特性が劣化してしまうという
欠点が生じる。一方、例1のような場合には、書き込み
電流及び、オーバライドの特性は改善されるが垂直磁気
記録の本来の垂直異方性磁界が小であるため、高密度記
録における磁化反転がシャープでなく、記録密度特性が
悪化してしまう。
Due to the heat applied during film formation, the coercive force H
c and the anisotropic magnetic field Hz also rise. However, this is actually very inconvenient. It is naturally desirable for perpendicular recording media to have high H and K as in Example 2, but if HC(L) is too large, magnetic heads using ferrite, permalloy, sendust, amorphous soft magnetic materials, etc. will be saturated. In order to do this, the current flowing through the head must be made extremely large. Even if saturation recording is possible, erasing is difficult and override characteristics deteriorate. On the other hand, in a case like Example 1, although the write current and override characteristics are improved, the original perpendicular anisotropy field of perpendicular magnetic recording is small, so the magnetization reversal in high-density recording is not sharp. , recording density characteristics deteriorate.

本発明はかかる点を鑑み、Go−cr系に更に第三元素
としてチタンを添加することによシこれらの難点を解決
したものである。
In view of these points, the present invention solves these difficulties by further adding titanium as a third element to the Go-Cr system.

本発明の目的は、結晶粒間を磁気的に分離させ、超高密
度磁気記録媒体を提供するととにある。
An object of the present invention is to provide an ultra-high density magnetic recording medium by magnetically separating crystal grains.

本発明の他の目的は1QQKFRP工以上の超高密度磁
気記−録における出力及び分解能を飛躍的に高めること
にある。
Another object of the present invention is to dramatically increase the output and resolution in ultra-high density magnetic recording of 1QQKFRP or higher.

本発明はcm −Crに更に10重量%(以下wtチと
略す)までのチタンC以下T4と略す)を加えること忙
よシ明らかに効果を発揮する。
The present invention is clearly effective when adding up to 10% by weight (hereinafter abbreviated as wt) of titanium C (hereinafter abbreviated as T4) to cm -Cr.

T6の添加量が10 wt%を超えると膜の結晶性が著
しく低下し、膜の垂直磁気異方性が急激に落ちる。
When the amount of T6 added exceeds 10 wt%, the crystallinity of the film is significantly reduced, and the perpendicular magnetic anisotropy of the film is sharply reduced.

従来cOcr  2元系では、Cfが12〜30wt俤
の範囲で磁気特性、結晶配向とも良好であるとされてい
たが、本発明のTi添加によってCf量の下限が広がシ
ニ元系の場合よシも良い特性を示した。第1図に本発明
の効果を示す。表中の数字は、Co中のCrとTjの含
有量を重量%で表示した。斜線部が本発明によって垂直
磁気異方性が改善された領域で、その他は本発明の効果
を示さない領域である。
Conventional cOcr binary systems are said to have good magnetic properties and crystal orientation when Cf is in the range of 12 to 30 wt, but the addition of Ti in the present invention expands the lower limit of Cf content compared to the case of cylindrical systems. Shi also showed good characteristics. FIG. 1 shows the effects of the present invention. The numbers in the table represent the contents of Cr and Tj in Co in weight%. The shaded area is the area where the perpendicular magnetic anisotropy has been improved by the present invention, and the other areas are areas where the effect of the present invention is not exhibited.

具体例として、DCスパッタ、RFスパッタ、マグネト
四ンスパッタ、対向ターゲット方式スパッタ電子ビーム
蒸着、メッキ等薄膜作製法あるいはポリエチレンテレフ
タレート、ポリイミド、ガラス、アルマイト処理したア
ルミ基板等の基板材質にかかわらず、本発明のTi添加
効果がある。一般に、垂直磁気記録媒体として、垂直磁
気記録層単層の場合とその下に裏うち層として高透磁率
層を設ける場合があるが、本発明は、裏うち高透磁率層
の材質、例えばパーマロイ、CQ系、 Fg系アモルフ
ァス高透磁率薄膜を各種変更してもなルたつ。
Specific examples include DC sputtering, RF sputtering, magneto four sputtering, facing target sputtering, electron beam evaporation, plating, and other thin film manufacturing methods, and the present invention applies regardless of substrate materials such as polyethylene terephthalate, polyimide, glass, and alumite-treated aluminum substrates. There is an effect of adding Ti. In general, perpendicular magnetic recording media may have a single perpendicular magnetic recording layer or a high magnetic permeability layer provided thereunder as a backing layer. , CQ-based, and Fg-based amorphous high permeability thin films can be modified in various ways.

