JPS59146010A - Focusing detecting method - Google Patents

Focusing detecting method

Info

Publication number
JPS59146010A
JPS59146010A JP1959383A JP1959383A JPS59146010A JP S59146010 A JPS59146010 A JP S59146010A JP 1959383 A JP1959383 A JP 1959383A JP 1959383 A JP1959383 A JP 1959383A JP S59146010 A JPS59146010 A JP S59146010A
Authority
JP
Japan
Prior art keywords
light
receiving element
image
optical system
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1959383A
Other languages
Japanese (ja)
Inventor
Kenichi Oikami
大井上 建一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP1959383A priority Critical patent/JPS59146010A/en
Priority to US06/578,228 priority patent/US4626674A/en
Publication of JPS59146010A publication Critical patent/JPS59146010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Abstract

PURPOSE:To speed up focusing adjustment by finding the F number of an optical image formation system and the extent of a shift between images by pieces of luminous flux at two parts on an expected focal plane on the basis of outputs of photodetecting element arrays, and calculating the extent of a lateral shift between the focus position of an optical image formation system and the expected focal plane on the basis of those values. CONSTITUTION:The photodetecting element arrays 27 and 28 are arranged in front of and behind the expected focal plane 22 of the optical image formation system 21 or optically conjugate plane. Pieces of luminous flux from two parts of the exit pupil of the optical image formation system 21 are split and made incident to one photodetecting element array 27, and luminous flux from one of two parts of the exit pupil is split and the made incident to the other photodetecting element array 28. Then, the extent 8' of lateral shifting on the photodetecting element arrays 27 and 28 between images by the pieces of luminous flux from the two parts of the exit pupil on the expected focal plane 22 is detected on the basis of the outputs of the photodetecting element arrays 27 and 28 to calculates the F number of the optical image formation system on the basis of the detected extent, thereby calculating the extent dF of shifting between the focus position of the optical image formation system 21 and the expected focal plane 22.

Description

【発明の詳細な説明】 本発明(J、カメラ、顕微、鏡等の光学装置の焦点状態
を検出づ−る焦点検出方法に関り−るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention (J) relates to a focus detection method for detecting the focus state of an optical device such as a camera, microscope, or mirror.

結像光学系によ′−〕で形成される像の合焦状態を検出
4る方法どしで、いわゆるぽ(J像検出万、法や横ずれ
像検出方法等が知られている1、第1図Δは、ぼけ像検
出方法を実施づる焦点検出装量を一眼1ツノカメラに適
用した場合の構成例を示1線図ぐある。3第1図△にd
3いC111υ影レンツ、1がらの光束は、一部がハー
フミラ−2としく形成されたクイックリターンミラーJ
3により℃反則さtl(ツノ・インター系に導かれると
J(に、バーノミ−]−2を透過した光束はクイックリ
ターンミラー3の後方に設(−Jた仝反射ミラー4によ
ってド方のビームスプリッタ5に導かれ、ここで2分割
されで一χ・1の受光水子列(5△、6[3に入射する
。受光素子対6へおよび6 B CAL、受光面が1最
影レンズ1の〕5定焦平而(−フィルム而)7の前後に
一定距離△を隔てた面8△、8Bと光学的に等価な位置
となるように配置されている。かかる焦点検出装置にお
いては、各受光素子列6A、6Bにおいてその出力から
像の鮮鋭度を求め、両者の鮮鋭度を比較与ることにより
前ピン、後ビン、合焦の各状態を判定している。
There are several methods for detecting the in-focus state of the image formed by the imaging optical system. Figure 1 Δ is a one-line diagram showing a configuration example when the focus detection equipment that implements the blur image detection method is applied to a single-lens single-lens camera.
3 C111υ shadow lenses, the light beam from 1 is a quick return mirror J partially formed as a half mirror 2
3, the luminous flux transmitted through the -2 is reflected by the reflective mirror 4. It is guided to the splitter 5, where it is split into two, and enters the 1χ·1 light-receiving water droplet array (5△, 6 [3). ] 5 is arranged so as to be at an optically equivalent position to the planes 8 Δ, 8B separated by a certain distance Δ before and after the 7. In such a focus detection device, The sharpness of the image is determined from the output of each of the light-receiving element arrays 6A and 6B, and by comparing the two sharpnesses, the front focus, rear focus, and in-focus states are determined.

しかし、一般に結像光学系によって形成される点像の照
度Pは、FナンバをF、ピント外れ量を(IZとすると
、()α−F 2− 、、、/ dz2ぐ表わされ、第
1図[3に承りようにビンミル外れにより急激に減衰づ
るど共に、ビンミル外れ量が大きくなるとその変化率は
極端に小さくなる。このため、かかる焦点検出装置(こ
おいては合焦状態は高い精度で検出できても、ビン]へ
外れ量が大きくなると各受光素子列6A、6Bにおいて
求めた鮮鋭度の差が小ざくなり、岡影レンズ1が予定用
事ff1j 7に対して前ピンあるいは後ビン方向に大
きくずねていても合焦と誤−)て判定しでしまう欠点が
ある。この欠点を除去力る方法どして、光路差△を大き
くし、ビン]・外れmが大きいどきに大きな鮮鋭度の差
が得られるようにづる口どが考えられるが、このように
すると高周波成分しかもたない像では本来の合焦時にお
いて各受光素子列6A、6Bにお(プる鮮鋭度が極めて
低くなり、その差が広いデノA−カス範囲で余り変化し
なくなって合焦検出が困難どなる。また、逆に光路差△
を高周波成分の像に合わせて小さくづると、高周波成分
の像については合焦、状態を高精度で゛検出できるが、
上述したJ、うにビン1〜外れ量が大きいとぎに誤つC
合焦ど判定する恐れがあると共に、低周波成分しかもた
ない像では鮮鋭度の差が充分得られないため合焦検出が
困難となる欠点がある。また、かかるぼ(J@検出方法
(ごおいては、鮮鋭度の差が撮影レンズ1の予定焦平面
7に対するデフA−カス量と向接対応しないため、搬像
レンズ゛1を合焦位置に位置させるだめの移動量を算出
で・きない欠点がある。
However, in general, the illuminance P of a point image formed by an imaging optical system is expressed as ()α-F 2- , , / dz2, where F is the F number and the amount of out-of-focus is (IZ). As shown in Figure 1 [3], the rate of change becomes extremely small as the amount of deviation from the bottle mill increases, as well as the rapid attenuation due to the deviation of the bottle mill. Even if the detection is accurate, as the amount of deviation from the bin increases, the difference in sharpness obtained for each light receiving element row 6A, 6B becomes small, and the Oka-kage lens 1 becomes front focus or rear focus with respect to the scheduled task ff1j 7. There is a drawback that even if there is a large deviation in the direction of the bin, it may be mistakenly judged as being in focus.One way to eliminate this drawback is to increase the optical path difference △, and when the deviation m is large. It is conceivable to create a sharp edge so that a large difference in sharpness can be obtained between the two, but in this way, for an image having only high-frequency components, the sharpness of becomes extremely low, and the difference does not change much over a wide deno-A-cus range, making focus detection difficult.Also, conversely, the optical path difference △
If the image is made smaller according to the image of the high frequency component, the focus and state of the image of the high frequency component can be detected with high precision.
J mentioned above, sea urchin bottle 1 - mistake C when the amount of deviation is large
This method has the disadvantage that it may be difficult to judge whether the image is in focus or not, and it is difficult to detect the focus because a sufficient difference in sharpness cannot be obtained with an image having only low frequency components. In addition, in such a detection method, since the difference in sharpness does not directly correspond to the amount of differential A-cushion with respect to the expected focal plane 7 of the photographing lens 1, the image carrier lens 1 is moved to the focusing position. There is a drawback that it is not possible to calculate the amount of movement of the stop to be positioned.

第2図Aは横ずれ像検出り法を実施−する焦点検出装置
を一眼レフカメラに適用した場合の構成例を示すもので
、第1図Aと同一機能部分は同一4T号を(=i bで
ある。この焦点検出装置においで1ま、全反射ミラー4
によって反射された1最影レンズ1からの光束を微小な
フライアイレンズより成るフライアイレンズアレイ9を
介して、これに接近して予定焦平面7と光学的に共役な
面またはそのj11傍に配置した受光素子列10に人q
4させでいる。
Figure 2A shows an example of the configuration when a focus detection device that implements the lateral shift image detection method is applied to a single-lens reflex camera. In this focus detection device, there are 1 and 4 total reflection mirrors.
The light beam reflected from the darkest lens 1 is passed through a fly's eye lens array 9 consisting of minute fly's eye lenses, and is brought close to the fly's eye lens array 9 to a plane that is optically conjugate with the predetermined focal plane 7 or near it. There are q people in the arranged light receiving element row 10.
I'm letting you do 4.

