JPS59145531A - Vapor-phase wafer processing device - Google Patents

Vapor-phase wafer processing device

Info

Publication number
JPS59145531A
JPS59145531A JP24197583A JP24197583A JPS59145531A JP S59145531 A JPS59145531 A JP S59145531A JP 24197583 A JP24197583 A JP 24197583A JP 24197583 A JP24197583 A JP 24197583A JP S59145531 A JPS59145531 A JP S59145531A
Authority
JP
Japan
Prior art keywords
wafer
electrodes
bell jar
susceptor
radially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24197583A
Other languages
Japanese (ja)
Inventor
Takeo Yoshimi
吉見 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24197583A priority Critical patent/JPS59145531A/en
Publication of JPS59145531A publication Critical patent/JPS59145531A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Abstract

PURPOSE:To contrive increase in processing capacity as well as to cut down the cost of processing by a method wherein a wafer is rotated in the state where it is placed in a radially standing position, and at least a pair of circular arc formed plasma generating electrodes are provided. CONSTITUTION:A wafer jig 19 consisting of doughnut-shaped disc is placed on a susceptor 15, a plurality of placing grooves 20 are radially provided on the upper surface of said wafer jig 19, and wafers 21 are placed in upright position with their circumference partially inserted in the placing groove 20. On the other hand, a bell jar cover 24 consisting of a cylindrical body 22 and a ceiling 23 is detachably installed on the upper part of a bell jar main body 11. On the ceiling 23 of the bell jar cover 24, electrodes 25 and 26 consisting of a pair of semicircular arc plates are attached. These electrodes 25 and 26 are extended along the outer side of the ring formed by the wafer to be radially placed on the wafer jig 19. Also, said electrodes 25 and 26 are connected to an RF oscillator 27.

Description

【発明の詳細な説明】 本発明はプラズマ被膜生成装置などの気相ウェハ処理装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase wafer processing apparatus such as a plasma coating production apparatus.

半導体装置等の製造工程の一つに、シリコン薄膜(ウェ
ハ)上にナイトライド被膜(窒化膜)を形成する工程が
あるが、このナイトライド被膜の形成技術として、従来
プラズマ被膜生成装置が使用されている。
One of the manufacturing processes for semiconductor devices, etc. is the process of forming a nitride film (nitride film) on a silicon thin film (wafer). Conventionally, plasma film generation equipment has been used as the technology for forming this nitride film. ing.

この従来のプラズマ被膜生成装置は、第4図に示すよう
に、ベルジャ本体1と、このベルジャ本体1上に着脱自
在に設けられるベルジャ器体2と、ベルジャ本体1およ
びベルジャ器体2とによって形成されるベルジャ内部の
反応空間3の下方に配設される電極を兼ねる平坦なサセ
プタ4と、このサセプタ4の中心部上面から反応ガスを
噴出させるガス供給管5と、サセプタ4の下面側に配設
されかつサセプタ4上の半導体薄板(ウエノ・)6を加
熱するヒータ7と、前記サセプタ4の上方にサセプタ4
と平行に配設される板状の電極8と、この電極8とサセ
プタ7どの間に高周波を加えるRF発振機9と、ベルジ
ャ本体1の下部に設ける排気口10とからなっている。
As shown in FIG. 4, this conventional plasma coating generation device is formed by a belljar body 1, a belljar body 2 detachably provided on the belljar body 1, and a belljar body 1 and a belljar body 2. A flat susceptor 4 that also serves as an electrode is disposed below the reaction space 3 inside the bell jar, a gas supply pipe 5 is disposed on the bottom side of the susceptor 4, and a gas supply pipe 5 is disposed on the bottom side of the susceptor 4. A heater 7 is installed to heat the semiconductor thin plate (Ueno) 6 on the susceptor 4, and
It consists of a plate-shaped electrode 8 disposed parallel to the belljar body 1, an RF oscillator 9 that applies high frequency waves between the electrode 8 and the susceptor 7, and an exhaust port 10 provided at the bottom of the belljar body 1.