以下、実施例にもとすいて、本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 ポリイミド基板KRF電源でCQ  Cr及び、CQ−
cp −T6垂直磁化膜を形成した。
Example 1 CQ Cr and CQ- using polyimide substrate KRF power supply
A cp-T6 perpendicular magnetization film was formed.

ターゲットは、Co  l:31Dt% Cf e C
016u)t%CfC020wtellr Crと3種
類のCQ −Cf合金ターゲットを用いた。C6−Cr
−T4三元系垂直磁化膜についてはcm −Cr合金タ
ーゲット上に、5X5X1s+aのサイズのTtペレッ
トを分布が均一になるように配置して各種のri量の薄
膜を作製した。
The target is Col:31Dt% CfeC
016u) t%CfC020wtellr Cr and three types of CQ-Cf alloy targets were used. C6-Cr
-T4 ternary perpendicularly magnetized films were prepared by arranging Tt pellets with a size of 5X5X1s+a on a cm-Cr alloy target so that the distribution was uniform to produce thin films with various ri amounts.

各成分の含有量はXMAにて定量を行った。The content of each component was determined by XMA.

スパッタ条件 スパッタ前忙ペルジャーのベーキング及び、ポリイミド
基板のガス出しを行った。スパッタ中社基板ホルダーを
水冷した。スパッタ時間は1.15分で、膜厚は約0.
6・μmでありた。以下に、作製した膜のロッキングカ
ーブの半値幅Δθso と磁気特性を示す。
Sputtering conditions Before sputtering, the Pelger was baked and the polyimide substrate was degassed. A sputter Chusha substrate holder was water-cooled. The sputtering time was 1.15 minutes, and the film thickness was approximately 0.5 minutes.
It was 6.μm. The half width Δθso of the rocking curve and the magnetic properties of the produced film are shown below.

c(、−13wt%crターゲット上にT4ペレットを
置いた場合t−第1表に示す。同様1fCCo −16
wt% Cr、C0−20wt%C0wt%Cブタ−ゲ
ット合をそれぞれ第2表、第3表に示す。
c(, -13wt% When T4 pellets are placed on the cr target, t- is shown in Table 1. Similarly, 1fCCo -16
The target ratios of wt% Cr and C0-20wt%C0wt%C are shown in Tables 2 and 3, respectively.

第1表  (Cerr ’tts’)too−ZTf 
(重量%表示)第2表 CCOmCデu)see−cT
iz第3表 (ao帥Cr@)yH−ycTiz異方性
磁界HKとT(量の関係を示した図を第2図に示す。
Table 1 (Cerr 'tts') too-ZTf
(Displayed as weight %) Table 2 CCOmCsee-cT
iz Table 3 (ao 帥Cr@)yH-ycTiz A diagram showing the relationship between the anisotropic magnetic field HK and T (quantity) is shown in FIG.

本データは、それぞれ3回の実験の平均をとったもので
、Ti量は±1%の誤差をもっている。本データによシ
、次のことがわかる。
This data is the average of three experiments, and the Ti amount has an error of ±1%. Based on this data, we can see the following.

○T6をLOwtli以下添加すること釦よシ、垂直磁
気異方性が20チ近く上昇する。
○By adding T6 below LOwtli, the perpendicular magnetic anisotropy increases by nearly 20 inches.

OCr量が増加するにつれ、異方性磁界HKの最大値を
とるTi量が低い方へずれて眞る。Bち、CO*oo−
Z CrZ (D zO値によシri添加の最適量は変
わる。
As the amount of OCr increases, the amount of Ti that takes the maximum value of the anisotropic magnetic field HK shifts toward the lower side. B-chi, CO*oo-
Z CrZ (D The optimum amount of SiRI addition varies depending on the zO value.

○T4を10 wt%以上添加すると結晶配向性が急忙
悪化し、垂直磁気異方性も急激に低くなる。
○ When 10 wt% or more of T4 is added, the crystal orientation deteriorates rapidly and the perpendicular magnetic anisotropy also decreases rapidly.

実施例2 対向ターゲット方式スパッタ装置を用い、ビデオ用テー
プを作製し画像処理を行った。
Example 2 A video tape was produced using a facing target type sputtering device and subjected to image processing.