受光素子列10 L、を第2図Bにも示すように受光素
子群10△、10Bを具え、これら受光素子群10A、
10Bの各受光素子10Δ−1〜10Δ−11および1
0B−1〜10B−nは互いの1個ずつの受光素子10
△−1,10B−,1;〜:10A−n、10B−nが
それぞれ対を成し、これらの全ての受光素子が一直線上
に位置するように配列されている。また、フライアイレ
ンズj7レイ9はn個の受光素子対に対応して11個の
フライアイレンズ9−1へ・9づを有し、各受光素子対
を構成する2個の受光素Tが、撮影レンズ1の射出瞳の
Uいに異なる部分、第2図へでは光軸を含む紙面に垂直
な面を境とする上側および下側部l)を透過した光束を
それぞれ分離して受光するよう[こ配置されでいる。
As shown in FIG. 2B, the light receiving element array 10L includes light receiving element groups 10Δ, 10B, and these light receiving element groups 10A,
10B each light receiving element 10Δ-1 to 10Δ-11 and 1
0B-1 to 10B-n are each one light receiving element 10
Δ-1, 10B-, 1; ~: 10A-n and 10B-n form a pair, and all of these light receiving elements are arranged in a straight line. Further, the fly-eye lens j7 ray 9 has 11 fly-eye lenses 9-1 and 9 corresponding to the n light-receiving element pairs, and the two light-receiving elements T constituting each light-receiving element pair are , the light beams that have passed through the different parts of the exit pupil of the photographic lens 1 (in Fig. 2, the upper and lower parts l) bordering on the plane perpendicular to the paper including the optical axis are separated and received. It's arranged like this.

かかる構成にtljいて、撤影lノンズ1イ3よびフラ
イアイレンズアレイ9を経て被写体の像の少なく共一部
を受光素子列10に投影4ると、受光素子群10Aには
撮影レンズ1の図にJ3いC下側部分を透過した光束の
みが入射し、受光素子群10 Bには反対に上側部分を
透過l)だ光束のみが入用覆ることになり、受光素子群
10△および10’B Lこ投影される像の強度分布は
、合焦1(4に43いて=致し、非合焦時においては第
2図Cに承り−ようにイのずれの方向に応じて豆いに反
対方向に横ず1’L Jる。この焦点検出装置にd5い
−Cは、受光素子群10△および10Bの出力を適当に
処理しC@の横ずれ方向を検出し、これに基いて前ピン
、後ビンおよび合焦の各焦点状態を検出している。
In this configuration, when a small common part of the object image is projected onto the light receiving element array 10 through the lens 13 and the fly's eye lens array 9, the light receiving element group 10A is exposed to the photographing lens 1. In the figure, only the light beam that has passed through the lower part of J3C is incident on the light receiving element group 10B, and on the contrary, only the light flux that has passed through the upper part of the light receiving element group 10B is incident on the light receiving element group 10B. 'B L The intensity distribution of the projected image is in focus 1 (43), and when out of focus, it varies depending on the direction of deviation as shown in Figure 2 C. The focus detection device d5-C appropriately processes the outputs of the light-receiving element groups 10Δ and 10B to detect the lateral shift direction of C@, and based on this, the forward The focus states of pin, rear bin, and in-focus are detected.

このような横ずれ像検出方法にJ、る焦点検出装置にお
いては、焦点検出可能範囲がぼ(′J(f!検出方法に
比べて格段に広い利点があるが、各フライアイレンズ9
−1・〜9−nによって形成される撮影レンズ1のq・
1出瞳の像がひいに重なり合わないようにJるため、順
次のプライアイレンズ間に隙間をあける必要がある。こ
のため、特に像の強度分布が、例えばスアツブ状に急激
に変化する高周波成分をもつ場合に1.1、ステップ部
分が順次のフライアイレンズ間の隙間に入いると、数構
ずれの不感帯となり合焦精度が低下づる。したがって、
高周波成分をb″″)@の場合には、像と各フライアイ
レンズとの相対的な位置関係により、合焦と判定される
イ11置が変化し、かつ精度が不充分と4rる。
A focus detection device that uses such a lateral shift image detection method has the advantage that the focus detection range is much wider than the detection method, but each fly-eye lens 9
q・ of the photographing lens 1 formed by -1・~9-n
In order to prevent the images of the first pupil from overlapping, it is necessary to leave a gap between successive prior eye lenses. For this reason, especially when the intensity distribution of the image has high frequency components that change rapidly, for example, 1.1, if the step part enters the gap between successive fly-eye lenses, a dead zone with a shift of several positions will occur. Focusing accuracy decreases. therefore,
When the high frequency component is b'''')@, the position determined to be in focus changes depending on the relative positional relationship between the image and each fly's eye lens, and the accuracy is insufficient.

このような不具合を解決づる方法として、各フライアイ
レンズの径を更に小さくしたり、あるいは各フライアイ
レンズの焦点距離をより短くして、順次のフライアイレ
ンズ間の隙間を小さくすることが考えられるが、このよ
うにすると利用できる光条が低下して感度が悪くなると
共に、フライアイレンズの加Iや各フライアイレンズと
受光素子対どの光学的調整も極めU l[しくなる。ま
た、かかる焦点検出装置においては像の横ずれ量は検出
できでも、INN 影レンズ1のFナンバが予め何らか
の形で検出できていないと、擾影レンズ1の予定焦平面
7に対するデフォーカス量を曽出づることかできないた
め、撮影レンズ1を合焦位置に位置させるための移動用
を算出できない。
One possible way to solve this problem is to further reduce the diameter of each fly-eye lens, or shorten the focal length of each fly-eye lens to reduce the gap between successive fly-eye lenses. However, if this is done, the usable light stripes will be reduced, resulting in poor sensitivity, and the addition of the fly's eye lens and any optical adjustment between each fly's eye lens and the light receiving element will become extremely difficult. In addition, although such a focus detection device can detect the amount of lateral deviation of the image, if the F number of the INN shadow lens 1 cannot be detected in some way in advance, the amount of defocus of the projection lens 1 with respect to the predetermined focal plane 7 may be Since the lens cannot be moved out, it is not possible to calculate the amount of movement needed to position the photographic lens 1 at the in-focus position.

以上のように、ぼけ像検出方法においては、前ビン、後
ビン、合焦の各焦点状態を正確に検出できる焦点検出可
能範囲は狭いが、特に高周波成分をbつ像については予
定焦平面を中心とづる2つの受光素子列間の光路差を比
較的小さくず全ことにまり合焦状態を高精度で検出でさ
る利点があり、まl、:横ずれ像検出方法においては焦
点検出可能範囲が広く、かつ特に低周波成分をもつ像に
ついては、L述した数構ずれの不感帯を殆んど生じるこ
となく合焦状態を高精度で検出できる利点がある。
As described above, in the blurred image detection method, the focus detection range in which the front bin, back bin, and focused state can be accurately detected is narrow, but especially for images with b high frequency components, the predetermined focal plane is It has the advantage that the optical path difference between the two light-receiving element arrays centered on the center is not relatively small, and the in-focus state can be detected with high precision. For wide images and especially those having low frequency components, there is an advantage that the in-focus state can be detected with high precision without almost producing the dead zone of several structures as described above.

しかしながら、ぼけ像検出方法においては各受光素子列
で求めた鮮鋭度の差が撮影レンズの予定焦平面に対する
デフォーカス量と直接対応しないために、撮影レンズを
合焦位置に位置させるための移動量を算出できず、また
横ずれ@検出方法においては像の横ずれ吊は検出できて
し、撮影レンズの[−ノシバが予め何らかの形で検出で
き(いないと、やはり撮影レンズを予定焦平面に対して
合焦位置に位置さぜるための移動量を算出することがで
きない。このため、従来の焦点検出方法においては逐次
焦点状態を検出しながら合焦状態を検出するようにして
I5す、したがって合焦調整が迅速にできない欠点があ
る。
However, in the blurred image detection method, the difference in sharpness found in each light receiving element row does not directly correspond to the amount of defocus of the photographing lens with respect to the intended focal plane. In addition, the lateral shift @ detection method can detect the lateral shift and hanging of the image, and the camera lens cannot be detected in some way in advance. It is not possible to calculate the amount of movement required to position the focus position.For this reason, in the conventional focus detection method, the focus state is detected while sequentially detecting the focus state. The drawback is that adjustments cannot be made quickly.

本発明の目的は、特に結像光学系の予定焦平面に対する
ずれ量を求めることにより、合焦調整を容易かつ迅速に
できる焦点検出方法を捉供しようどするものである。
An object of the present invention is to provide a focus detection method that allows focus adjustment to be made easily and quickly, particularly by determining the amount of deviation of an imaging optical system from a predetermined focal plane.

本発明の焦点検出方法は、結像光学系の予定焦平面また
はイれど光学的に共役な面の前後にそれぞれ受光素子対
を配置して、一方の受光素子列には結像光学系の射出瞳
の2つの部分の光束を分離して入射させ、他方の受光素
子列には前記射出瞳の2つの部分のうちの少なく共一方
の部分の光束を分離して入射させ、これら受光素子列の
出力に基いて前記予定焦平面にお【ジる前記射出瞳の2
つの部分の光束による像の横ずれ量δJj J:びIF
il−6b分の光束による像の受光素子列間で′の横す
”れ晴δ′をそれぞれ検出して、横ずれ吊δ′(こ基(
Xで結像光学系のFナンバを演算覆ると共(こ、この[
ナンバと横ずれ量δとに基いて結像光学系σ)シコン1
へ位置と前記予定焦平面とのずれff1(I Fを)■
Iることを1旧数とづるものである。
In the focus detection method of the present invention, a pair of light receiving elements is arranged before and after a predetermined focal plane or an optically conjugate surface of an imaging optical system, and one row of light receiving elements is provided with a predetermined focal plane or an optically conjugate surface of the imaging optical system. The light beams from two parts of the exit pupil are separated and incident on the other light receiving element array, and the light flux from at least one of the two parts of the exit pupil is separated and incident on the other light receiving element row. 2 of the exit pupil that moves to the predetermined focal plane based on the output of
The amount of lateral shift of the image due to the luminous flux of two parts δJj J: and IF
The lateral deviation δ′ of the image produced by the light flux of il-6b is detected between the photodetector arrays, and the lateral deviation δ′ (this base (
While calculating the F number of the imaging optical system with X (this [
Based on the number and the amount of lateral deviation δ, the imaging optical system σ) Sicon 1
Displacement ff1 (I F) between the position and the planned focal plane
I is spelled as 1 old number.

