JPS6119090B2 - - Google Patents

Info

Publication number
JPS6119090B2
JPS6119090B2 JP12378179A JP12378179A JPS6119090B2 JP S6119090 B2 JPS6119090 B2 JP S6119090B2 JP 12378179 A JP12378179 A JP 12378179A JP 12378179 A JP12378179 A JP 12378179A JP S6119090 B2 JPS6119090 B2 JP S6119090B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
spacer
spacers
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12378179A
Other languages
Japanese (ja)
Other versions
JPS5648107A (en
Inventor
Hide Kimura
Koji Hagiwara
Takamasa Fujinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12378179A priority Critical patent/JPS5648107A/en
Publication of JPS5648107A publication Critical patent/JPS5648107A/en
Publication of JPS6119090B2 publication Critical patent/JPS6119090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は核融合装置等に使用する超電導磁石に
係り、特に超電導コイルを冷却するための流路を
構成するスペーサの取付けを改良した超電導磁石
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting magnet used in nuclear fusion devices and the like, and more particularly to a superconducting magnet with improved attachment of a spacer that constitutes a flow path for cooling a superconducting coil.

近年、超電導現象を利用した装置は、磁気浮
上、エネルギ貯蔵、回転電機、核融合装置等広い
範囲にわたつて採用されつつある。
In recent years, devices that utilize superconductivity have been widely adopted, such as magnetic levitation, energy storage, rotating electric machines, and nuclear fusion devices.

特に、核融合装置はトーラス型核融合装置の大
型化が著しく、これに使用されるコイルは強大な
磁場を発生して高温のプラズマを閉じ込めなけれ
ばならない。従来の常電導コイルでは発生しうる
磁場の点で限界があり、さらに強大な磁場を作り
出す必要のある核融合装置にあつては大型の超電
導コイルが不可欠となつてくる。
In particular, torus-type nuclear fusion devices have significantly increased in size, and the coils used in these devices must generate a strong magnetic field to confine high-temperature plasma. Conventional normal-conducting coils have limitations in terms of the magnetic field they can generate, and large superconducting coils are essential for nuclear fusion devices that need to generate even stronger magnetic fields.

一般に、超電導状態を作り出すためにはコイル
を液体ヘリウムまたは超臨界ヘリウム等の冷媒に
よつて極低温に冷却することになる。このため、
超電導コイルは通常、真空断熱された容器の中に
収納される。
Generally, in order to create a superconducting state, a coil is cooled to an extremely low temperature using a coolant such as liquid helium or supercritical helium. For this reason,
Superconducting coils are typically housed in a vacuum-insulated container.

超電導コイルの一例を第1図乃至第3図に示
す。すなわち、複数個のパンケーキ状に巻回され
た超電導コイル2とこれらを収納する極低温容器
1および隣接超電導コイル間に位置するスペーサ
3ならびにコイルと極低温容器間に位置するスペ
ーサ4から構成される。このスペーサ3,4は、
超電導コイル2を効率よく冷却するための液体ヘ
リウム等の冷媒の流通路を構成するとともに、隣
接超電導コイル間およびコイルと極低温容器間の
固定ならびに電気的絶縁を行うものである。
An example of a superconducting coil is shown in FIGS. 1 to 3. That is, it is composed of a plurality of superconducting coils 2 wound in the shape of a pancake, a cryogenic container 1 housing them, a spacer 3 located between adjacent superconducting coils, and a spacer 4 located between the coils and the cryogenic container. Ru. These spacers 3 and 4 are
It constitutes a flow path for a coolant such as liquid helium to efficiently cool the superconducting coil 2, and also provides fixation and electrical insulation between adjacent superconducting coils and between the coil and the cryogenic container.

従来のスペーサは隣接超電導コイル間内におい
て第3図に示すように配置され、絶縁ワニス等に
よつてコイル表面に接着される。こうして隣接超
電導コイルの間および内外周部の電気絶縁と冷媒
の流通路が形成される。
Conventional spacers are arranged between adjacent superconducting coils as shown in FIG. 3, and are adhered to the coil surface with insulating varnish or the like. In this way, electrical insulation between adjacent superconducting coils and between the inner and outer peripheries and a coolant flow path are formed.