第3図の対向ターゲット方式スノくツタ装置の概略図を
示す、Co −Cr 2元系ターゲット1と専用の直流
電源C以下DC電源と記す)2とそれに対向して設けら
れたC6− Cr−Tj 3元系ターゲット3と専用の
DC電源4からなシ、この対向したターゲット間に約3
00ガウスの磁界を発生させ、基板5がプラズマにさら
されないようにペルジャーの外側に電磁石6を備えた構
成である。基板5は、ロール方式で巻き取れるよう忙設
計してあシ、後方の加熱及び水冷可能な基板ホルダー7
及びそれと連動したガイド棒によって上下に可動釦なっ
ている。
FIG. 3 shows a schematic diagram of the facing target type snow vine device, showing a Co-Cr binary target 1, a dedicated DC power supply C (hereinafter referred to as DC power supply) 2, and a C6-Cr- installed opposite to it. Tj Between the ternary target 3 and the dedicated DC power supply 4, there is approximately 3
This configuration generates a magnetic field of 0.00 Gauss and includes an electromagnet 6 outside the Pelger so that the substrate 5 is not exposed to plasma. The board 5 is designed so that it can be rolled up using a roll method, and there is a board holder 7 that can be heated and cooled with water at the rear.
It also has a button that can be moved up and down by a guide rod linked to it.

スパッタ条件 この対向ターゲット方式スパッタ装mu、それぞれの電
極に電源を独立に設けてhるため、C0−Cr膜中のT
6量を変えるKはそれぞれターゲットに加えるパワーを
変えればよく、パワーを変えたことによる膜厚分布の変
動は、基板ホルダー及び基板の上下によって制御した。
Sputtering conditions In this facing target sputtering system, each electrode is provided with an independent power supply, so the T in the C0-Cr film is
6 The amount of K can be changed by changing the power applied to the target, and the variation in film thickness distribution caused by changing the power was controlled by controlling the substrate holder and the top and bottom of the substrate.

第3図に、TZiを変えたときの60騎と、HKの変化
を示す。T6が10%以下の範囲では、HEが、T(添
加によって急激に上昇している。ただしT6が10チ以
上添加されると△θsoが異常に大とな多結晶性及びそ
の配向性が悪化したと思われる。
Figure 3 shows the changes in 60 horses and HK when changing TZi. In the range where T6 is 10% or less, HE increases rapidly due to the addition of T.However, when T6 is added in excess of 10%, polycrystallinity and its orientation worsen with abnormally large Δθso. It seems that he did.

第4図は、第2図の傾向と全く同様であシ、膜形成装置
及び、基板による差はない。
The tendency in FIG. 4 is exactly the same as that in FIG. 2, and there is no difference depending on the film forming apparatus and substrate.

実施例3 前記8インチマグネトロンスパッタ装置を用い、記録再
生評価用5インチコロッピーメディアを作製した。本ス
パッタ装置は、3基の8インチターゲットを備えておシ
、電極lには、coメタ−ゲット上膜組成がDv m 
G?’噛(重量%表示)となるようにZfベレットを置
いたもの、電極2には、Go−16wt%Cfターゲッ
ト、電極3にはCO−16wt%Cfタ−ケラト上にT
6ペレツトを膜組成が(CouCデ1@ )asTi4
となるように配置した。
Example 3 Using the 8-inch magnetron sputtering apparatus, a 5-inch colloppy media for recording/reproduction evaluation was produced. This sputtering apparatus is equipped with three 8-inch targets, and the electrode L has a co-metal target film composition of Dv m.
G? A Zf pellet was placed so as to form a "grain" (indicated by weight %). Electrode 2 was a Go-16wt%Cf target, and electrode 3 was a CO-16wt%Cf tercerat with a T
6 pellets with film composition (CouCde1@)asTi4
It was arranged so that

基板は(資)μm厚ポリエチレンテレフタレートを用い
た。一般にPETとか、マイラといわれているものであ
シ、耐熱性に乏しいため、DC電源によシ膜を形成した
。スパッタの順序としては、別々の基板にC01162
?’lS膜をQ、3μm同一条件で形成後、1つの基板
にはCQ、4Cf16膜を0.6tim別の基板には(
Cfi efts)n Tj4膜を0.6tirn作製
した。後でメゾ膚アにソリがないように反対面にも同一
条件で膜を形成した。
The substrate used was .mu.m thick polyethylene terephthalate. Generally, PET or Mylar is used, and since it has poor heat resistance, a film was formed using a DC power source. The sputtering order is C01162 on separate substrates.
? After forming a 'lS film with a thickness of Q and 3 μm under the same conditions, a CQ film was formed on one substrate, and a 4Cf16 film was formed with a thickness of 0.6 tim on another substrate (
A Cfi efts)n Tj4 film was produced for 0.6 turns. Later, a film was formed on the opposite side under the same conditions so that there was no warpage on the mesodermal skin.