以T:図面を参照して本発明の詳細な説明づ゛る。Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図は本発明を実施する焦点検出装甲の光学系の一例
の構成を示す線図である。本例で(ま結像光学系21か
らその予定焦平面22に導′h1れる光束をハーフミラ
−23で分割し、その分ylさit tこ光束をビーム
スプリッタ24で2分割してそ引t−ぞれ共通の横ずれ
光学系25を介して同−基1反26に設けた受光素子列
2743よび2ε3(こ入射させる。
FIG. 3 is a diagram showing the configuration of an example of an optical system of a focus detection armor embodying the present invention. In this example, the light flux guided from the imaging optical system 21 to its predetermined focal plane 22 is divided by the half mirror 23, and the light flux is divided into two by the beam splitter 24, and then - The light receiving element arrays 2743 and 2ε3 (provided on the same base 1 26) are incident through a common lateral shift optical system 25.

受光素子列27.28はそれらの受光面りく予定焦平面
22の前後にそれぞれ一定光路差△を・隔て1こ面29
.30と光学的に等価な位置(こへ己Wする。
The light-receiving element rows 27 and 28 have their light-receiving surfaces separated by a constant optical path difference △ before and after the intended focal plane 22, respectively.
.. A position optically equivalent to 30 (W is set here).

本例では、横ずれ光学系25により結1象光学系21の
射出瞳の2つの部分、例えば図(こお(Xて光゛軸を含
む組曲GJ二重直な面を境どりる+側J3よび上側部分
−を透過した)1′、束を分離し、これら分離され。
In this example, the horizontal shift optical system 25 is used to form two parts of the exit pupil of the quadratic optical system 21, for example, the and the upper part) 1', separating the bundles and separating them.

た光束を受光素r列27.28の各々において受光4る
The resulting light flux is received by each of the r arrays 27 and 28 of light receiving elements.

第4図△lよ受光素子列27.28およびJli−+f
れ光学系25の一例の構成と配置関係とを示す平面図で
ある1、受)し素子列27.28はl1ij −+iη
成C1V板2Gに\M<へ−(形成され、それぞれ1h
線的に配列した2 11個の受光素子を有し、隣接する
2個の受光素子、づなわら受光素子対27にA3いては
受光素F27Δ+、271’3+:〜:27△n 、2
7131)が、受光素子列28におい(−は受光素子2
8A+、28B+:〜・:28△n、23[’3nがぞ
11そ゛れり・]を成−リ。−万、横ずれ光学系21)
は、本例ではガラス、^分子ノイル八等の透明基板の表
1nI(6二然着あるいは印刷等にJこり、各受光素子
91127.28の受光素子対tこそれイー11対応b
 ″Cマスク:(iを形成したスl〜ライブマスク板を
19つ(構成しこれらマスク31により結像光学系21
の射出瞳の2一つの部分を透過し、た光束を分離して、
第4図B(こ示刀よう(ご各受光素子対、例λぽ受光素
子対27A+、27113+におい−C一方の受光素子
27△1に主として射出瞳の−1)の部分を透過した光
束を入射させ、他方の受光素f27 B + 1.、−
!どし−C射出師の他方の部分を透過した〉に束を入用
さUる。?lなわち、マスク31に、J、り各受光素j
′対を構成り一62周の受光素子、例えば受光素子27
A1および27B1に1J−3い(第4図C−33よび
1)に−でれそれ承りように受光する光の角度依存性を
もたせる。なお、この角度依存性はマスク331、の幅
、受光素子列27.28と横1゛れ光学系25との間隔
を調整づ−ること(、二より任意に設定1Jることが(
・・きる。
Fig. 4 △l, light-receiving element row 27, 28 and Jli-+f
1 is a plan view showing the configuration and arrangement relationship of an example of the optical system 25;
Formed C1V plate 2G to \M< (formed, 1h each
It has 211 light-receiving elements linearly arranged, and two adjacent light-receiving elements, that is, the light-receiving element pair 27 A3 has a light-receiving element F27Δ+, 271'3+: ~: 27Δn, 2
7131) is the light receiving element array 28 (- indicates the light receiving element 2
8A+, 28B+: ~・: 28△n, 23 ['3n is 11 sore・] completed. -10,000, Lateral shift optical system 21)
In this example, the light receiving element pair of each light receiving element 91127.28 corresponds to E11.
``C mask: (consists of 19 live mask plates from the sl on which i is formed, and these masks 31 form the imaging optical system 21
The light beam transmitted through two parts of the exit pupil is separated,
Figure 4B (Indication of each light receiving element pair, e.g. λ light receiving element pair 27A+, 27113+) and the other photodetector f27 B + 1., -
! The bundle is then passed through the other part of the injector. ? In other words, on the mask 31, J, each light receiving element j
' A pair of light receiving elements with 162 turns, for example, light receiving element 27
A1 and 27B1 (FIG. 4, C-33 and 1) are made to have an angular dependence of the light they receive. This angular dependence can be determined by adjusting the width of the mask 331 and the distance between the light-receiving element rows 27 and 28 and the lateral optical system 25.
··Wear.

とのj、うに構成44′目3t、8受)し素子列27.
28において、ぞれぞ才′【対を成り受光素子の一方の
群、例えば受光素子群27A+−・27Δn L13よ
び28A+〜28△「1は結像光学系のDJ出陣の一1
jの部分、例えば第3図に(I3イー’CIr!i 曲
光学系21の光軸を倉む紙面に垂直な而を境とする一1
側の部分を透過した光束を1−どして受光し、他/)の
受光M ’F R¥ 27 B + −” 27 f3
 II 、I3ヨU 28 [3+ ・〜2ε3 B 
nはQ、J出陣の(l!!i5の部分、4なわら結像光
学系21の>u’tMIIを含む紙面に垂直な面を境と
7するIζ側の部分を透過した)に束を主としC受光4
ること(Jなる。したがつ(、各受光素−(列27.2
8に43いて両受光素子群で受光される像の強電分子1
1(,1、その受光面に1.−1像光学系21のピン1
〜位置があるどきは一5゛々じ、ピン1〜位置が受光面
にないときはイの4゛れの方向に応じ(Ljいに反対ジ
ノ向に横り゛れづる。ここ(、受光素子列27d3よび
2Bはてれらの受光面が予定焦平面22の前後にそれぞ
れ一定光路差△を隔てた面29 J5 J、び30ど〉
℃学的に等1i1[iへ位置に配置され−Cいるから、
第j)図A(、−示づよ)に結像光学系214こよつ−
C形成される像のピント位置が′Jz定焦甲而2面に位
R−1−る合焦状態(こ43いU4よ、予定焦平面22
−1−r結像光学系21の上側(15J、び下側部分を
イねそれ透過した両光束が交わって顔の鮮鋭度が最も高
くなるが、受光素子対27.28−1= ’rは光路差
△に伴い両光束が光軸と直交づる方向にnいに逆方向に
ジノ1〜し、像の鮮Glt i印はで11そ′れ(I(
トL ’U 1.:Lは等しくなる。
j, sea urchin configuration 44'th 3t, 8 receiver) and element row 27.
28, each of them is a group of light receiving elements forming a pair, for example, light receiving element group 27A+-・27Δn L13 and 28A+~28Δ "1 is one of the DJ departure groups of the imaging optical system.
For example, in FIG.
The light flux that has passed through the side part is returned to 1- and is received, and the other/) light is received
II, I3yo U 28 [3+ ・~2ε3 B
n is bundled in Q, J's (l!! i5 part, 4 transmitted through the part on the Iζ side bordering on the plane perpendicular to the plane of the paper containing >u'tMII of the imaging optical system 21). Mainly C light receiving 4
(J becomes. However, each photodetector - (column 27.2
Strong electric molecule 1 of the image received by both photodetector groups at 43 in 8
1 (, 1, pin 1 of the 1.-1 image optical system 21 on its light-receiving surface
When the ~ position is located, it is 15゛, and when the pin 1~ position is not on the light receiving surface, it is moved sideways in the opposite direction. Element rows 27d3 and 2B have their light-receiving surfaces separated by a constant optical path difference Δ before and after the predetermined focal plane 22, respectively.
Since −C is logically placed at the position 1i1[i,
j) Image forming optical system 214 is shown in Figure A (-shown).
The in-focus state where the focus position of the image to be formed is on the 2nd plane R-1- (this is U4, the planned focal plane 22
-1-r The upper side (15J, With the optical path difference △, both the light beams move in opposite directions perpendicular to the optical axis, and the bright Glt i mark of the image becomes 11 (I(
To L 'U 1. :L becomes equal.