そして、ウエノ・に被膜を形成する場合には、サセプタ
4上にウエノ・6を水平状態にして載置し、その後、反
応空間3を真空にするとともにヒータ7でウエノ・6を
加熱する。このような状態になると、RF発振機9によ
ってサセプタ4と電極8との間に高周波電流を加えてプ
ラズマを発生させる。また、同時にガス供給管5から反
応空間3内に反応ガスを供給して、ウェハ6の表面に被
膜を形成する。たとえば、ブイドライド被膜を形成する
場合には、供給ガスとしてモノシラン(S II−L 
)と窒素(N2)まブこはモノシランとアンモニア(N
H4)もしくはモノシラン、アンモニア、窒素等を供給
する。
When forming a film on Ueno, the Ueno 6 is placed horizontally on the susceptor 4, and then the reaction space 3 is evacuated and the Ueno 6 is heated by the heater 7. In this state, a high frequency current is applied between the susceptor 4 and the electrode 8 by the RF oscillator 9 to generate plasma. At the same time, a reaction gas is supplied from the gas supply pipe 5 into the reaction space 3 to form a film on the surface of the wafer 6. For example, when forming a void film, monosilane (S II-L
) and nitrogen (N2) and monosilane and ammonia (N2).
H4) or monosilane, ammonia, nitrogen, etc. are supplied.

し7かし、このような従来のプラズマ被膜生成装置では
、処理能力が極めて低い欠点がある。すなわち、サセプ
タ上に載置するウェハは水平状態に並べられることから
、たとえば、直径3インチのウェハでは1回に25枚し
か載置できない。
However, such conventional plasma coating production apparatuses have a drawback of extremely low throughput. That is, since the wafers placed on the susceptor are arranged horizontally, for example, only 25 wafers with a diameter of 3 inches can be placed at one time.

そこで、このサセプタ上にウェハを立てることによって
、処理能力の増大を図ることが考えられるが、このよう
にすると、ウエノ・各部の反応条件が不均一となるとと
もに、電極面における異物の付着や電極面の凹凸等の表
面状態の不均一の影響が出やすく、ウェハの被膜の厚さ
等が不均一となる。このため、従来はプラズマ被膜生成
装置にあっては、ウェハをサセプタ上に水平状態で載置
する構造しか採られていない。
Therefore, it may be possible to increase the processing capacity by standing the wafer on this susceptor, but this will not only make the reaction conditions of the wafer and each part non-uniform, but also cause foreign matter to adhere to the electrode surface. This is likely to be affected by non-uniform surface conditions such as surface irregularities, resulting in non-uniform coating thickness of the wafer. For this reason, conventional plasma film generation apparatuses have only adopted a structure in which the wafer is placed horizontally on a susceptor.

し1こがって、本発明の目的は気相ウェハ処理装置にお
ける処理能力の増大を図ることに゛ある。
Therefore, an object of the present invention is to increase the processing capacity of a vapor phase wafer processing apparatus.

このような目的を達成するために本発明の一実施例は、
ベルジャ内に配設されるサセプタはウェハを放射状に立
て1こ状態で回転するとともに、サセプタ上に環状に配
設されるウェハ群の環の外側に少なくとも1対の円弧状
のプラズマ発生用電極を配設してなるものであって、以
下実施例により本発明の詳細な説明する。
In order to achieve this purpose, one embodiment of the present invention is as follows:
The susceptor disposed in the bell jar rotates with the wafers radially erected, and at least one pair of arc-shaped plasma generation electrodes is provided on the outside of the ring of wafers arranged annularly on the susceptor. The present invention will be described in detail below with reference to Examples.

第1図は本発明のプラズマ被膜生成装置の一実施例を示
す。同図にはベルジャ本体11が示されている。このベ
ルジャ本体]1の下面には真空ポンプ12に繋がる排気
管13が設げられている。
FIG. 1 shows an embodiment of the plasma coating production apparatus of the present invention. The belljar main body 11 is shown in the figure. An exhaust pipe 13 connected to a vacuum pump 12 is provided on the bottom surface of the bell jar body 1.