スパッタ条件 第5図に1本実施例によって作製したメディアの構成を
示す。メディアAは、□□□μmマイラ8の両面に0.
3μm厚のCON””Illアモルファス軟磁性膜9と
0.6μm厚のco利crts垂直磁化膜1()を形成
したものであシ、メディアBは、部愼マイラ8の両面に
0.3μ情厚のC05i””Isアモルファス軟磁性膜
9と0.6膜m厚の(Cou (’rts)os ’r
<44垂直磁化膜1’lを形成したものである。第4表
にそれぞれの膜の特性を示す。
Sputtering Conditions FIG. 5 shows the structure of the media produced according to this example. Media A is coated with 0.0 mm on both sides of □□□μm Mylar 8.
Media B consists of a 3μm thick CON""Ill amorphous soft magnetic film 9 and a 0.6μm thick CO2 perpendicularly magnetized film 1 (). C05i""Is amorphous soft magnetic film 9 with thickness and (Cou ('rts)os'r with 0.6 m thickness)
<44 perpendicular magnetization film 1'l is formed. Table 4 shows the characteristics of each film.

た”LSc(184°rtsjlと(Cou Cr1@
)911T(4膜は1下層のCQZfアモルファス膜を
エツチング除去したものの特性である。
"LSc (184°rtsjl and (Cou Cr1@
) 911T (Film 4 has the characteristics of the CQZf amorphous film underlying layer 1 removed by etching.

第   4   表 以上の様な磁気特性を示す膜から構成されたメディアA
とメディアB111−11.3μm厚パーマロイ主磁極
−補助磁極タイブヘッドで記録再生したときの記録密度
特性tl−第6図に示す。第6図は、両対数グラフ上で
プロットしである。縦軸は、相対出力、横軸は記録密度
を(KFRP工)の単位で記しである。
Table 4 Media A composed of a film exhibiting magnetic properties as shown in Table 4
FIG. 6 shows the recording density characteristics tl when recording and reproducing were performed using Media B111-11.3 μm thick permalloy main pole-auxiliary pole type head. FIG. 6 is plotted on a log-log graph. The vertical axis represents relative output, and the horizontal axis represents recording density in units of (KFRP units).

同図から、メディアBの方が、セカンドピーク。From the same figure, media B has a second peak.

サードピークの出力がかなシ大きくなっている。The output of the third peak has increased significantly.

このことは、C0Cr膜にTiを添加したc6crT6
三元系垂直磁化膜が、実用上においても、cocr二元
系膜よシも優れてお9.100 KF’RP工以上の工
高上度磁気記録を十分可能ならしめうる。
This means that c6crT6, which is a C0Cr film with Ti added to it,
In practical use, the ternary perpendicularly magnetized film is superior to the COCR binary film, and can sufficiently perform magnetic recording with a working height of 9.100 KF'RP or higher.

実施例4 8インチターゲットを有するマグネオロンスパッタ装置
を用い、5インチのアルマイト処理したアルミディスク
上に1非磁性アモルファスC05oTcLs。
Example 4 1 non-magnetic amorphous C05oTcLs on a 5-inch anodized aluminum disk using a Magneoron sputtering apparatus with an 8-inch target.

(重量%)を0.5μm形成させ、ディスクGKはco
@4Cr16を0.3μm、ディスクDKは(c014
Cr1g )esTjs4を0.3μm作製シタ。
(wt%) was formed to a thickness of 0.5 μm, and the disk GK was co
@4Cr16 is 0.3μm, disk DK is (c014
Cr1g) esTjs4 was fabricated to a thickness of 0.3 μm.

構成図は、第7図に示した。上記2種ディスクの磁気特
性を第5表に示す。
The configuration diagram is shown in FIG. Table 5 shows the magnetic properties of the above two types of disks.

