JPS5914616A - Cooling of superconductive magnet by superfluid helium - Google Patents

Cooling of superconductive magnet by superfluid helium

Info

Publication number
JPS5914616A
JPS5914616A JP57124250A JP12425082A JPS5914616A JP S5914616 A JPS5914616 A JP S5914616A JP 57124250 A JP57124250 A JP 57124250A JP 12425082 A JP12425082 A JP 12425082A JP S5914616 A JPS5914616 A JP S5914616A
Authority
JP
Japan
Prior art keywords
magnet
superfluid
superfluid helium
superconductive magnet
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57124250A
Other languages
Japanese (ja)
Other versions
JPS645444B2 (en
Inventor
Yasuharu Kamioka
上岡 泰晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Sanso Ltd
Original Assignee
Toyo Sanso Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Sanso Ltd filed Critical Toyo Sanso Ltd
Priority to JP57124250A priority Critical patent/JPS5914616A/en
Publication of JPS5914616A publication Critical patent/JPS5914616A/en
Publication of JPS645444B2 publication Critical patent/JPS645444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Abstract

PURPOSE:To effectively cool a superconductive magnet and generate high magnetic field by providing a cavity in the course of the flowing path of superfluid He at the inside of cooling body of superconductive magnet. CONSTITUTION:A superconductive magnet A is formed by stacking in several layers a coil C formed by winding a conductive lead wire in the constant diameter R and a constant thickness through the waving disks 2 formed like doughnuts. A desirable number of recesses 3 for cavity are formed at the desired area on the disk 2 of this magnet A. According to this structure, on the occasion of cooling the magnet A by the overcooling superfluid He used as the coolant, if heat is abruptly generated within the magnet A, such heat can be absorbed by a large amount of overcooling fluid He within the recess 3. Thereby, the magnet A is efficiently cooled and provides high magnetic field and a more stable superconductive magnet can be obtained with a high thermal conductivity of superfluid He.

Description

【発明の詳細な説明】 された超電導マグネット等の固体から突発的に放出され
る熱を吸収し、被冷却体を一定温度の極低温に保持する
こと−JEできる超流動ヘリウムによる□超電導マグネ
ット等の冷却方法に関するものである。
[Detailed Description of the Invention] A superconducting magnet made of superfluid helium that can absorb heat suddenly released from a solid such as a superconducting magnet and maintain the object to be cooled at a constant temperature at an extremely low temperature. The present invention relates to a cooling method.

通常超流動ヘリウムによって冷却された超電導マグネッ
トは通常の液体ヘリウム(4.2Katl aim )
によって冷却されたものに比べ、更に高い磁場を発生さ
せることができ、又超電流ヘリウムの高熱伝導率忙より
、より安定な超電導マグネットになる。従って過冷却超
流動ヘリウム、例えば1気圧1.8Kを用いて超電導マ
グネットを極低温1.8Kに保持すると超流動ヘリウム
の常流動ヘリウムへの転移温度、ラムダ温度(1気圧で
2.163K)から1.8Kまでの間のエンタル−ビー
差を熱吸収,ダンパーとして利用することが可能となる
A superconducting magnet cooled by normal superfluid helium is a superconducting magnet cooled by normal liquid helium (4.2Katl aim).
It is possible to generate a higher magnetic field than that cooled by supercurrent helium, and the high thermal conductivity of supercurrent helium makes it a more stable superconducting magnet. Therefore, if a superconducting magnet is kept at an extremely low temperature of 1.8 K using supercooled superfluid helium, for example 1.8 K at 1 atm, the transition temperature of superfluid helium to normal helium, the lambda temperature (2.163 K at 1 atm), It becomes possible to utilize the enthalpy difference up to 1.8K as a heat absorption and damper.

