JPS59145104A - Manufacture of cylindrical ceramics and core for injection molding - Google Patents

Manufacture of cylindrical ceramics and core for injection molding

Info

Publication number
JPS59145104A
JPS59145104A JP2037283A JP2037283A JPS59145104A JP S59145104 A JPS59145104 A JP S59145104A JP 2037283 A JP2037283 A JP 2037283A JP 2037283 A JP2037283 A JP 2037283A JP S59145104 A JPS59145104 A JP S59145104A
Authority
JP
Japan
Prior art keywords
core
injection molding
cylindrical
decomposition temperature
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2037283A
Other languages
Japanese (ja)
Other versions
JPH0140725B2 (en
Inventor
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2037283A priority Critical patent/JPS59145104A/en
Publication of JPS59145104A publication Critical patent/JPS59145104A/en
Publication of JPH0140725B2 publication Critical patent/JPH0140725B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、ロータリニドランスコア用円筒状フ1ライ
ト材料の如く内周面に複雑な形状を有する筒状フエライ
1〜あるいはセラミックスの射出成形による製造方法及
び成形時に従来の内金型にかえて使用する中子に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cylindrical fly material 1 having a complicated inner circumferential surface, such as a cylindrical fly material for rotarynidron cores, or injection molding of ceramics, and a conventional method during molding. Concerning a core used in place of an inner mold.

従来、ロータリートランスコア用円筒状フエライ1〜等
の内周面に複雑な凹凸を有する筒状セラミックス製品は
、円筒状セラミックス素材を製造したのち、機械加工に
より内周面の複雑形状を形成しでいたため、多大の工程
を要し、良好な品質の製品を得ることが回動であった。
Conventionally, cylindrical ceramic products such as cylindrical ferrite 1 for rotary transformer cores having complex irregularities on the inner circumferential surface have been produced by manufacturing a cylindrical ceramic material and then forming the complex shape of the inner circumferential surface by machining. Because of this, many steps were required and it was difficult to obtain a product of good quality.

そこで、機械加工にかえて複雑な形状を形成できる射出
成形方法が採用されるようになった。一般に、セラミッ
クスの射出成形方法(は、セラミックス粉末と有機材料
を所要の混合比で加熱混練し、押出し成形機でペレッ1
〜化し、このペレッ1〜成形材料を射出成形機内で加熱
溶融し、所要形状を有し焼結時の収縮率を考慮した寸法
の外金型と内金。
Therefore, injection molding methods, which can form complex shapes, have been adopted instead of machining. In general, the injection molding method for ceramics involves heating and kneading ceramic powder and organic material at the desired mixing ratio, and then molding them into pellets using an extrusion molding machine.
The pellet 1 is then heated and melted in an injection molding machine to form an outer mold and an inner mold having a desired shape and dimensions taking into account the shrinkage rate during sintering.

型とで形成される射出空間に、上記の溶融材料を加圧射
出し、射出成形を完了する方法である。したがって、成
形体に加圧される圧力が3次元的圧力となり、−軸性圧
縮成形法のプレス成形に比較して複雑な形状の成形に適
している。
In this method, the molten material is injected under pressure into the injection space formed by the mold and the injection molding is completed. Therefore, the pressure applied to the molded body becomes a three-dimensional pressure, which is more suitable for molding complex shapes than press molding using the -axial compression molding method.

しかしながら、上述したロータリートランスコア等のご
とき内周面に溝部を有する複雑形状なものを射出成型す
ると、金型構造が大変複雑となり、−金型コストが高く
なり、さらに成形体の司法精度及び量産性に種々の問題
があった。
However, when injection molding something with a complex shape such as the rotary transformer core mentioned above, which has a groove on the inner circumferential surface, the mold structure becomes very complicated, - the cost of the mold increases, and the precision of the molded product and the mass production There were various problems with sexuality.

この発明は、かかる内周面形状の複雑な円筒、角筒等の
筒状セラミックスの製造に際し、容易に成形でき、金型
構造が簡単で安価に製造可能で、良好な外観かつ高い寸
法精度が得られ、量産化に極めて有効な射出成形による
筒状レラミックスの製造方法を目的としている。
This invention enables easy molding, simple mold structure, low cost production, good appearance and high dimensional accuracy when manufacturing cylindrical ceramics such as cylinders and rectangular cylinders with complicated inner circumferential shapes. The purpose of the present invention is to provide a method for manufacturing cylindrical Reramix by injection molding, which is extremely effective for mass production.