すなわら、合焦状態におい(は、例えば結像光学系21
にJ、って形成される像1)iスゲツブ状の−00−C
あるどさは、受光素子列27、予定焦平面22および受
光素子りり28十に形成される結像光学系21の上側部
分(、′X主光線をも−)−(光束による像(実線〉と
上側部分に主光線をもつ光束にJ、る像(破線)との強
度分Yli iよ、でれでれ第5図(−3、Cおよび1
つに示すようになり、受光素子列274.二形成される
上側部分(こ主光線をもつ光束tこよる、像と、受光素
子列28に形成される上側部分に]二光線をもつ光束に
j、る像どLaぼl−Jかたがほぼ等しく、かつ)″一
定焦平面22Jに形成される像からの横ずれ砧もほぼ等
しくなる。同様に、受光素子クリ27に形成される+f
llll i’ilt分に主光線をbパ)九東による像
および受光素子列28に形成される上側部分に一ト尤線
をもつ光束による像(4ンついCt)ぼ(Jかだがばぼ
等しく、かつ−r定態平面221に形成される像からの
横ずれ用もIJは等しくなり、結局両受光索子う1j2
7.28においてそれぞ゛れの光束に、1、−>’(形
成される1領がほば等しくぼけ、かつnいに団対1ノ向
にほぼ等しく横ずれ−4ること(、、二4fる。
In other words, in the focused state (for example, the imaging optical system 21
Image formed by J, 1) i sedge-shaped -00-C
The upper part of the imaging optical system 21 formed by the light-receiving element array 27, the predetermined focal plane 22, and the light-receiving element edge 280 (,' The intensity of the image (dashed line) of J, which is the luminous flux with the chief ray in the upper part, is Yli i.
The light receiving element row 274. The upper part formed by the two light beams (the image formed by the light beam t having the principal ray and the upper part formed by the light-receiving element array 28)) are approximately equal, and the lateral deviations from the image formed on the constant focal plane 22J are also approximately equal.Similarly, +f formed on the light receiving element 27
The image by Kuto and the image formed on the light receiving element array 28 by the light beam with a one-t likelihood line in the upper part (Ct) (J Kadababo) Also, IJ for the lateral deviation from the image formed on the -r steady plane 221 becomes equal, and as a result, both light-receiving cables 1j2
7.28, each luminous flux has an approximately equal blur of 1, ->' (1 area formed by n, and an approximately equal lateral shift of -4 in the group vs. 1 direction (,, 2). 4fru.

本発明にJメいては、第6図A J3J、ぴ1−3に示
づよ・)な前ビンおよび後ピンの非合焦状態におい(−
1結像光学系21のピント(Q置ど予定焦平面22どの
ずれ吊dトを求めるもの(−dりるが、このす゛れ1t
1(1!−は結像光学系21の「犬ンバを[、ぞの射出
瞳の2つの部分を透過した光束、例えば結(象光学系2
1の)に軸を境とり−る上側部分に主光線をもつ光束と
、下側部分にに丸線をもつ光束と【こよ−)でぞtt 
−e tI影形成れる像の予定焦平面221に;J31
.Jる横ずれ吊をδどづるど、[−一−d[7(′5の
関係かあり、d 1” = I ・δにより求めること
がCさる、。
According to the present invention, in the out-of-focus state (-) of the front and rear focus as shown in FIG.
1 The focus of the imaging optical system 21 (Q is used to determine the deviation of the predetermined focal plane 22 (-d), but this deviation is 1t)
1 (1!-) is the light beam that has passed through the two exit pupils of the imaging optical system 21, for example, the optical system 21.
In 1), there is a luminous flux with the chief ray in the upper part bordering the axis, and a luminous flux with a round line in the lower part.
-e tI shadow is formed on the planned focal plane 221 of the image; J31
.. If the side-slip suspension of J is δ, there is a relationship of [-1-d[7('5), and it can be found by d 1'' = I · δ.

ここで、「−は結像光学系21の+側まl、=は下側部
分に主光線をt)つ 方の光束によって受光素子列27
.28、づなわらイれらの等両受光面129.3(−)
十にそれぞね形成される■二のこ416等価受光受光で
の横ずれ量をδ′とりるど、等両受光面29.30間の
光路%は2△であるから、[、、(Kδ′/2△の関係
がある。したがって、光路差2△は−j;め設定されで
いるから、δ′を検出覆ることに一、にす「を演時づる
ことかβ′さる。IIの(苗≦1−れmlδ′は、例え
ば受光素子列27.28において同一方向の光束を主ど
じ−C受光4る受光N f−nY27△1−・27△1
1.28A+へ、28Δ1)の出力を取出し、特開昭b
 2 153 ’l 33号公報に記載され−(いるJ
、うに各々の像情報をシー)+= I−+ながら比較し
て横ずれ量に対応づる受光素子数を求め、この受光素子
数とその配列ビッヂとから炊出りることができる。なお
、この横4′れ吊δ′は↑記の1、うに1−ノンバ〔3
二よ−)て変化りるか、非合焦状態にJ3い−(は始/
Vど変化ぜす、また通′畠カメラレンス等のトナンバは
1.4.2.E3.4,0・・・のように離散的イf(
直をとるから、このδ′(こ二)いてG1、多少の誤差
があっCも[を求めるの(J−は問題を牛しない。した
がって、結像光学系21の[太ンハを1;め記憶してお
き、これら記憶し!、1 F’−)ンバから演算により
求めた1−プンバに最も近いぜ、)のを選択的に読出し
く使うこともで゛きる。
Here, "-" indicates the positive side of the imaging optical system 21, and "=" indicates the principal ray on the lower part).
.. 28, Zunawara Irera's equal light-receiving surface 129.3 (-)
If we take δ' as the amount of lateral shift in the equivalent light reception of the second saw 416 formed on each side, the optical path % between the two equal light receiving surfaces 29.30 is 2△, so [,,(Kδ ′/2△.Therefore, since the optical path difference 2△ is set to −j; (Seedlings≦1-remlδ' is, for example, the light receiving element where the light flux in the same direction is mainly received by the light-receiving element rows 27 and 28.)
Take out the output of 28Δ1) to 1.28A+, and
2 153 'l Described in Publication No. 33 - (Iru J
The number of light receiving elements corresponding to the amount of lateral shift can be determined by comparing the image information of each of the above as +=I-+, and calculating from this number of light receiving elements and its array bit. In addition, this horizontal 4' suspension δ' is ↑ 1, sea urchin 1 - nonba [3
2) and then it changes, or it goes out of focus.
The number of the camera lens etc. is 1.4.2. E3. Discrete if(
Since this δ' (ko2) is taken directly, G1 has some error, and C is also calculated. You can also selectively read out and use these !, 1 F'-) which is closest to the 1-Pumba obtained by calculation from the 1-Pumba.

−万、予定焦平面22十での横り゛れ(Hδは、結像光
学系21の+側および下側部分にユ1−光線をもつ−h
の光束(こよって等両受光面29上に形成される(ψと
、使方の光束によって等両受光面301に形成される(
象どの横ずれ川にほぼ一致する。すなわら、第7図△に
示り合焦状態にa3いて、予定焦平面22 士rの強度
分布α、β、7′i、Tつい−Cみるど、イの強度分イ
[+をりえる結像光学系の下側部分(、−EL光線をも
二)光束による等両受光面29上℃の強度分角Cχ′、
β′、γ′および上側部分に主光線をもつ光束に1」、
る等両受光面30 十”c′の強[σ分布α″、βn 
、7nは、第5)図に、13いで説明したように予定焦
平面22Fでの強度分子liα、β、γに対して、)に
軸からあ;1、り遠くない範囲(−゛はイれぞれ同一方
向に横り”れし−Cはぼ一致−づる。これに対し、第7
図13に示す前ビン状態d3よび第7図c i;:示づ
後ビン状態にJ3いては、下側部分に主光線をもつ光束
にJ、る等両受光面29−トでの強度分布α′、β′、
γ′と、上側部分に主光線をbつ光束による等両受光面
30]Eでの強1α分布α″、β″、γ″とは7iいに
逆方向に横ずれし、その横ずれ早δは予定焦平面22F
での−[配向光束による像の横ずれ獣にほぼ一致覆ると
共に、結像光学系の光軸からあまり遠くない範囲ではピ
ント外れΦど比例関係にある。このよう(、X、等両受
光面29−1−に形成される一方の光束(、二よる像と
、等両受光面30土に形成される使方の光束(、二よる
像との横ずれcdは、予定焦平面22十ての両光束によ
る像の横り゛れ量δどほば一致するから、例えば受光素
子列27から一方の光束を主として受光りる受光索子群
27A1〜27Allの出力を取出・し、受光素子列2
8からは使方の光束を、トとし−C受光づる受光素子群
28B1〜28 B nの出力を取出しく、これらの強
亀分イliを上記特開]11イF−i 2−153 /
I 33号公報に記載され(いるJ、うにし℃相夕・j
的にシフ1−させて逐次比較して横ずれ吊に対応覆る受
光素子数を求めることにより、この受光素子数どその配
列ピップどから横づ゛れ吊δを検出りることができる。
-10,000, horizontal deviation (Hδ) at the predetermined focal plane 220
(Thus, the luminous flux of
It almost corresponds to the horizontal Yokosuri River. In other words, when a3 is in the focused state as shown in Fig. 7, the intensity distribution α, β, 7'i, and T of the planned focal plane 22 and the intensity of -C, and A are given by the intensity of The lower part of the imaging optical system (including the −EL rays) has an intensity angle Cχ′ at ℃ on the equilateral light-receiving surface 29,
1 for β′, γ′ and the luminous flux with the chief ray in the upper part,
Both light-receiving surfaces 30
, 7n are shown in Fig. 5) for the intensity molecules liα, β, γ at the predetermined focal plane 22F as explained in 13) within a range not far from the axis by 1; ``C'' is almost the same as the 7th one.
In the front bin state d3 shown in FIG. 13 and the rear bin state J3 shown in FIG. α′, β′,
γ′ and the strong 1α distribution α″, β″, γ″ at the equal-bilateral light-receiving surface 30]E with the principal ray b in the upper part are laterally shifted in the opposite direction, and the early lateral shift δ is Planned focal plane 22F
-[The lateral deviation of the image due to the oriented light beam is nearly identical, and the out-of-focus Φ is in a proportional relationship within a range not far from the optical axis of the imaging optical system. In this way, there is a lateral shift between the image of one of the light beams formed on the two light-receiving surfaces 29-1-, and the image of the other light beam formed on the two light-receiving surfaces 30-1. Since the amount of lateral deviation δ of the image due to both the light beams of the predetermined focal plane 220 coincides with cd, for example, the amount of lateral deviation δ of the image due to both the light beams from the light receiving element array 27 is Take out the output and connect it to the light receiving element array 2.
From 8, let us take out the output of the light receiving element group 28B1 to 28Bn, which receives the light beam in use.
Described in Publication No. 33
By sequentially comparing the number of light-receiving elements corresponding to the lateral deviation with a shift of 1-, it is possible to detect the lateral deviation δ from the number of light-receiving elements and the arrangement pips.

