JPS59145778A - Photochemical vapor deposition device - Google Patents

Photochemical vapor deposition device

Info

Publication number
JPS59145778A
JPS59145778A JP1877883A JP1877883A JPS59145778A JP S59145778 A JPS59145778 A JP S59145778A JP 1877883 A JP1877883 A JP 1877883A JP 1877883 A JP1877883 A JP 1877883A JP S59145778 A JPS59145778 A JP S59145778A
Authority
JP
Japan
Prior art keywords
substrate
space
discharge
plasma
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1877883A
Other languages
Japanese (ja)
Other versions
JPS6150152B2 (en
Inventor
Kazuya Tanaka
一也 田中
Shinji Sugioka
晋次 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP1877883A priority Critical patent/JPS59145778A/en
Priority to US06/566,790 priority patent/US4525381A/en
Publication of JPS59145778A publication Critical patent/JPS59145778A/en
Publication of JPS6150152B2 publication Critical patent/JPS6150152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable input of large electric power and to prevent diffusion of plasma with simple constitution in a titled device of a built-in discharge type by providing plural pieces of cathodes in a circumferential shape on the side of an electric discharge space near the substrate and an anode at the center on the side furnace from the substrate. CONSTITUTION:A vessel 1 is of an approximately cylindrical shape and a photoreactive gas is supplied therein through holes 11 and is dischaged through a hole 12. A substrate 4 is supported in a support 13 contg. a heater in the top part and a reaction space 5 is formed under the same. The part beneath said space is an electric discharge space 3. A large anode 6 of a semispherical shape is disposed at the center on the base of the vessel 1 and many cathodes 7 are circumferentially disposed on the side wall of the vessel 1 corresponding to the boundary of the spaces 3, 5. When a voltage is impressed between the electrodes 6 and 7, plasma discharge is caused in a circular conical shape in a perpendicular direction and the substrate 4 is irradiated with the generated UV eight. For example, amorphous Si is thus deposited by evaporation on the substrate 4.

Description

【発明の詳細な説明】 本発明は光化学反応生成物を基板上に蒸漕させる装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for vaporizing photochemical reaction products onto a substrate.

最近、電子複写機の感光ドラムや太陽SL池などに使用
されるアモルファスンリコンの蒸着膜の形成方法が研究
されている。1だ、他方で一各mσ′・絶縁膜や保FI
ti!膜の形成にも蒸着方法が利用1ね、用途によって
は種々の蒸着方法が提案てれているが、このなかで4光
化学反応を利用した光化学蒸着装置は被膜形成速度が著
L〈早く、大面積部分にも均一な被膜を形成できるなど
の利点を有L1最近特に注目を集めている。
Recently, research has been conducted on a method of forming a deposited film of amorphous silicon used in photosensitive drums of electronic copying machines, solar SL ponds, and the like. 1, and on the other hand, each mσ', insulating film and FI
Ti! Vapor deposition methods are also used to form films1. Various vapor deposition methods have been proposed depending on the application, but among these, photochemical vapor deposition equipment that uses four photochemical reactions has a remarkable film formation speed. L1 has recently attracted particular attention because it has the advantage of being able to form a uniform coating over a wide area.

従来の光化学反応を利用した化学蒸着方法は、紫外猫を
よく透過する容器内に基板を配置し、光反応用ガスを流
すとともに、容器外力)ら、紫外線ラングで旨該ガスを
光化学反応せしめ、その反応生成物を基板に蒸着せしめ
るものであって、前記の大きな利点を有するが、反面、
反応生成物が容器の内壁にも蒸着してLlい、紫外線の
透過を大きく阻害する欠点かあることが分った。
In the conventional chemical vapor deposition method using a photochemical reaction, a substrate is placed in a container that is highly transparent to ultraviolet light, a photoreaction gas is passed through the container, and the gas is caused to undergo a photochemical reaction using an ultraviolet ray (forced from outside the container). The reaction product is vapor-deposited on the substrate, and has the above-mentioned great advantages, but on the other hand,
It was found that the reaction product was also deposited on the inner wall of the container, causing a problem in that it significantly inhibited the transmission of ultraviolet rays.

そこで、光度応性ガスの通路であり、かつ基板が配置さ
れる反応空間と、この光反応性ガスに光化学反応を生起
せしめる紫外線全グラズマ放電により発生させる放電空
間とを同一容器で取り囲み、プラズマと基板との間に隔
壁金膜けない、いわゆる放′眠内蔵型光化学蒸着装置が
研究開発をハ2ている。
Therefore, the reaction space, which is a path for the photoreactive gas and where the substrate is placed, and the discharge space, which is generated by ultraviolet total glasma discharge that causes a photochemical reaction in this photoreactive gas, are surrounded by the same container, and the plasma and substrate are placed in the same container. We are currently researching and developing a photochemical vapor deposition system with a built-in so-called "deactivation" method, which does not require a gold film on the partition wall.