ところが超電導マグネットのように緻密に巻かれた超電
導線材(コイル)の間に浸み込んだ超流動ヘリウムの量
は少なく、しかも現在用いられている超電導マグネット
内部から外部へ連絡している超流動ヘリウム流路が狭く
細い為、超流動ヘリウムの高熱伝率をもってしても超電
導マグネット外部の大量の超流動ヘリウムに内部からの
突発的な熱を運ぶ事は困難であり超電導マグネット内部
温度が超電導−常電導転移温度以上になることがある。
However, the amount of superfluid helium that permeates between the tightly wound superconducting wires (coils) in superconducting magnets is small, and the amount of superfluid helium that is infiltrated between the inside and outside of the superconducting magnets currently used is small. Because the flow path is narrow and narrow, even with the high thermal conductivity of superfluid helium, it is difficult to transport the sudden heat from inside to the large amount of superfluid helium outside the superconducting magnet, and the internal temperature of the superconducting magnet is lower than normal. The temperature may exceed the conductive transition temperature.

本願はこの欠点を除去するために発明したものであって
、今、その実施例を説明すれば、電導線を一定直径(f
()で一定厚みφ()に巻いたコイル0を放射状に凹凸
条に曲折した波板形のドーナツ状円板(2)を介して数
段重合して形成した超電導マグネツ)(A)のドーナツ
状円板(2)の適宜な箇所に適当数の空洞用の凹所(3
)す形成するものである。
The present application was invented in order to eliminate this drawback, and to explain its embodiment now, a conductive wire with a constant diameter (f
The donut of superconducting magnet (A) formed by superconducting a coil 0 wound to a constant thickness φ () in several stages through a corrugated donut-shaped disk (2) which is radially bent into uneven stripes. An appropriate number of cavity recesses (3
).

本願は前記構成妃より超電導マグネット(5)を過冷却
超流動ヘリウムな冷媒として冷却する際に超電導マグネ
ッ) (A)の内部で突発的な発熱を起した時、該空洞
用の凹所(3)内の多量の過冷却超流動ヘリウムによっ
て熱を吸収することができるものである。
The present application is based on the above-mentioned structure, and when a superconducting magnet (5) is cooled using a supercooled superfluid helium refrigerant, when sudden heat generation occurs inside the superconducting magnet (A), the recess for the cavity (3 ) can absorb heat by a large amount of supercooled superfluid helium.

本願は叙上のように過冷却超流動ヘリウムを冷媒とし℃
冷却する超電導マグネット等の極低温装置において、超
電導マグネットの被冷却体内部の超流動ヘリウム流路の
途中に適当体積の空洞を設け、被冷却体内部からの突発
的な発熱をこの空洞内の過冷却超流動ヘリウムによって
吸収することを特徴とするので超電導マグネットは良(
冷却され高い磁場を発生させることができ、又、超流動
ヘリウムの高熱伝導率により、より安定した超電導マグ
ネットとすることができる等の特徴を有するものである
As mentioned above, this application uses supercooled superfluid helium as a refrigerant.
In cryogenic equipment such as superconducting magnets that are cooled, a cavity of an appropriate volume is provided in the middle of the superfluid helium flow path inside the object to be cooled in the superconducting magnet, and sudden heat generation from inside the object to be cooled is absorbed by the cavity. Superconducting magnets are characterized by absorption by cooled superfluid helium (
It has characteristics such as being able to generate a strong magnetic field when cooled, and also being able to be used as a more stable superconducting magnet due to the high thermal conductivity of superfluid helium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の発明を説明するための一例の電導マグネ
・ットの斜視図、第2図は通常用いられているヘリウム
流通用とドーナツ状円板の斜特許出願人 東洋酸素株式
会社 第1憫 第2図 手続補正書(自発) 昭和6γ年9月J日 特許庁長官若  杉  和  夫殿 4、代 理 人 5、補正命令の日付   昭和  年  月  日6、
補正により増加する発明の数
Fig. 1 is a perspective view of an example of a conductive magnet for explaining the invention of the present application, and Fig. 2 is a perspective view of a commonly used helium distribution device and a donut-shaped disk.Patent applicant: Toyo Sanso Co., Ltd. 1. Figure 2 procedural amendment (voluntary) September J, 1933 Kazuo Wakasugi, Commissioner of the Patent Office 4, Representative 5, Date of amendment order: Month, Day 6, 1939.
Number of inventions increased by amendment