以上のようにして、本発明では結像光学系21のFブン
バFと予定焦平面22上で′の像の横ずれ吊δとを求め
、これらF iJ3よびδに基いて結像光学系21のピ
ント位置と予定焦平面22とのずれ量(ピント外れfi
)dFを検出覆るものであるが、本実施例においては、
このずれMid Fに基いて結像光学系21の光軸方向
の移動量を求めると共に、その移動方向を受光素子列2
7.28の出力に塞いで検出しC結像光学系21を自動
的に移動させ、その後ビン1へ位置が予じめ設定した合
焦範囲に入っているか否かを両受光素子列27.28の
出力に基いて予定焦平面22上におりる像の鮮鋭度また
は横ずれを検出して検証し、不充分であれLi負r鋭度
または横ずれによるピント外れの方向に結像光学系21
を自動的に一定の微少量ずつステップ移動させながら、
ピント位置が予じめ設定した合焦範囲にに入るまで検証
を繰返し行なって結像光学系21を最終的に合焦状態に
位置決めする。このため、予定焦平面22上での像の鮮
鋭度または横ずれを、鮮鋭度については両受光素子列2
7゜28上での各々の鮮鋭度の社較により検出し、横ず
れ像については両受光素子列27.28の出力に基いて
検出づ゛る。ここで各受光素子列27゜28上での鮮鋭
度および予定焦平面22上での横ずれ像を検出する評価
関数として−は、受光素子列27.28の受光素子群2
7A+ 〜27△nの出力を” I 〜a n s受光
素子群27 B + 〜27 B nの出力をb+〜b
、とし、受光素子列28の受光素子群28 A + 〜
28 A nの出力をa +  、 〜”’n、受光素
子群28 B + 〜28 B nの出力をb′ 1〜
b′ nとすると、横ずれ像を検出する評Y=Σ(la
 +++  b’  1−Hlコ、−2 一1a l−1−b’  +++ l)または、 −ia’  + −1b  I+I  l)を用いるこ
とができ、また受光素子列27−1:′cの鮮鋭度を検
出する評価関数については、例えば[3a=l  (a
  1+b 1) −(a  +−+  +b  l−1)  Infax
を、受光素子列28上での鮮鋭度を検出する評価関数に
ついては、例えば F3b=l (a’  !+b’  +)(a’  +
−++b’  + −+ ) 1max〔1−2〜n〕 をそれぞれ用いることができる。
As described above, in the present invention, the F bumper F of the imaging optical system 21 and the lateral shift angle δ of the image ' on the predetermined focal plane 22 are obtained, and based on these F iJ3 and δ, the imaging optical system 21 The amount of deviation between the focus position and the planned focal plane 22 (out of focus fi
) dF is detected, but in this example,
Based on this shift Mid F, the amount of movement of the imaging optical system 21 in the optical axis direction is determined, and the movement direction is determined based on the light receiving element array 2.
7.28, the C imaging optical system 21 is automatically moved, and then both light receiving element arrays 27. Based on the output of 28, the sharpness or lateral shift of the image falling on the predetermined focal plane 22 is detected and verified, and if it is insufficient, the imaging optical system 21
While automatically moving in small steps,
Verification is repeated until the focus position falls within a preset focus range, and the imaging optical system 21 is finally positioned in the focused state. For this reason, the sharpness or lateral shift of the image on the predetermined focal plane 22 is
Detection is performed by comparing the sharpness of each image at 7°28, and a lateral shift image is detected based on the outputs of both light-receiving element arrays 27 and 28. Here, as an evaluation function for detecting the sharpness on each light-receiving element row 27.28 and the lateral shift image on the predetermined focal plane 22, - is the
7A+ ~27△n output is ``I~a ns light receiving element group 27B +~27B n output is b+~b
, and the light-receiving element group 28 A + of the light-receiving element array 28
The output of 28 A n is a + , ~'''n, and the output of light receiving element group 28 B + ~ 28 B n is b' 1 ~
b'
+++ b' 1-Hl, -2 -1a l-1-b' +++ l) or -ia' + -1b I+I l) can be used, and the sharpness of the light-receiving element array 27-1:'c Regarding the evaluation function for detecting the degree, for example, [3a=l (a
1+b 1) -(a +-+ +b l-1) Infax
For the evaluation function for detecting the sharpness on the light receiving element array 28, for example, F3b=l (a'!+b' +) (a' +
−++b′ + −+ ) 1max [1-2 to n] can be used, respectively.

上記横ずれ像評価関数による評価値Yは、第8図Aに示
すようにピント位置が予定焦平面22上に位置する合焦
位置においてY=Oとなり、前ピンおよび後ビン状態に
おいてそれぞれY>OおよびY<Oどなって極性が反転
する。この横ずれ像による焦点検出は結像光学系21の
移動範囲のほぼ全範囲に戸って有効に焦点状態を検出で
きると共に、特に低周波成分をもつ像の焦点検出に適プ
る。このため本例では、上述し!ζずれff1d Fに
基いて結像光学系21を移動させる際にも、この評価値
Yを検出し、その極性により結像光学系21の移動方向
を決定すると共に、低周波成分をもつ像に対してこの評
価値YによりR柊的な焦点検出を行なうために、所定の
閾値し−1を設定する。これに対し、上記鮮鋭度すなわ
ちぼ(プ像評価関数による評価値13aおよびBbは、
第8図Bに示すように各々の受光素子列27.28上に
ピン1〜位置が位置するときに最大となり、合焦位置に
J3いてはBa −8b 〜0、前ピンおよび後ビン状
態においてはそれぞれBa−Bb>oJ5よびBa −
Bb <Oどなって極性が反転する。これら評価値Ba
、Bbの比較によるぼけ像に基く焦点検出は、その検出
範囲は狭いが特に高周波成分をもつ像の焦点検出に通ず
るから、本例では高周波成分をもつ像に対してこのぼけ
像検出により最終的な焦点検出を行なうために所定の閾
値L2を設定し、3.a十Bb>し2のときにこのぼけ
像によって焦点検出を行なうようにづる。
As shown in FIG. 8A, the evaluation value Y based on the above-mentioned lateral deviation image evaluation function is Y=O at the in-focus position where the focus position is located on the predetermined focal plane 22, and Y>O in the front focus and rear focus states, respectively. and Y<O, and the polarity is reversed. Focus detection using this lateral shift image can effectively detect the focus state over almost the entire range of movement of the imaging optical system 21, and is particularly suitable for focus detection of images having low frequency components. Therefore, in this example, the above! When moving the imaging optical system 21 based on the ζ deviation ff1dF, this evaluation value Y is detected, and the direction of movement of the imaging optical system 21 is determined based on its polarity. On the other hand, in order to perform R-like focus detection using this evaluation value Y, a predetermined threshold value -1 is set. On the other hand, the sharpness, that is, the evaluation values 13a and Bb based on the image evaluation function, are as follows:
As shown in FIG. 8B, it is maximum when the pin 1 to position is located on each light receiving element row 27 and 28, Ba -8b to 0 at the in-focus position, and Ba -8b to 0 in the front focus and rear pin states. are Ba−Bb>oJ5 and Ba −
Bb <O, and the polarity is reversed. These evaluation values Ba
, Bb, although the detection range is narrow, focus detection based on blurred images is particularly useful for detecting focus on images with high frequency components. 3. Setting a predetermined threshold L2 to perform accurate focus detection; When a0Bb>2, focus detection is performed using this blurred image.