ところで蒸着膜の形成速度は紫外線量が多いほど速くな
り、そして発生する紫外線量は電極への入力電力に比例
する。従って蒸着j漠の形成速度向上の要N?、 71
1−ら[極への入力電力が大きくさ引るが、したし陰極
の電流密度が大きくなると陰極が横傷を受け、著しく劣
化する問題点があり、入力知力を大さくすることには限
界力・あった。
Incidentally, the rate of formation of a deposited film increases as the amount of ultraviolet rays increases, and the amount of ultraviolet rays generated is proportional to the power input to the electrodes. Therefore, what is the key to increasing the formation rate of vapor deposition? , 71
1- et al [The input power to the pole is greatly reduced, but if the current density of the cathode increases, the cathode suffers lateral damage and deteriorates significantly, so there is a limit to increasing the input power. There was power.

そして、この放電内蔵型ブC化学蒸着装置は基板を底部
に配置し、放電用電極を放電空間に同けて水平方向に配
役L1 プラズマを水平力向に発生させていた。Lカ・
L電極間で放を烙するプラズマは王として放電方向に対
して直角方向に拡散し1この拡散したプラズマが下方に
配置芒れた基板の蒸着膜に損傷を与える恐わがあり、こ
れを防止するためにはプラズマ中のイオンや電子の平均
自由行租工り遠い位置に基板を置く必要がある。そして
一方では、基板に照射でれる紫外線強度を大きくして効
寓を上げるために基板をできるだけ光源部に近づけなけ
ればならない。従ってイオンや電子の平均自由行程エリ
遠い位置に基板を騰いたのでは効率が低下し、十分な蒸
着膜形成速度を得ることができない不具合があった。
In this discharge built-in type chemical vapor deposition apparatus, the substrate was disposed at the bottom, and the discharge electrode was aligned in the discharge space to generate L1 plasma in the horizontal force direction. Lka・
The plasma emitted between the L electrodes is diffused in a direction perpendicular to the direction of discharge, and there is a risk that this diffused plasma may damage the deposited film on the substrate placed below, so this should be prevented. In order to achieve this, it is necessary to place the substrate at a position far away from the mean free movement of ions and electrons in the plasma. On the other hand, the substrate must be placed as close to the light source as possible in order to increase the intensity of the ultraviolet rays irradiated onto the substrate and increase its effectiveness. Therefore, if the substrate is moved to a position far from the mean free path of ions or electrons, the efficiency decreases and there is a problem that a sufficient deposition film formation rate cannot be obtained.

そこで本発明はこれらの春情に力為んがみてなされたも
のであり、簡単な構成で大電力を入力すること全可能と
し、かつプラズマの基板力量への拡散を防止して基板を
光源部に接近させることを可能として効率よく蒸着膜を
形成できる放′tIL内蔵型の元化学蒸層装置Ivを提
供することを目的とする。
Therefore, the present invention has been made in consideration of these spring sentiments, and has made it possible to input a large amount of power with a simple configuration, and also prevents the diffusion of plasma to the substrate, allowing the substrate to be used as a light source. It is an object of the present invention to provide a former chemical vapor deposition device Iv with a built-in photoluminescent layer that can efficiently form a deposited film by allowing close contact.

そしてその構成は、被処理である基板が配置される反応
空間と、光反応性ガスに光化学反応を生起せしめる紫外
線をプラズマ放電にエリ発生させる放電空間とを同一容
器で取り囲み、放′観を間の基板に近い側の容器側壁に
複数個の陰極を円周状に、基板に遠い(il+の放電空
間の中心に陽極をそ力ぞ名配設し、円錐状にプラズマ放
電させることを特徴とする。
The structure is such that the reaction space in which the substrate to be processed is placed and the discharge space in which the plasma discharge generates ultraviolet rays that cause a photochemical reaction in the photoreactive gas are surrounded by the same container, and the radiation observation is interrupted. A plurality of cathodes are disposed circumferentially on the side wall of the container near the substrate, and an anode is disposed in the center of the discharge space far from the substrate (IL+), producing a conical plasma discharge. do.

以下に図面に示す実施例により本発明を具体的に説明す
る。
The present invention will be specifically explained below using examples shown in the drawings.