また、ベルジャ本体11の中央には管状の回転軸14が
貫通状態で取り伺けられている。この回転軸14は図示
しないモータ等によって回転するようになっている。ま
た、回転軸14の上部には円板状のサセプタ15が取り
付けられている。また、このサセプタ15の中央には反
応ガス供給口16が設けられている。この反応ガス供給
口16は前記回転軸]4の管内の導孔17に連通ずると
ともに、この導孔17は反応ガスをコントロールして送
るガスコントローラ]8に連通している。ま1こ、サセ
プタ15上にはドーナツ状の円板からなるウェハ治具1
9が載置される。このウェハ治具19の上面には第2図
で示すように1.放射状に複数の載置溝20が設けられ
、ウェハ21はこの載置溝20に一周縁を挿入するよう
にして立てられる。
Further, a tubular rotating shaft 14 extends through the center of the bell jar main body 11. This rotating shaft 14 is rotated by a motor (not shown) or the like. Further, a disk-shaped susceptor 15 is attached to the upper part of the rotating shaft 14. Further, a reaction gas supply port 16 is provided at the center of the susceptor 15 . This reaction gas supply port 16 communicates with a conduit 17 in the pipe of the rotary shaft [4], and this conduit 17 communicates with a gas controller [8] which controls and sends the reactant gas. On top of the susceptor 15 is a wafer jig 1 made of a donut-shaped disk.
9 is placed. On the upper surface of this wafer jig 19, as shown in FIG. A plurality of mounting grooves 20 are provided radially, and the wafer 21 is stood up so that one peripheral edge thereof is inserted into the mounting grooves 20.

一方、ベルジャ本体]]の上部には円筒体22と天井2
3とからなるベルジャ箸休24が着脱自在に取り付けら
れている。そして、このベルジャ蓋体24の天井23に
は1対の半円弧状板からなる電極25.26が取り付け
られている。これら電極25.26はウェハ治具19上
に放射状に載置されるウェハが作り出す環の外側に沼っ
て延在している。また、これら電極25.26はRF発
振機27に接続されている。また、ベルジャ蓋体24の
円筒体22は石英等からなる透明体で作られ、円筒体2
2の外周にはウェハ21を加熱する加熱用ランプ28が
配設されている。
On the other hand, there is a cylindrical body 22 and a ceiling 2 at the top of the belljar body.
A bell jar chopstick rest 24 consisting of 3 is detachably attached. Electrodes 25 and 26 made of a pair of semicircular arc plates are attached to the ceiling 23 of the bell jar lid 24. These electrodes 25, 26 extend around the outside of the ring created by the wafer placed radially on the wafer jig 19. Further, these electrodes 25 and 26 are connected to an RF oscillator 27. Further, the cylindrical body 22 of the bell jar lid body 24 is made of a transparent material such as quartz.
A heating lamp 28 for heating the wafer 21 is disposed on the outer periphery of the wafer 2 .

つぎに、このようなプラズマ被膜生成装置の被膜生成に
ついて説明する。まず、ウェハ治具19の載置溝20に
ウェハ21を挿し込み、このウェハ治具19をサセプタ
15上に載置する。つぎに、ベルジャ蓋体24を閉じ1
こ後、ベルジャの反応空間29の空気を真空ポンプ12
によって抜き、反応空間29を一定の真空度に保ち続け
る。その後、サセプタ15を一定の速度で回転させる。
Next, film production by such a plasma film production apparatus will be explained. First, the wafer 21 is inserted into the mounting groove 20 of the wafer jig 19, and the wafer jig 19 is mounted on the susceptor 15. Next, close the belljar lid 24 and
After this, the air in the reaction space 29 of the bell jar is removed by the vacuum pump 12.
The reaction space 29 is kept at a constant degree of vacuum. Thereafter, the susceptor 15 is rotated at a constant speed.