更に、図示しないが評価値Yに対して合焦範囲F+  
(F+ <L+ )を設定してIYI≦ト1のとき合焦
と判定するように−すると共に、評価値1Ba−Bbl
に対しても合焦範囲 F2  (F2 >>12 >を設定して1Ba−Bb
l≦F2のとき合焦と判定するようにする。また、本例
ではずれ消d Fに基いて結像光学系21を移動させた
後の最終的焦点検出の信頼性および精度を高めるl〔め
、評価値BaおよびBbに対しC閾値L3を設定し、I
Y!<L+でかつBaおよびBbのいずれか一方が13
よりも小さいときは検証不能と判定して以後の焦点検出
を行なわないようにする。
Furthermore, although not shown, the focusing range F+ is determined for the evaluation value Y.
(F+ <L+) so that when IYI≦T1, it is determined that the focus is on, and the evaluation value is 1Ba-Bbl.
Also, set the focusing range F2 (F2 >> 12 > to 1Ba-Bb
In-focus is determined when l≦F2. In addition, in this example, in order to increase the reliability and accuracy of the final focus detection after moving the imaging optical system 21 based on the deviation dF, a C threshold L3 is set for the evaluation values Ba and Bb. Shi, I
Y! <L+ and either Ba or Bb is 13
If it is smaller than , it is determined that verification is impossible and no further focus detection is performed.

第9図は本実施例の信号処理回路の一例の構成を示づブ
ロック図である。本例では駆動回路41により受光素子
列27.28の出力を読出し、これを増幅器42を経て
A/D変換器43で゛デジタル信号に変換して、各列の
像強度分布を記憶回路44に記憶し、これら像強度分布
に基い−C演紳・判定回路45において所要の演算・判
定を行なって、その結果に基いてモータ駆動回路46を
経てモータ47により結像光学系21を光軸方向に移動
させると共に、合焦、前ピンおよび後ビンの各焦点状態
を表示回路48において表示する。なお、各部の動作は
制御回路49により制御する。
FIG. 9 is a block diagram showing the configuration of an example of the signal processing circuit of this embodiment. In this example, the drive circuit 41 reads out the output of the light receiving element rows 27 and 28, converts it into a digital signal via the amplifier 42 and the A/D converter 43, and stores the image intensity distribution of each row in the storage circuit 44. Based on these image intensity distributions, necessary calculations and judgments are performed in a C-processor/judgment circuit 45, and based on the results, a motor 47 moves the imaging optical system 21 to the optical axis via a motor drive circuit 46. At the same time, the display circuit 48 displays each focus state of in-focus, front focus, and rear focus. Note that the operation of each part is controlled by a control circuit 49.

以下第9図に示す信号処理回路の動作を第10図に示す
フローチャー1・をも参照して説明する。
The operation of the signal processing circuit shown in FIG. 9 will be described below with reference to flowchart 1 shown in FIG. 10.

先ず、受光素子列27.28の像強度分布を記憶回路4
4に記憶した後、それらの像強度分布に基いて演算・判
定回路45において、上述したずれmd Fおよび横ず
れ像評価値Yを求めて結像光学系21の合焦状態への移
動量を演算すると共にその方向を判定し、その結果に基
い−Cモータ駆動回路46を経てモータ47により結像
光学系・21を移動させる。次に、移動させた結像光学
系21が合焦状態にあるか否かを検証するために、その
位置での受光素子列27.28の像強度分布を配憶回路
44に取込んで演算・判定回路45において上述した評
価値Y 、 B a 、F3よびI3bを演算した後、
先ずl Y l >L+を判定し、IYI>L+のとき
は次に3a +3b >l、2を判定し、Ba+Bb>
l−2のとき、すなわち高周波成分をもつ像のときは、
これら13a、Bbの比較によるぼけ像検出によって検
証を行なう。丈なわら、1Ba−Bbl≦F2のときは
合焦ど判定してこれを表示回路48におい′C表示させ
、13a −13b >Qのときは前ピンと判定してこ
れを表示回路48において表示させると共にモータ駆動
回路46およびモータ47を介して結像光学系21を予
定焦平面22に近づける方向にステップ移動させて、1
Ba−Bbl≦F2になるまで検証を繰返す。同様に、
Ba −Bb <0のときは後ビンと判定してこれを表
示回路48において表示させると共にモータ駆動回路4
6およびモータ47を介して結像光学系21を予定焦平
面22から遠ざける方向にステップ移動させて、1Ba
−Bbl≦F2になるまで検証を繰返づ。
First, the image intensity distribution of the light receiving element rows 27 and 28 is stored in the memory circuit 4.
4, the calculation/judgment circuit 45 calculates the above-mentioned deviation md F and lateral deviation image evaluation value Y based on these image intensity distributions, and calculates the amount of movement of the imaging optical system 21 to the in-focus state. At the same time, the direction is determined, and based on the result, the imaging optical system 21 is moved by the motor 47 via the -C motor drive circuit 46. Next, in order to verify whether or not the moved imaging optical system 21 is in focus, the image intensity distribution of the light receiving element rows 27 and 28 at that position is loaded into the storage circuit 44 and calculated. - After calculating the evaluation values Y, B a , F3 and I3b mentioned above in the determination circuit 45,
First, it is determined that l Y l >L+, and when IYI>L+, then 3a +3b >l, 2 is determined, and Ba+Bb>
When l-2, that is, when the image has high frequency components,
Verification is performed by detecting a blurred image by comparing these 13a and Bb. When 1Ba-Bbl≦F2, the focus is determined and this is displayed on the display circuit 48, and when 13a-13b>Q, it is determined that the front is in focus and this is displayed on the display circuit 48. At the same time, the imaging optical system 21 is moved step by step in the direction closer to the predetermined focal plane 22 via the motor drive circuit 46 and the motor 47.
Verification is repeated until Ba-Bbl≦F2. Similarly,
When Ba - Bb < 0, it is determined that it is the rear bin, and this is displayed on the display circuit 48, and the motor drive circuit 4
6 and the motor 47, the imaging optical system 21 is moved stepwise in the direction away from the predetermined focal plane 22.
- Repeat the verification until Bbl≦F2.

また、l Y l > L + ”Cかつ3a+3b<
l−2のとき、すなわち低周波成分をもつ像のときは、
評価値Yによる横ずれ像検出によって検証を行なう。
Also, l Y l > L + ”C and 3a+3b<
When l-2, that is, when the image has low frequency components,
Verification is performed by detecting a lateral shift image using the evaluation value Y.

す゛なわち、IYI≦F1のときは合焦と判定してこれ
を表示回路48において表示させ、Y>Oのときは前ピ
ンと判定してこれを表示回路48において表示させると
共に、モータ駆動回路46およびモータ47を介して結
像光学系21を予定焦平面22に近づける方向にステッ
プ移動させて、IYI≦F1になるまで検証を繰返す。
In other words, when IYI≦F1, it is determined that the focus is in focus and this is displayed on the display circuit 48, and when Y>O, it is determined that the focus is on the front and this is displayed on the display circuit 48, and the motor drive circuit 46 Then, the imaging optical system 21 is moved in steps in a direction closer to the predetermined focal plane 22 via the motor 47, and the verification is repeated until IYI≦F1.

同様に、Y〈0のときは後ビンと判定してこれを表示回
路48において表示させると共に、モータ駆動回路46
およびモータ47を介して結像光学系21を予定焦平面
22かう遠ざける方向にステップ移動させて、IYI≦
F1になるまで検証を繰返′1J。
Similarly, when Y<0, it is determined that it is the rear bin and this is displayed on the display circuit 48, and the motor drive circuit 46
Then, the imaging optical system 21 is step-moved via the motor 47 in the direction of moving away from the predetermined focal plane 22, so that IYI≦
Repeat the verification until it reaches F1'1J.

更に、IYI<1+のときは次にBa>L::+および
Bb>13を判定し、両者を満足するときはBa+3b
>12の判定を行なって上述したぼけ像または横ずれ像
による検証を行なう。また、いずれか一方3a≦L3ま
たは13 b≦L3のときは検証不能と判定し、以後の
焦点検出を中止でる。
Furthermore, when IYI<1+, next determine Ba>L::+ and Bb>13, and when both are satisfied, Ba+3b
>12 is performed to perform verification using the above-mentioned blurred image or lateral shift image. Further, if either 3a≦L3 or 13b≦L3, it is determined that verification is impossible, and subsequent focus detection is stopped.

なお、この検証不能状態は表示回路48において表示し
てもよい。
Note that this unverifiable state may be displayed on the display circuit 48.

以上述べた本実施例の焦点検出装置によれば、ずれ量d
Fおよび横ずれ像評価値Yに基いて結像光学系21の合
焦状態への移動ωおよび方向を決定し、これにより結像
光学系21を自動的に移動させるようにしたから、広範
囲に口って合焦調整を迅速に行なうことかC゛きる。ま
た、横ずれ像計価値Yを合焦状態において2つの受光素
子列27゜28にほり像を与えて検出づるJ、うにした
から、横ずれ閣による合焦精度を向上させることができ
ると共に、この横ずれ偉力式とぼけ偉力式とを併用しで
、結像光学系21の最終的合焦調整を行なうようにした
から、その合焦調整を被写体像に応じ(高粘度に行なう
ことができる。
According to the focus detection device of this embodiment described above, the amount of deviation d
Since the movement ω and direction of the imaging optical system 21 to the focused state are determined based on F and the lateral deviation image evaluation value Y, and the imaging optical system 21 is automatically moved based on this, the imaging optical system 21 is automatically moved. The key is to quickly adjust the focus. In addition, since the lateral shift imager value Y is detected by giving the two light-receiving element rows 27 and 28 an image in the focused state, it is possible to improve the focusing accuracy by the lateral shift, and also to detect this lateral shift. Since the final focus adjustment of the imaging optical system 21 is carried out by using both the power type and the blur power type, the focus adjustment can be performed in accordance with the subject image (with high viscosity).