容器1は略円筒状であ會′〕、側壁下一方には放電用ガ
スと光反応性ガスが供給される供給孔11か、上あの側
壁にはこれらのガスが排出はね、る祠゛出孔12が設け
られ、頂部にはヒーター′?:内肘した試別支持具13
が配設嘔れている。そして図示略C)開閉口より出し入
ねされる被処理l物である基$24が試料支持具13圭
に支持されるがこの下部の空間が反応空間5を構成して
いる。この反応空1015の下方がプラズマ放電か行れ
る放電空間3であり、内空1u33 、5の間にはh英
ガラスなどの隔壁は設けられていない。そして容器1の
底面中央には半球状の大きな陽極6が配設され、雨空曲
3.5の坊界に相当する容器1の側壁にけに・数の陰棲
7カ・円周状に配設埒ねでいる。こ力らの陰4N7Hタ
ングステンaf密にコイル状に巻回したものを再度粗く
コイル状に巻回【−たものであり、電子放射を良好にす
るためにペースト状のアルカリ土類金属酸化物が塗布感
ねでいる。
The container 1 is approximately cylindrical in shape, and the lower side wall has a supply hole 11 through which discharge gas and photoreactive gas are supplied, and the upper side wall has a hole through which these gases are discharged. An outlet hole 12 is provided, and a heater'? : Inner elbow trial support 13
The arrangement is disgusting. C) (not shown) A substrate 24, which is an object to be processed that is taken in and taken out from the opening, is supported by the sample support 13, and the space below this constitutes the reaction space 5. Below this reaction space 1015 is a discharge space 3 in which plasma discharge is performed, and no partition wall made of glass or the like is provided between the inner spaces 1u33 and 5. A large hemispherical anode 6 is arranged in the center of the bottom of the container 1, and is arranged in a circumferential manner on the side wall of the container 1, which corresponds to the bokai of Ukuukoku 3.5. It is set up. This is a 4N7H tungsten af that has been tightly wound into a coil and then re-wound into a coarse coil, and a paste of alkaline earth metal oxide is added to improve electron emission. It feels like it's applied.

而して両W、ff16.7間に電圧を印加すると手直方
向に円錐状にプラズマ放電か行ね、発生した紫外線は上
方の基板4に照射されるが、この装置を用いた蒸着例を
示すと、反応空間5に流1す光イヒ学反応ガスの構成は
、キャリアーガスとしてアルゴン5 mnHg、光増感
剤として73\@ 3x 10 tank−kg、分解
蒸着用ガスとして四水素化辻素0 、3 mm’Hgの
混合ガス力・ら成り、放電用ガスとして8宵冨進のアル
ボ7、!l:2X10闘1(gの水銀の混合ガスを供給
する。
When a voltage is applied between both W and ff16.7, plasma discharge occurs in a conical shape in the vertical direction, and the generated ultraviolet rays are irradiated onto the substrate 4 above. As shown, the composition of the photochemical reaction gas flowing into the reaction space 5 is 5 mnHg of argon as a carrier gas, 73 @ 3 x 10 tank-kg as a photosensitizer, and carbon tetrahydride as a gas for decomposition deposition. Consists of a mixed gas force of 0.0,3 mm'Hg, and is used as the discharge gas by Tomi Shin's Arbo 7,! l: 2x10g of mercury mixture gas is supplied.

基板4は約150℃に加熱されたアルミナ板であり、電
圧100v寛流16Aで放を空間3に放電させるとアル
ゴンと水銀の放ilLη為らC)紫外縁で四水素化9m
が光分解し、アモルファスの珪素が基板4上に蒸着はわ
Z・。
The substrate 4 is an alumina plate heated to about 150°C, and when it is discharged into the space 3 at a voltage of 100V and a current of 16A, argon and mercury are released.
photodecomposes, and amorphous silicon is deposited on the substrate 4.

7!:お、他の実施例として放電空間3を上方にし、基
板4を下方に配置してもよい。
7! : As another embodiment, the discharge space 3 may be placed above and the substrate 4 may be placed below.