0.5μm非磁性アモルファスco、、’r銅を下層に
設けたのは、アルマイト処理したディスク表面の粗さを
緩和させることと、その上のCo84 Cr5sと(G
o、4C?ha)mTisの磁気特性を上昇させるため
である。
The purpose of providing the 0.5 μm non-magnetic amorphous CO,,'r copper layer as the lower layer was to reduce the roughness of the alumite-treated disk surface, and to form the Co84 Cr5s and (G
o, 4C? ha) This is to improve the magnetic properties of mTis.

上記2種のディスクを用い、5インチウィンチェスター
ディスクドライブで記録再生を行った。
Recording and reproduction were performed using the above two types of discs with a 5-inch Winchester disc drive.

浮上量を小さくするため、標準の360Orpmから、
11000rp Ic落とした。浮上量は、0.2μm
程度である。磁気ヘッドは、標準のMn −Zn −7
エライトで、ギャップは1μmであった。ディスクCと
ディスクDを用いた場合の記録密度特性を第8図に示す
。縦軸は相対出力、横軸は、記録密度(単位はKFRP
工)である、 Ttを4%添加したディスクDけ、ディ
スクCに較べ、セカンドピーク値で倍の出力を得ている
In order to reduce the flying height, from the standard 360 Orpm,
Dropped 11000rp Ic. The floating height is 0.2μm
That's about it. The magnetic head is a standard Mn-Zn-7
Elite, the gap was 1 μm. FIG. 8 shows recording density characteristics when discs C and D are used. The vertical axis is relative output, and the horizontal axis is recording density (unit: KFRP)
Compared to Disc D and Disc C, which had 4% Tt added, twice the output was obtained at the second peak value.

なお、本発明は前記実施例に制約されない。Note that the present invention is not limited to the above embodiments.

CoCrTj a元合金を作製しうるスパッタ以外の他
の手段、例えば電子ビーム蒸着、メッキ、ロール法等で
もよい。また、実施例2では、対向ターゲット方式の改
良装置を用いた例を挙けたが、cocrTi3元合金で
最良の垂直磁気異方性を有する配分が決定されれば、2
種のターゲットともに同一3元材質を用い、共通の直流
及び高周波電源を使用することはなんらさしつかえ表い
。また、実施例1及び実施例2のデータは、基板水冷の
ときのものでc、) −Cr 2元合金膜の特性、例え
ばa4K = 6800と高くなる作製条件においては
、Ti添加によシ、He −7800〜8500とよシ
高くなる効果は、全く変わシない。
Other means than sputtering that can produce the CoCrTj a-based alloy, such as electron beam evaporation, plating, and roll methods, may also be used. In addition, in Example 2, an example was given in which an improved device with a facing target method was used.
There is nothing wrong with using the same ternary material for both types of targets and using a common DC and high frequency power source. In addition, the data of Examples 1 and 2 are for the case where the substrate is water-cooled, and the characteristics of the -Cr binary alloy film, for example, under the production conditions where a4K = 6800 is high, the addition of Ti may The effect of increasing He from -7800 to 8500 remains the same.