以上のような構成によるスペーサ3では、絶縁
ワニスの接着性、熱収縮性、極低温での特性の問
題、電磁力等強度によるスペーサ3の配置、員数
等、従来の比較的小型の超電導コイルにおいて
は、十分に対処できるものであつた。しかし核融
合装置のような強大な電磁力を発生し、しかも大
型の超電導コイルにおいては、絶縁ワニス等によ
る接着のみでは、電磁力、熱収縮、極低温時の信
頼性に乏しくなる。たとえば、極低温に冷却する
過程でスペーサが剥離脱落すれば、その部分に局
部的に冷媒が流れずに冷却の悪くなる部分が発生
し、超電導状態にすることができなくなる可動性
がある。また、一部スペーサの剥離によつて電磁
力がスペーサに均一に分担されなくなり、これが
原因となつてコイル内各部のスペーサが損傷する
こともありうる。
With the spacer 3 having the above configuration, problems such as the adhesion of the insulating varnish, heat shrinkability, characteristics at extremely low temperatures, placement of the spacer 3 due to the strength of electromagnetic force, etc., and the number of members, etc., are not found in conventional relatively small superconducting coils. were sufficiently manageable. However, in a large superconducting coil that generates a strong electromagnetic force such as a nuclear fusion device, adhesion using insulating varnish or the like alone will result in poor reliability at electromagnetic force, thermal contraction, and extremely low temperatures. For example, if a spacer peels off during the process of cooling to an extremely low temperature, there will be a region where the coolant will not flow locally and the cooling will be poor, resulting in mobility that will prevent the superconducting state. Further, due to peeling off of some of the spacers, the electromagnetic force is no longer distributed uniformly to the spacers, which may cause damage to the spacers in various parts within the coil.

本発明の目的は、隣接超電導コイル間のスペー
サの固定を安定化させることにある。
An object of the present invention is to stabilize the fixation of spacers between adjacent superconducting coils.

本発明は、隣接超電導コイル間に配置されるス
ペーサ同志を機械的に連結するようにしたもので
ある。
The present invention mechanically connects spacers arranged between adjacent superconducting coils.

本発明の一実施例を第4図乃至第7図にしたが
つて説明する。すなわち、スペーサ3とスペーサ
3を薄い連結部材5で連結する。連結部材5はコ
イル2と同心にコイルの内外径側に配置する。ス
ペーサ3とスペーサ連結部材5との接続部は、ピ
ン6又はインロー等の機械的結合と接着を併用す
る。以上のように構成することによつて、スペー
サ3はコイル全周にわたつて連結され、スペーサ
単独で形状を保持する。また、機械的結合によ
り、スペーサ3が局部的に剥離等の脱落を起こす
ことなく、形状を保持する。したがつて従来の接
着によるスペーサにくらべて、機械的強度が向上
し、位置ずれを起こさぬため、冷媒通路の閉塞等
を起こさず、安全に超電導コイルを運転すること
ができる。
An embodiment of the present invention will be described with reference to FIGS. 4 to 7. That is, the spacers 3 are connected by the thin connecting member 5. The connecting member 5 is arranged concentrically with the coil 2 on the inner and outer diameter sides of the coil. The connection between the spacer 3 and the spacer connecting member 5 uses a combination of mechanical connection such as pins 6 or spigots and adhesive. By configuring as described above, the spacer 3 is connected over the entire circumference of the coil, and the spacer alone maintains its shape. Further, due to the mechanical bonding, the spacer 3 retains its shape without locally peeling off or falling off. Therefore, compared to conventional adhesive spacers, the mechanical strength is improved and positional displacement does not occur, so the superconducting coil can be operated safely without clogging the refrigerant passage.