なお、本発明は上述した例にのみ限定されるものて゛は
なく、幾多の変形または変更の可能である。
It should be noted that the present invention is not limited only to the above-mentioned examples, and can be modified or changed in many ways.

例えば受光素子列27.28は、第11図に示ずJ、う
に各受光素子列27.28においで各マスク31に対リ
−る受光素子対間に結像光学系21の射出瞳の2つの部
分を透過した光束を受光覆る受光素子27C+〜27C
n−1,28C+〜28C: n −1が位置づるJ、
うに構成乃ることもできる。
For example, the light receiving element arrays 27 and 28 are not shown in FIG. Light-receiving elements 27C+ to 27C that receive and cover the light flux that has passed through the two parts
n-1, 28C+ to 28C: J where n-1 is located,
You can also compose the sea urchin.

この場合には、各受光素子列27.28における像の鮮
鋭度Ba、Bbを各受光素子群2701〜270n−+
 、28G+”−28Cn−+の出力により求めること
ができ、受光素子11¥27C1〜27Cn−+の出力
をC1〜Cn  I 、受光素子群28 C; + ”
 28 Cn −+の出力をcl、、〜C’ (5−1
どすると、例えば F−3a = lc +−+ −C+ 1max3b=
lc’  i−I  C’  1 )IllaX(1−
2〜 (n−’1  )  ) により求めることができる。このようにす−れば、ぼけ
像り式の光利用率が高まり、S/Nを向上させることが
できると共に、ぼ【J像としCの不感帯が問題にならな
いからぼけ像による合焦精度を向上さ1!ることができ
る。これは本来の合焦時にa3いて各受光素子列27.
281−にぐきる点像の拡がりが、各受光素子群27 
CI” 27 Cn −+ 。
In this case, image sharpness Ba, Bb in each light receiving element row 27.28 is set to each light receiving element group 2701 to 270n-+
, 28G+"-28Cn-+, and the outputs of the light-receiving elements 11\27C1-27Cn-+ are C1-CnI, the light-receiving element group 28C; +"
28 The output of Cn −+ is cl,, ~C' (5-1
For example, F-3a = lc +-+ -C+ 1max3b=
lc' i-I C' 1 )IllaX(1-
2~(n-'1)). By doing this, the light utilization rate of the blurred image method can be increased, the S/N ratio can be improved, and the focusing accuracy due to the blurred image can be improved since the dead zone of C is not a problem since the blurred image is used as a blurred image. Improvement 1! can be done. This is because each light receiving element array 27.
281-The spread of the sharp point image is
CI” 27 Cn −+ .

28C+”28Cn−+のJイ1ス1〜周波数により決
定される受光素子ビッヂよりも人きくなって、その各受
光素子群の順次の受光素子4.Zまたがるからひある。
28C+"28Cn-+'s JI1~ frequency is determined by the light-receiving element bit, and the light-receiving element 4.Z of each light-receiving element group is successively straddled.

なお、この不感帯に関りる同様の効果は、横ずれ偉力式
についでも期待C″きる。また、横ずれ光学系25は第
12図に示すように多数の微小フライアイレンス51を
もつ(構成することもでき、この場合にはマスクを用い
る場合のように遮光することがないから光利用率を高め
ることができる。更に、上述した実施例では各受光素子
列27.28において、結像光学系21の射出瞳の2つ
の部分の光束を分離して受光するよう構成し、だが、一
方の受光素子列は射出瞳の一方の部分の光束を分離して
受光づるよう構成しても本発明を有効に実施(ることが
できる9更にまた、上述した実施例では横ずれ像評価(
a Yを演いし、その極性によってずれid Fに基く
結像光学系21の移動方向を決定したが、ずれff1d
 I−を求める際の横ずれ舟δの8jj幹にa3いてそ
の移動方向をも検出することができる。また、本発明は
合焦調整を自動的に行なう場合に限らず、手動により合
焦調整を行なう場合にも有効に適用することができる。
A similar effect regarding this dead zone can also be expected for the lateral shift force type. Also, the lateral shift optical system 25 has a large number of minute fly eye lenses 51 as shown in FIG. In this case, there is no need to block light as in the case of using a mask, so the light utilization efficiency can be increased.Furthermore, in the embodiment described above, in each light receiving element array 27, 28, the imaging optical system 21 However, the present invention is also effective even if one of the light-receiving element rows is configured to separate and receive the light flux from one part of the exit pupil. Furthermore, in the above-mentioned embodiment, the lateral shift image evaluation (
a Y and determined the moving direction of the imaging optical system 21 based on the shift id F based on its polarity, but the shift ff1d
It is also possible to detect the moving direction of the 8jj stem of the side-slip boat δ when calculating I-. Further, the present invention can be effectively applied not only to cases in which focus adjustment is performed automatically, but also to cases in which focus adjustment is performed manually.

この場合には、ずれ量dにあるいはこれに基く結像光学
系21の移動量およびぞの方向を、例えば移動方向を承
り矢印の大きさや長さに表わして表示することができる
In this case, the amount of movement and direction of the imaging optical system 21 based on or based on the amount of deviation d can be displayed, for example, by representing the size and length of an arrow corresponding to the direction of movement.

1−述したように本発明によれば、結像光学系の予定用
事1fiiまたはそれと光学的に共役な面の前後にそれ
ぞれ配置した受光素子列の一方に結像光学系の射出瞳の
2つの部分の光束を分離して入射させ、他方には少く共
一方の部分の光束を分11[I L。
1- As described above, according to the present invention, two of the exit pupils of the imaging optical system are arranged on one side of the light-receiving element rows arranged before and after the scheduled function 1fii of the imaging optical system or a surface optically conjugate thereto. The luminous flux of one part is separated and incident on the other part, and a small amount of the luminous flux of one part is incident on the other part.