本発明は、以上説明したようw、co−cデ膜に′ri
を10重量%以下含有させ、C0Cr2元合金における
垂直磁気異方性の限界を大きく上回る垂直磁気記録媒体
を作シ出し、現在の記録密度特性を大幅忙改善した超高
密度磁気記録媒体を作シ出すものである。
As explained above, the present invention provides a film with a
We created a perpendicular magnetic recording medium containing 10% by weight or less of C0Cr, which greatly exceeds the limit of perpendicular magnetic anisotropy in binary C0Cr alloys, and created an ultra-high-density magnetic recording medium that significantly improved the current recording density characteristics. It is something to put out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する図である。第2図は、
実施例1を説明するためのもので、Ti添加量に対する
異方性磁界Elの変化を示したもの、第3図及び第4図
は、実施例2を説明するためのもので、それぞれ、装置
の構成図、Ti量忙対する膜特性の変化を果したもの、
第5図、第6図は実施例3を説明するためのもので、メ
ディアの構成図及びそれぞれのメディアの記録密度特性
、第7図、第8図は、実施例4を説明するためのもので
磁気ディスクの構成図及びそれぞれの磁気ディスクの記
録密度特性である。 1働・CQCf合金ターゲット 2・・直流電源 3・・c6cyT6合金ターゲット 4・・直流電源 5・・基板 6・・電磁石 7・・基板ホルダー 8・・マイラ(50μWL) 9 m m C6Zr膜(0,3μ憔)IQ a a 
CQCr膜(0,6μm)11 m m C6CrTi
膜(0,6Jl?71)12・・アルミディスク(1,
9調) 13−−アルマイト 14 m e CoTa膜(0,5tsn )15 e
 * CoCr膜あるいはCoCrTi膜(0,3μm
 )以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上  務 第1図 η(砿哄) 第2図 ψ 第3図 第4図 第5図 託帽l 第6図 第7図 記暢@fL CyFRrI’) 第8図
FIG. 1 is a diagram illustrating the present invention in detail. Figure 2 shows
Figures 3 and 4 are for explaining Example 1 and show changes in the anisotropic magnetic field El with respect to the amount of Ti added, and Figures 3 and 4 are for explaining Example 2, respectively. A diagram showing the change in film properties depending on the amount of Ti.
Figures 5 and 6 are for explaining Embodiment 3; media configuration diagrams and recording density characteristics of each media; Figures 7 and 8 are for explaining Embodiment 4. This is a block diagram of a magnetic disk and the recording density characteristics of each magnetic disk. 1 Working・CQCf alloy target 2・・DC power supply 3・・C6cyT6 alloy target 4・・DC power supply 5・・Substrate 6・・Electromagnet 7・・Substrate holder 8・・Mylar (50 μWL) 9 mm C6Zr film (0, 3μ) IQ a a
CQCr film (0.6 μm) 11 mm C6CrTi
Membrane (0,6Jl?71) 12... Aluminum disk (1,
9 tone) 13--Alumite 14 m e CoTa film (0.5tsn) 15 e
* CoCr film or CoCrTi film (0.3 μm
) and more Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami Figure 1 η (Koya) Figure 2 ψ Figure 3 Figure 4 Figure 5 Takuya l Figure 6 Figure 7 Kennobu @ fL CyFRrI') Figure 8

Claims (1)

【特許請求の範囲】[Claims] 10 )ltelA以下のチタンを含有しているコバル
ト・クロムを有することを特徴とする垂直磁気記録媒体
10) A perpendicular magnetic recording medium characterized by having cobalt-chromium containing titanium of less than telA.
JP57123335A 1982-07-15 1982-07-15 Vertical magnetic recording medium Granted JPS5914617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123335A JPS5914617A (en) 1982-07-15 1982-07-15 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123335A JPS5914617A (en) 1982-07-15 1982-07-15 Vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5914617A true JPS5914617A (en) 1984-01-25
JPH0370362B2 JPH0370362B2 (en) 1991-11-07

Family

ID=14858008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123335A Granted JPS5914617A (en) 1982-07-15 1982-07-15 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5914617A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762506A (en) * 1980-10-03 1982-04-15 Matsushita Electric Ind Co Ltd Magnetic material for vacuum evaporation
JPS58189349A (en) * 1982-04-27 1983-11-05 Mitsubishi Metal Corp Co alloy for magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762506A (en) * 1980-10-03 1982-04-15 Matsushita Electric Ind Co Ltd Magnetic material for vacuum evaporation
JPS58189349A (en) * 1982-04-27 1983-11-05 Mitsubishi Metal Corp Co alloy for magnetic recording medium

Also Published As

Publication number Publication date
JPH0370362B2 (en) 1991-11-07

Similar Documents

Publication Publication Date Title
JP2003077113A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP2009110641A (en) Perpendicular magnetic recording medium
JPS6255208B2 (en)
JPH0514406B2 (en)
US4792486A (en) Perpendicular magnetic recording medium
JPS5914617A (en) Vertical magnetic recording medium
JP2004127502A (en) Magnetic recording medium
JPH0252845B2 (en)
JPH0230567B2 (en)
JPS5961012A (en) Vertical magnetic recording medium
JPH0370363B2 (en)
JPS5980910A (en) Vertically magnetized recording medium
OUCHI Review on recent developments of perpendicular recording media
JPS5979507A (en) Vertical magnetic recording medium
JPS5980913A (en) Vertically magnetized recording medium
JPS5979508A (en) Vertical magnetic recording medium
JPH0532809B2 (en)
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS5980911A (en) Vertically magnetized recording medium
JPS5980909A (en) Vertically magnetized recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPS5978505A (en) Vertical magnetic recording medium
JP3052211B2 (en) Perpendicular magnetic recording media
JPH0570205B2 (en)
Wang et al. Switching field distribution of FePt-C/FePt exchange coupled perpendicular media