Claims (1)

【特許請求の範囲】[Claims] (1)  過冷却超流動ヘリウムを冷媒として冷却する
超電導マグネット等の極低温装置において、超電導マグ
ネットの被冷却体内部の超流動ヘリウム流路の途中に適
当体積の空洞を設け、・被冷却体内部からの突発的な廃
熱をこの空洞内の過冷却超流動ヘリウムによって吸収す
ることを特徴とする超流動ヘリウムによる超電導マグネ
ット等の冷却方法。
(1) In a cryogenic device such as a superconducting magnet that is cooled using supercooled superfluid helium as a refrigerant, a cavity of an appropriate volume is provided in the middle of the superfluid helium channel inside the object to be cooled in the superconducting magnet, and the inside of the object to be cooled is A method for cooling superconducting magnets, etc. using superfluid helium, which is characterized by absorbing sudden waste heat from superfluid helium in this cavity.
JP57124250A 1982-07-16 1982-07-16 Cooling of superconductive magnet by superfluid helium Granted JPS5914616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124250A JPS5914616A (en) 1982-07-16 1982-07-16 Cooling of superconductive magnet by superfluid helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124250A JPS5914616A (en) 1982-07-16 1982-07-16 Cooling of superconductive magnet by superfluid helium

Publications (2)

Publication Number Publication Date
JPS5914616A true JPS5914616A (en) 1984-01-25
JPS645444B2 JPS645444B2 (en) 1989-01-30

Family

ID=14880680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124250A Granted JPS5914616A (en) 1982-07-16 1982-07-16 Cooling of superconductive magnet by superfluid helium

Country Status (1)

Country Link
JP (1) JPS5914616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244278A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil and superconducting device having the same
JP2013030661A (en) * 2011-07-29 2013-02-07 Fujikura Ltd Superconducting coil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125466A (en) * 1978-03-22 1979-09-28 Mitsubishi Electric Corp Coil
JPS5742181A (en) * 1980-08-26 1982-03-09 Toshiba Corp Low temperature container for superfluidic helium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125466A (en) * 1978-03-22 1979-09-28 Mitsubishi Electric Corp Coil
JPS5742181A (en) * 1980-08-26 1982-03-09 Toshiba Corp Low temperature container for superfluidic helium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244278A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil and superconducting device having the same
JP4687676B2 (en) * 2007-03-28 2011-05-25 住友電気工業株式会社 Superconducting coil and superconducting equipment provided with the superconducting coil
JP2013030661A (en) * 2011-07-29 2013-02-07 Fujikura Ltd Superconducting coil

Also Published As

Publication number Publication date
JPS645444B2 (en) 1989-01-30

Similar Documents

Publication Publication Date Title
JPS5914616A (en) Cooling of superconductive magnet by superfluid helium
JPH11219814A (en) Superconducting magnet and method for precooling the same
JPS6123306A (en) Cooling device of superconductive coil
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPS6119090B2 (en)
JPS63186403A (en) Superconducting magnet
KR101618977B1 (en) Superconductive electromagnet
JPH048885B2 (en)
JPS6119091B2 (en)
JPS59208811A (en) Superconductive coil
JP3322981B2 (en) Permanent current switch
JPS638602B2 (en)
US3562685A (en) Foil wrapped superconducting magnet
Urata et al. A 10 T cryo-cooled superconducting magnet with 100 mm room temperature bore
JPS6216001B2 (en)
JPH03188602A (en) Forcedly cooled superconducting magnet
Zubko et al. Stability of fast-cycling dipole for the SIS300 ring
JPS6156852B2 (en)
JPS60187885A (en) Superconductiong device
JPH06163249A (en) Superconducting coil bobbin
JPS608610B2 (en) superconducting coil
JPH01150306A (en) Superconducting magnet
US3530682A (en) Foil wrapped superconducting magnet
JPS63312604A (en) Superconducting correction coil for electron storage ring
JPS61110407A (en) Superconductive magnet