て入射さぼることにより、これら受光素1列の出力に基
い(結像光学系のトノンバおよび予定焦平面にお(Jる
−に記2つの部分の光束にJ、る像の横ずれ吊δを求め
、これら[−ナンバど横−リ゛れaδどに基いて結像光
学系のピント位置と予定焦平面とのずれ量d「を求める
ようにしたから、合焦調整を迅速に行なうことができる
Based on the output of one row of these photodetectors, we can calculate the lateral shift angle δ of the image (at the focal plane of the imaging optical system and at the predetermined focal plane). Since the amount of deviation d between the focus position of the imaging optical system and the expected focal plane is determined based on these [-number, lateral, deviation aδ, etc.], focus adjustment can be performed quickly. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aおよび[3はぼけ像検出方法を説明するだめの
線図、 第2図A〜Gは横ずれ像検出方法を説明づるlcめの線
図、 第3図は本発明を実施する焦点検出装置の光学系の一例
の構成を示す線図、 第4図A〜Dは受光素子列d3よぴ横ずれ光学系の−例
の構成と、受光素子への大川光の角度依存性を丞す線図
、 第5図Δ〜1〕は合焦状態にお()る2つの受光素子列
間での横ずれ像の強度分布と、予定焦平面上Cの像強度
分布とを比較して示4線図、第6図へおよびBは前ビン
および後ピン状態にJ3けるピント位置、予定焦平面に
お番プる横ずれ吊δ13 J:び受光素子ケj間での横
ずれ量δ′との関係を示す線図、 第7図Δ〜Cは合焦、前ビンおよび後ピン状態における
射出瞳の2つの部分の光束による受光素子列間Cの横ず
れ吊と、予定焦平面上での横ずれ岱どの関係を示す線図
、 第8図△J3よび13は横ずれ像評価側曲線およびぼけ
像評価側曲線の一例を示す線図、 第9図は信号処理回路の一例の構成を示づブト1ツ9図
、 第10図はその動作を説明J゛るためのフロープレー1
・、 第11図は受光素子列の他の例の構成を示J ’P面図
、 第12図は横ずれ光学系の他の例の構成を示す平面図で
ある。 21・・・結像光学系   22・・・予定焦平面23
・・・ハーフミラ−24・・・ビームスプリッタ25・
・・横ずれ光学系  26・・・基板27.28・・・
受光素子列 29.30・・・等両受光面31・・・マ
スク     41・・・駆動回路42・・・増幅器 
    43・・・A/D変換器44・・・記憶回路 
   45・・・演算・判定回路46・・・モータ駆動
回路 47・・・[−タ48・・・表示回路    4
9・・・制御回路51・・・フライアイレンズ 第1国 ^ ピント外戚マ   al 第2図 笥:3図 第4図 第4図 CD 砲5図 八 〇〇       〇 匍6図 第7図 A 第7図 第11図 第12図 手続補正書: 昭和58年]1月 、14日 1、事件の表示 昭和58年 特  if1願第195 il 3号2、
発明の名称 焦点検出方法 3、補正を4“る者 ゛11件−の関係 特許出願人 (o87)、iリンバス光学−L業性式会rI、(1)
明細書第8頁第1行[1「できても、撮影レンズ1」を
「できても、レンズ交換等にJ、り撮影レンズ1の)゛
ナンバが釣化する場合には、その撮影レンズ1」にJJ
正し、 同CI第4・行[JrかでJ腎ないため、」を1ができ
ない場合が生じるため、」に訂正する。 (2)同第11頁第1行目〜2行[1「紙面に垂直な面
一−−−一および下田11部分」を「紙面に平行な面を
境とする手前側およびその他の部分」に訂正する。 (3)同第12自第19行目[垂直、な血を境とする上
側」を1平行な而を境とする手1)1j側」にdr正1
−る。 (4)同第13μ第3行目〜4行[1「紙面に垂直な一
一一一下側の部分」を「紙面に平行な面を境とする向こ
う側の部分」に訂正す2・。 (5)図面第5図Gに、たて軸、よこ輔を入れて別紙の
とおりにマ丁圧する。 代理人弁理士   杉  村  暁  秀外1名 第5図 (訂正図) 91汀僅1
Figures 1A and [3 are diagrams for explaining the method of detecting a blurred image, Figures 2A to G are diagrams for explaining the method of detecting a lateral shift image, and Figure 3 is a focal point for implementing the present invention. Diagrams showing the configuration of an example of the optical system of the detection device, FIGS. 4A to 4D show the configuration of an example of the horizontal shift optical system from the light-receiving element array d3, and the angular dependence of light of Okawa on the light-receiving element. The diagram, Fig. 5 Δ~1] shows a comparison of the intensity distribution of the lateral shift image between the two light receiving element arrays in the focused state () and the image intensity distribution on the predetermined focal plane C. 6 and B are the relationship between the focus position at J3 in the front focus and rear focus states, the lateral shift angle δ13 J: and the lateral shift amount δ' between the light-receiving element case j Figure 7 Δ~C shows the lateral shift and suspension of the light receiving element rows C between the light receiving element rows due to the light flux of the two parts of the exit pupil in the in-focus, front-focus and rear-focus states, and the lateral shift on the planned focal plane. Diagrams showing the relationship; FIG. 8 △J3 and 13 are diagrams showing an example of the horizontal shift image evaluation side curve and the blurred image evaluation side curve; FIG. 9 is a diagram showing the configuration of an example of the signal processing circuit. Figure 10 is a flow play 1 for explaining the operation.
・, FIG. 11 is a J'P plane view showing the configuration of another example of the light-receiving element array, and FIG. 12 is a plan view showing the configuration of another example of the lateral shift optical system. 21... Imaging optical system 22... Predetermined focal plane 23
...Half mirror 24...Beam splitter 25.
... Lateral shift optical system 26... Substrate 27.28...
Light-receiving element array 29.30...Both light-receiving surfaces 31...Mask 41...Drive circuit 42...Amplifier
43...A/D converter 44...memory circuit
45... Arithmetic/judgment circuit 46... Motor drive circuit 47... [-ta 48... Display circuit 4
9...Control circuit 51...Fly eye lens 1st country ^ Focus external relative Ma al Fig. 2: Fig. 3 Fig. 4 Fig. 4 CD Gun Fig. 5 800〇 6 Fig. 7 A Fig. Figure 7 Figure 11 Figure 12 Procedural amendment: January 14, 1981 1, Indication of the case 1988 Special if 1 Application No. 195 IL 3 No. 2,
Name of the invention Focus detection method 3, correction 4" Relationship between 11 cases - Patent applicant (O87), i-Linbus Optics - L business association rI, (1)
Page 8 of the specification, line 1 [1 ``Even if it is possible, taking lens 1'' is replaced with ``J, even if it is possible, due to lens replacement, etc.'' If the number of taking lens 1 is changed, the taking lens 1” to JJ
Correct, in line 4 of the same CI, ``Because I don't have a Jr. (2) Lines 1 to 2 of page 11 [1: ``Front surface perpendicular to the page and the Shimoda 11 portion'' is changed to ``the front side and other portions bordering on the plane parallel to the page'' Correct. (3) Line 19 of the 12th autograph [vertical, the upper side bordering on the blood] is 1) parallel to the hand 1) on the 1j side”, dr is correct 1
-ru. (4) No. 13 μ, lines 3 to 4 [1: Correct ``the part below 1111 perpendicular to the page'' to ``the part on the other side bordering on the plane parallel to the page'' 2. . (5) Insert the vertical and horizontal shafts as shown in Figure 5G of the drawing, and press the shaft as shown in the attached sheet. Representative Patent Attorney Akatsuki Sugimura Hidegai 1 Figure 5 (Corrected Figure) 91 Only 1

Claims (1)

【特許請求の範囲】 1 結像光学系の1″一定用事面またはぞれと光学的に
共役な面の前後にで1′1イ゛れ受光素1列を配量しC
1一方の受光素子列には結像先学系のul出瞳の2つの
部分の光束を分離しC入QJさぜ、他力の受光素子列に
は前記Q=J出瞳の2つの部分のうJ3の少なく共一方
の部分の光束を分離しC入用させ、これら受)1′、素
子η11の出力に基い(前記予定焦平面における前記用
出瞳の2つの部分の光束にJこる像の横ti’ t’を
吊δ、13よひ同一部分の光束による像の受光素r列間
C゛の横ずれ吊δ′をてれぞれ検出しく、横1゛れ吊δ
′に基いC結像光学系の「)−ンバを演算すると共に、
このFナンバと横ずれ吊δとに基い(結ffQ光学系の
ピン1へ位置とm記子定焦平面どのずれ量dFを演算す
ることを特徴と4る焦点検出方法。 2、前記(れそ゛れの受光素子列の出力に基いて、前記
予定焦平面におtJる倣の鮮鋭度または横ずれを検出し
、この鮮鋭度または横ずれに阜い−C前記予定焦平面に
対するイ^像光学系の俵終的な合焦状態を検出(ること
を特徴とする特許請求の範囲第1項記載の焦点検出ブj
法、7
[Scope of Claims] 1. One row of light receiving elements arranged 1'1" in front and behind a 1" constant working surface of the imaging optical system or a surface optically conjugate to each of them;
1 One light-receiving element array separates the light flux of two parts of the UL exit pupil of the imaging system, and the light flux of the C input QJ is separated, and the other light-receiving element array has two parts of the Q=J exit pupil. The luminous fluxes of the two parts of the exit pupil in the predetermined focal plane are separated into two parts of the exit pupil in the predetermined focal plane (J), and based on the output of the element η11, The lateral deviation ti't' of the resulting image is determined by δ, and the lateral deviation δ' between the r arrays of light-receiving elements of the image due to the light beam of the same portion is detected, respectively, and the lateral deviation 1' is δ.
′, calculate the ``)-value'' of the C imaging optical system based on ′, and
Based on this F number and the lateral deviation δ, the focus detection method is characterized in that the position of the pin 1 of the optical system and the amount of deviation dF of the m-key focusing plane are calculated. 2. Based on the output of each light-receiving element array, the sharpness or lateral deviation of the image relative to the predetermined focal plane is detected, and depending on this sharpness or lateral deviation, the image optical system relative to the predetermined focal plane is detected. The focus detection block according to claim 1, characterized in that it detects the final in-focus state of the bale.
law, 7
JP1959383A 1983-02-10 1983-02-10 Focusing detecting method Pending JPS59146010A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1959383A JPS59146010A (en) 1983-02-10 1983-02-10 Focusing detecting method
US06/578,228 US4626674A (en) 1983-02-10 1984-02-08 Focus detecting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1959383A JPS59146010A (en) 1983-02-10 1983-02-10 Focusing detecting method

Publications (1)

Publication Number Publication Date
JPS59146010A true JPS59146010A (en) 1984-08-21

Family

ID=12003537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1959383A Pending JPS59146010A (en) 1983-02-10 1983-02-10 Focusing detecting method

Country Status (1)

Country Link
JP (1) JPS59146010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121819A (en) * 2003-10-15 2005-05-12 Canon Inc Imaging apparatus and focus control method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121819A (en) * 2003-10-15 2005-05-12 Canon Inc Imaging apparatus and focus control method therefor
US7852398B2 (en) 2003-10-15 2010-12-14 Canon Kabushiki Kaisha Image-taking apparatus

Similar Documents

Publication Publication Date Title
US8749657B2 (en) Image-capturing device and image processing method
US7692128B2 (en) Focus control method for an optical apparatus which inspects a photo-mask or the like
JPH01216306A (en) Focus detecting device having image pickup means
US4670645A (en) Focus detecting device with shading reduction optical filter
JPS63118112A (en) Focus detector
JP2643326B2 (en) Single-lens reflex camera with focus detection device
US4491402A (en) Method of focus detection
US4878078A (en) Focus detecting device and method of making same
JPS59146010A (en) Focusing detecting method
JPS5926708A (en) Focusing method of zoom lens
US4697905A (en) Photographic apparatus
US4829332A (en) Focus detecting optical system
US4593188A (en) Apparatus and method for detecting focus condition of an imaging optical system
JPS6113566B2 (en)
JP2600823B2 (en) Focus detection device
JPH0145882B2 (en)
JPS59146009A (en) Focusing detecting method
JPS58156909A (en) Detector for focusing state
JP3703153B2 (en) Focus detection device
JP2740749B2 (en) Auto focus device
JPS6255641B2 (en)
JP2936635B2 (en) Focus adjustment imaging method
JP3599671B2 (en) Lens system assembling method and lens system assembling apparatus
JPH01243009A (en) Focus detecting device
JPS63280207A (en) Focus detector