ここで貫要なことは多数の1奪極7が同一円周状に配役
されてプラズマ放電が垂直方向に円錐状で行ねることで
ある。従って大電力を入力はせても陰偽7が多数個η為
ら成っているため1憔極7の市−流9M度が過大になら
ず、損4%を受けることがないので大葉の紫外線を発生
させることができる。そしてプラズマは放電方向に対し
て直角方向、卸ち水平方向に拡散するが、基板4か配+
taわでいる上方にはほとんど拡散せず、基板4を放電
空間3に近接プせてもプラズマのイオンや電子によって
蒸着膜が損傷されることがない。ぼた、陰@A’tが円
周状となっているので紫外)糊はその円周P9をガリ過
し、陰極7により妨げられることがない。次に、紫外線
の発生tはプラズマの厚さが大きいほど大ために、基板
4が配置さhている上方力・ら坪、ると両電極6,7間
距離がプラズマの厚さとなり、従来の水平方向に放電す
るものに比べてプラズマが厚く、このため下方に向けて
照射される紫外Mll)が多くなる。従って、大電力を
入力することが可能であり、かつ基板4を放電空間3に
近接して配置することが可能であるので大葉の紫外線が
基板4に有効に照射で台、蒸着膜形成速度を著しく大き
くすることができる。
What is essential here is that a large number of single poles 7 are arranged in the same circumference so that plasma discharge can be performed vertically in a conical shape. Therefore, even if a large amount of power is input, since the negative 7 is made up of a large number of η, the current 9M degree of the 1st electrode 7 will not become excessive, and the loss of 4% will not occur, so the ultraviolet rays of the large leaf can be generated. The plasma then diffuses in the direction perpendicular to the discharge direction and in the horizontal direction.
There is almost no diffusion in the taut upper part, and even if the substrate 4 is brought close to the discharge space 3, the deposited film will not be damaged by plasma ions or electrons. Since the shade and the shade @A't are circumferential, the ultraviolet (ultraviolet) glue passes through the circumference P9 and is not obstructed by the cathode 7. Next, the generation of ultraviolet rays t increases as the plasma thickness increases. The plasma is thicker than that discharged in the horizontal direction, and therefore more ultraviolet light (Mll) is irradiated downward. Therefore, it is possible to input a large amount of power, and it is also possible to arrange the substrate 4 close to the discharge space 3, so that the substrate 4 can be effectively irradiated with ultraviolet rays of large leaves, thereby increasing the deposition film formation rate. Can be made significantly larger.

以上四明したように、本発明は放電空間の基板に近い1
−リの容器側壁KW数個の陰極を1周状に、基板に遠い
側の放電空間の中心に陽極をそれぞれ配設したので、簡
qLな構成で大電力を入力することが可能とjす、かつ
プラズマの基板方向への拡散を防止L″′C基板全基板
全光接部させることが可能となるので、動量よ〈蒸着膜
を形成できる放電内蔵型の光化学蒸眉装置を提供するこ
とができる6、
As explained above, the present invention provides a discharge space near the substrate.
-Since several cathodes are arranged around the side wall of the container and an anode is arranged in the center of the discharge space on the side far from the substrate, it is possible to input a large amount of power with a simple qL configuration. To provide a photochemical evaporation device with a built-in discharge that can form a deposited film with less movement, since it is possible to prevent the diffusion of plasma toward the substrate, and to make it possible to bring all the substrates into light contact with each other. 6.

【図面の簡単な説明】[Brief explanation of the drawing]

筆1図(社)本発明@雄側の縦断面図、第2図は同じく
横断面図T″ある。 1・・・容器 3・・・放電空間 4・・・基板5・・
・反応空間 6・・・陽砂 7・・・陰極出願人 ラン
第1i機株式会仕 代理人 弁理士 田庁、寅之助 第1図 手続補正書(自発) 昭和58年6月3日 特許庁長官 若杉和夫殿 1、事件の表示 昭和513年 特許 願第 18778号2、発明の名
称  光化学蒸着装置 3、 補正をする者 事件との関係 特許出願人 氏 名(名称)ククオ電機株式会社 代表者 湯 不 大 蔵 4、代理人 6 補正により増加する発明の数7kL8 補正の内容 別紙の遍9 明M II第6頁17?’T目17)r[E100V1
1f流16AJ?「電圧60V電流20A」に訂正する
。 以上
Figure 1 is a vertical cross-sectional view of the male side of the present invention, and Figure 2 is also a cross-sectional view T″. 1... Container 3... Discharge space 4... Substrate 5...
・Reaction space 6... Positive sand 7... Cathode applicant Run 1i stock agent Patent attorney Den Cho, Toranosuke Diagram 1 procedural amendment (voluntary) June 3, 1980 Commissioner of the Patent Office Mr. Kazuo Wakasugi 1, Indication of the case 1978 Patent Application No. 18778 2, Title of the invention Photochemical vapor deposition device 3, Relationship to the case by the person making the amendment Patent applicant Name (Name) Representative of Kukuo Electric Co., Ltd. Yu Fu Treasury 4, Agent 6 Number of inventions increased by amendment 7kL8 Contents of amendment Annex 9 Mei M II page 6 17? 'T eye 17) r[E100V1
1f style 16AJ? Corrected to "Voltage 60V Current 20A". that's all