また、加熱ランプ28を点燈(−てウェハ21を加熱す
るとともに、ガスコントローラ18眞よって反応空間2
9内ニタトえば、N2.NH3,SiH4等の反応ガス
を送り込む。また、同時にRF発振機27によって1対
の電極25.26に面周波電圧を印加して反応空間29
内にプラズマ状態を作り出し、ウェハ21の表面にナイ
トライド膜を形成する。
In addition, the heating lamp 28 is turned on to heat the wafer 21, and the gas controller 18 is turned on to heat the reaction space 21.
If it is within 9, N2. Reactive gases such as NH3 and SiH4 are fed. At the same time, a surface frequency voltage is applied to the pair of electrodes 25 and 26 by the RF oscillator 27, and the reaction space 29 is
A plasma state is created within the wafer 21, and a nitride film is formed on the surface of the wafer 21.

このような実施例によれば、1対の電極間をウェハ21
は一定速度で移動することから、均一なナイトライド膜
を得ることができる。また、この実施例ではウェハ21
をウェハ治具]9に放射状に載置することがら、1バツ
チ処理当たりの処理数が従来よりも多くなる。すなわち
、ベルジャの直径が従来の装置と同じである場合、従来
の装置でたとえば直径3インチのウェハを一度に25枚
収容できるのに対し、本発明によるこの実施例の装置で
は100〜150枚を一度に収容できる。
According to this embodiment, the wafer 21 is connected between the pair of electrodes.
Since it moves at a constant speed, a uniform nitride film can be obtained. Further, in this embodiment, the wafer 21
Since the wafers are placed radially on the wafer jig 9, the number of processes per batch becomes larger than in the past. That is, if the diameter of the bell jar is the same as that of the conventional apparatus, the conventional apparatus can accommodate, for example, 25 wafers with a diameter of 3 inches at a time, whereas the apparatus of this embodiment according to the present invention can accommodate 100 to 150 wafers at a time. Can be accommodated at once.

しかし、処理時間は従来装置に較べて若干長くなるが、
それにしても処理能力全体で言えば、従来の装置の処理
能力の約5倍程の処理能力となる。
However, although the processing time is slightly longer than that of conventional equipment,
Even so, the overall processing capacity is about five times that of conventional devices.

なお、本発明は前記実施例に限定されない。たとえば、
第3図に示すように、ウエノ・治具19に載置されたウ
エノ・21群によって作り出される環の内側にもプラズ
マ発生用の電極30.31を設けてもよい。また、本発
明の装置では被膜はナイトライドに限定されず、プラズ
マ処理により形成されるポリシリコン、5in2.PS
G(リンシリケートガラス)にも適用される。
Note that the present invention is not limited to the above embodiments. for example,
As shown in FIG. 3, electrodes 30 and 31 for plasma generation may also be provided inside the ring created by the Ueno 21 group placed on the Ueno jig 19. In addition, in the device of the present invention, the coating is not limited to nitride, but may be polysilicon formed by plasma treatment, 5in2. P.S.
This also applies to G (phosphosilicate glass).