前記実施例においては、薄い板を連結部材5と
したが、第8図に示すように、細い連結棒7によ
つてスペーサ3志を連絡してもよく、冷媒の流通
路を塞がないような連結部材でスペーサ間を連結
することに変わりはないので本発明と同等の効果
をうる。
In the above embodiment, the connecting member 5 is a thin plate, but as shown in FIG. 8, the spacers 3 may be connected by a thin connecting rod 7, so as not to block the refrigerant flow path. Since the spacers are still connected by a connecting member, the same effect as the present invention can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超電導コイルの外観側面図、第2図は
第1図のAA断面図、第3図は第2図のBB断面
図、第4図は本発明実施例のスペーサ連結配置を
示す横断平面図、第5図は第4図○イ部の詳細斜視
図、第6図および第7図は第5図のCC断面図、
第8図は他の実施例を示す斜視図である。 1……極低温容器、2……超電導コイル、3…
…スペーサ、5……連結部材。
Fig. 1 is an external side view of a superconducting coil, Fig. 2 is a cross-sectional view along AA in Fig. 1, Fig. 3 is a cross-sectional view along BB in Fig. 2, and Fig. 4 is a cross-sectional view showing the spacer connection arrangement of the embodiment of the present invention. A plan view, Fig. 5 is a detailed perspective view of the part A in Fig. 4, Figs. 6 and 7 are sectional views CC of Fig. 5,
FIG. 8 is a perspective view showing another embodiment. 1...Cryogenic container, 2...Superconducting coil, 3...
...Spacer, 5...Connecting member.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導コイルを収納し、かつこの超電導コイ
ルを冷却する極低温流体を収容する極低温容器を
備えた超電導磁石において、前記超電導コイルの
隣接間に配置される複数個のスペーサを連結部材
で結び一体としたことを特徴徴とする超電導磁
石。
1. In a superconducting magnet equipped with a cryogenic container that houses a superconducting coil and a cryogenic fluid that cools the superconducting coil, a plurality of spacers arranged between adjacent superconducting coils are connected together by a connecting member. A superconducting magnet characterized by:
JP12378179A 1979-09-28 1979-09-28 Superconductive magnet Granted JPS5648107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12378179A JPS5648107A (en) 1979-09-28 1979-09-28 Superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12378179A JPS5648107A (en) 1979-09-28 1979-09-28 Superconductive magnet

Publications (2)

Publication Number Publication Date
JPS5648107A JPS5648107A (en) 1981-05-01
JPS6119090B2 true JPS6119090B2 (en) 1986-05-15

Family

ID=14869123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12378179A Granted JPS5648107A (en) 1979-09-28 1979-09-28 Superconductive magnet

Country Status (1)

Country Link
JP (1) JPS5648107A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617708A (en) * 1982-12-23 1986-10-21 At&T Technologies, Inc. Component module for piggyback mounting on a circuit package having dual-in-line leads, and methods of fabricating same
US4564779A (en) * 1984-09-14 1986-01-14 General Electric Company Dynamoelectric machine stator using cylindrical keybars
JPS6245807U (en) * 1985-09-09 1987-03-19
US4721462A (en) * 1986-10-21 1988-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Active hold-down for heat treating
FR2628998B1 (en) * 1988-03-23 1990-12-28 Glaenzer Spicer Sa METHOD FOR MANUFACTURING A GROOVED TRUCK MEMBER, AND FORMING METHOD AND TOOL FOR GROOVING SAME
DE69123615T2 (en) * 1990-02-23 1997-04-24 Canon Kk Image transmission device

Also Published As

Publication number Publication date
JPS5648107A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
JP4468388B2 (en) Magnetic field generator
US9741480B2 (en) Mechanical superconducting switch
US6081179A (en) Superconducting coil
US5686876A (en) Superconducting magnet apparatus
KR20210064384A (en) high temperature superconducting magnet
JPH09120912A (en) Open structure conductive cooling magnetic resonance imagingmagnet
JPS6119090B2 (en)
US20160180996A1 (en) Superconducting magnet system
Schneider-Muntau et al. The Grenoble hybrid magnet
JPS61113218A (en) Superconductive magnet
JPS6213010A (en) Superconductive electromagnet
JPS6119091B2 (en)
JPH06188466A (en) Superconductor magnet cooling system
JPS61229306A (en) Superconducting coil
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
Jo et al. High temperature superconducting synchronous motor
JPH06174349A (en) Super conductive magnet device
KR101618977B1 (en) Superconductive electromagnet
JPS6293914A (en) Superconducting magnet
JPS6119089B2 (en)
JP2569165B2 (en) Superconducting magnet for nuclear magnetic resonance imaging equipment
JPS6119087B2 (en)
JPS59208811A (en) Superconductive coil
KR100521573B1 (en) Bobbin for superconductive magnet
JPH048885B2 (en)