Claims (1)

【特許請求の範囲】[Claims] 被処理物である基板か配置される反応空間と、光反応性
ガスに光化学反応を生起せしめる紫外線をプラズマ放電
により発生はせる放電空間とを同−容器でJ$329囲
み、放電空間の基板に近い側の容器イρi壁に俤数個の
陰極を内周状に、基板に遠い側の放電空間の中心に陽極
をそわぞれ配設り1日錐状にグ2ズマ放電甥せることを
特徴とする光化学蒸沸装置。
A reaction space where the substrate to be processed is placed and a discharge space where ultraviolet rays that cause a photochemical reaction in a photoreactive gas are generated by plasma discharge are enclosed in the same container for J$ 329, and the substrate in the discharge space is surrounded by the same container. Several cathodes are placed on the inner wall of the container on the near side, and an anode is placed on the substrate at the center of the discharge space on the far side. Features of photochemical vaporization equipment.
JP1877883A 1983-02-09 1983-02-09 Photochemical vapor deposition device Granted JPS59145778A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1877883A JPS59145778A (en) 1983-02-09 1983-02-09 Photochemical vapor deposition device
US06/566,790 US4525381A (en) 1983-02-09 1983-12-29 Photochemical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877883A JPS59145778A (en) 1983-02-09 1983-02-09 Photochemical vapor deposition device

Publications (2)

Publication Number Publication Date
JPS59145778A true JPS59145778A (en) 1984-08-21
JPS6150152B2 JPS6150152B2 (en) 1986-11-01

Family

ID=11981088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877883A Granted JPS59145778A (en) 1983-02-09 1983-02-09 Photochemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPS59145778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156279A (en) * 1984-08-25 1986-03-20 Yasuo Tarui Film forming method
JPS6156281A (en) * 1984-08-25 1986-03-20 Yasuo Tarui Film forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159016A (en) * 1981-03-26 1982-10-01 Sumitomo Electric Ind Ltd Manufacture of amorphous silicon film
JPS58176923A (en) * 1982-04-09 1983-10-17 Jeol Ltd Plasma cvd apparatus
JPS59126500A (en) * 1982-11-16 1984-07-21 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Detergent composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159016A (en) * 1981-03-26 1982-10-01 Sumitomo Electric Ind Ltd Manufacture of amorphous silicon film
JPS58176923A (en) * 1982-04-09 1983-10-17 Jeol Ltd Plasma cvd apparatus
JPS59126500A (en) * 1982-11-16 1984-07-21 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Detergent composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156279A (en) * 1984-08-25 1986-03-20 Yasuo Tarui Film forming method
JPS6156281A (en) * 1984-08-25 1986-03-20 Yasuo Tarui Film forming method
JPH0563551B2 (en) * 1984-08-25 1993-09-10 Yasuo Tarui

Also Published As

Publication number Publication date
JPS6150152B2 (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US4525382A (en) Photochemical vapor deposition apparatus
JP3318336B2 (en) METHOD AND APPARATUS FOR TREATING ARTICLES BY REACTION SUPPORTING DC ARC DISCHARGE
US4525381A (en) Photochemical vapor deposition apparatus
JPS61164219A (en) Apparatus for manufacturing thin-film transistor array
CA2206232A1 (en) Method and apparatus for depositing diamond film
US4500565A (en) Deposition process
JPS59145778A (en) Photochemical vapor deposition device
CN1358544A (en) Radiation medical inplantation article and making method thereof
KR100746869B1 (en) Method for preparation of diamond film
EP0029747A1 (en) An apparatus for vacuum deposition and a method for forming a thin film by the use thereof
JPS59145780A (en) Photochemical vapor deposition device
JPS6037118A (en) Plasma vapor phase reaction method
JPS59145779A (en) Photochemical vapor deposition device
JP3064407B2 (en) Light source for photo-excitation process equipment
JP3805618B2 (en) Method for producing diamond film
JPS60212224A (en) Photochemical reaction apparatus
JPS6150147B2 (en)
JPS6227575A (en) Formation of film
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JPS6016419A (en) Plasma cvd processing apparatus
JPS6185818A (en) Deposition film forming method
JPS61189625A (en) Formation of deposited film
JPS6156279A (en) Film forming method
JPS6156278A (en) Film forming method
JP3718315B2 (en) Ion beam irradiation equipment