以上のように、本発明の気相ウニ・・処理装置によれば
、被処理物の収容数を従来装置に較べて遥かに多くでき
ることから、処理能力の増大、処理コストの低減を図る
ことができる。
As described above, according to the gas phase sea urchin processing apparatus of the present invention, the number of objects to be processed can be accommodated much larger than that of conventional apparatuses, so it is possible to increase processing capacity and reduce processing costs. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるプラズマ被膜生成装置
の断面図、第2図は同じくウェハと電極との関係を示す
一部断面平面図、第3図は本発明の他の実施例によるウ
ェハと電極との関係を示す一部断面平面図、第4図は従
来のプラズマ被膜生成装置の断面図である。 1・・・ベルジャ本体、2・・ベルジャ蓋体、3・・・
反応空間、4・・・サセプタ、5・・・ガス供給管、6
・・・ウェハ、7・・・ヒータ、訃・・電極、9・・・
RF発振機、10・・・排気口、11・・・ベルジャ本
体、12・・真空ポンプ、13・・排気管、14・・・
回転軸、15・・・サセフリ、16・・・反応ガス供給
口、17・・導孔、18・・・ガス−コントローラ、1
9・・・ウェハ治具、2o・・・載置溝、21・・・ウ
ェハ、22・・・円筒体、23・・天井、24・・ベル
ジャ蓋体、25.26・・・電極、27・・RF発振機
、28・・・加熱ランプ、29・・反応空間、30.3
1・・電極。 第  1  図 第  3  図
FIG. 1 is a cross-sectional view of a plasma film generating apparatus according to an embodiment of the present invention, FIG. 2 is a partially cross-sectional plan view showing the relationship between a wafer and an electrode, and FIG. 3 is a cross-sectional view of a plasma film generating apparatus according to another embodiment of the present invention. FIG. 4 is a partial cross-sectional plan view showing the relationship between the wafer and the electrode, and FIG. 4 is a cross-sectional view of a conventional plasma film production apparatus. 1...Belljar body, 2...Belljar lid body, 3...
Reaction space, 4... Susceptor, 5... Gas supply pipe, 6
... Wafer, 7... Heater, Death... Electrode, 9...
RF oscillator, 10...Exhaust port, 11...Belljar body, 12...Vacuum pump, 13...Exhaust pipe, 14...
Rotating shaft, 15...Saseli, 16...Reaction gas supply port, 17...Guiding hole, 18...Gas controller, 1
9... Wafer jig, 2o... Mounting groove, 21... Wafer, 22... Cylindrical body, 23... Ceiling, 24... Belljar lid body, 25. 26... Electrode, 27 ...RF oscillator, 28...Heating lamp, 29...Reaction space, 30.3
1. Electrode. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、複数の被処理ウェハを放射状に立てた状態で処理を
施すことを特徴とする気相ウエノ・処理装置。
1. A vapor phase wafer processing apparatus characterized in that a plurality of wafers to be processed are processed in a radially standing state.
JP24197583A 1983-12-23 1983-12-23 Vapor-phase wafer processing device Pending JPS59145531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24197583A JPS59145531A (en) 1983-12-23 1983-12-23 Vapor-phase wafer processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24197583A JPS59145531A (en) 1983-12-23 1983-12-23 Vapor-phase wafer processing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12235777A Division JPS5456366A (en) 1977-10-14 1977-10-14 Plasma film forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21132384A Division JPS60105221A (en) 1984-10-11 1984-10-11 Gas phase wafer processing apparatus

Publications (1)

Publication Number Publication Date
JPS59145531A true JPS59145531A (en) 1984-08-21

Family

ID=17082371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24197583A Pending JPS59145531A (en) 1983-12-23 1983-12-23 Vapor-phase wafer processing device

Country Status (1)

Country Link
JP (1) JPS59145531A (en)

Similar Documents

Publication Publication Date Title
JPH0878347A (en) Susceptor for epitaxial growth apparatus
JPH05166741A (en) Substrate supporting tool for heat treating apparatus
JPH05243166A (en) Semiconductor substrate vapor growth device
JPS60249328A (en) Apparatus for dry-etching and chemical vapor-phase growth of semiconductor wafer
JPH09219369A (en) Equipment and method for manufacturing semiconductor device
JP3167976B2 (en) Susceptor for deposition equipment
JPS60198822A (en) Dry etching device
JPH0963966A (en) Vapor growth device
JPS59145531A (en) Vapor-phase wafer processing device
JPH0864544A (en) Vapor growing method
JPS61212014A (en) Semiconductor wafer processing device using chemical vapor deposition method
JPH06136543A (en) Plasma cvd apparatus
JPS60105221A (en) Gas phase wafer processing apparatus
JPS61190948A (en) Film forming device
JPS6156609B2 (en)
JP2004335591A (en) Cvd device, semiconductor device, and method of manufacturing the same
JPS62252931A (en) Vapor growth apparatus for compound semiconductor
JP2500759B2 (en) Semiconductor manufacturing equipment
JPH0736386B2 (en) Vapor phase growth equipment
JPS6343315A (en) Reduced pressure cvd equipment
JPS6379328A (en) Processing equipment
JPH03291916A (en) Susceptor
EP0330708B1 (en) Apparatus for forming thin films
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JPS6329744Y2 (en)