ずなわち、この発明は、射出成形用セラミックス原料を
溶融し、外金型と、熱膨張係数が 6×10−5/℃未
満で150℃〜350℃の分解温度を右しかつ各々分解
温度の異なる2種以上の有機材料からなり筒状レラミッ
クス焼結体の内周面形状と相似の外周形状を有する中子
とによって形成される射出成形空間に上記の溶融材料を
射出し、射出成形した成形体を脱バインダー処理して同
時に上記中子を加熱により分解消失したのち、上記成形
体を焼結することを特徴とする筒状セラミックスの製造
方法である。
That is, this invention melts a ceramic raw material for injection molding, and melts the outer mold to a decomposition temperature of 150 to 350 °C with a coefficient of thermal expansion of less than 6 × 10-5 / °C, and a decomposition temperature of 150 °C to 350 °C. The above molten material is injected into an injection molding space formed by a core having an inner circumferential shape and a similar outer circumferential shape to a cylindrical Reramix sintered body made of two or more different organic materials, and injection molding is performed. This method of manufacturing a cylindrical ceramic is characterized in that the molded body is subjected to a binder removal treatment, and at the same time, the core is decomposed and disappeared by heating, and then the molded body is sintered.

この発明による製造方法を、フェライトからなるロータ
リートランスコアの製造について具体的に説明する。第
1図はロータリートランスコアの縦断面図、第2図はこ
の発明による射出成形用中子の側面図である。
The manufacturing method according to the present invention will be specifically explained for manufacturing a rotary transformer core made of ferrite. FIG. 1 is a longitudinal sectional view of a rotary transformer core, and FIG. 2 is a side view of an injection molding core according to the present invention.

ロータリートランスコア(1)は円筒からなり、その内
周面の2箇所に全周にわたる満(2)を周設した形状か
らなる。
The rotary transformer core (1) is made of a cylinder, and has a shape in which two holes (2) are provided around the entire circumference on the inner peripheral surface of the rotary transformer core (1).

まず、ロータリートランスコアとしての特性を得るのに
必要な組成のフェライト原料の仮焼粉砕粉末に、結合剤
の有機材料を所要の混合比で加熱混練し、押出し成形機
で数ミリサイズのペレットとなし、このペレット成形材
料を射出成形機内で加熱溶融しておく。つぎに、上記の
コア(1)の外形を形成する所要形状を有し焼結時の収
縮率を考慮した司法の外金型を射出成形機に装着する。
First, calcined and crushed powder of ferrite raw material with the composition necessary to obtain the characteristics of a rotary transformer core is heated and kneaded with an organic material as a binder at the required mixing ratio, and then formed into pellets of several millimeters in size using an extruder. None, this pellet molding material is heated and melted in an injection molding machine. Next, an outer mold having the required shape to form the outer shape of the core (1) and considering the shrinkage rate during sintering is installed in the injection molding machine.

一方、あらかじめ用意した熱膨張係数が6x10−5/
°C未満で150℃〜350℃の分解温度を有しかつ各
々分解温度の異なる2種以上の有機材料からなり、第2
図に示す如く上記のコア(1)の内周面形状と相似の外
周形状を有し、焼結時の収縮率を考慮した寸法からなる
中子(3)を、先に射出成形機内に装着した外金型内に
挿着する。そして、外金型と中子(3)とによって形成
される射出成形空間に上記の溶融材料を射出成形し、得
られた成形体を脱バインダー処理して同時に上記中子(
3)を加熱により分解消失させ、その後上記成形体を焼
結することにより所定のロータリートランスコアを得る
On the other hand, the thermal expansion coefficient prepared in advance is 6x10-5/
It has a decomposition temperature of 150°C to 350°C below °C and is made of two or more organic materials each having a different decomposition temperature, and a second
As shown in the figure, a core (3) having an outer circumferential shape similar to the inner circumferential shape of the core (1) and having dimensions that take into account the shrinkage rate during sintering is first installed in the injection molding machine. Insert it into the outer mold. Then, the above molten material is injection molded into the injection molding space formed by the outer mold and the core (3), the obtained molded body is subjected to binder removal treatment, and at the same time, the above-mentioned core (3) is treated to remove the binder.
3) is decomposed and disappeared by heating, and then the molded body is sintered to obtain a predetermined rotary transformer core.

つぎに、射出成形材料にソフトフェライトを用いる場合
のこの発明による中子の材料について説明する。
Next, a description will be given of the core material according to the present invention when soft ferrite is used as the injection molding material.

一般に、ソフトフェライトは炭素の含有により、その磁
気特性、特に透磁率は著しく低下するので、中子として
使用する有機材料は加熱時に完全に揮発分解し、残留炭
素がないことが必要であり、また、熱膨張係数は、6X
10−5 /℃未満であると同時に、加熱時の容積変化
が直線的である有機材料が、セラミックス焼結体の亀裂
あるいは割れ。
In general, the magnetic properties of soft ferrite, especially its magnetic permeability, are significantly reduced by the inclusion of carbon, so the organic material used as the core must completely volatilize and decompose when heated, and must have no residual carbon. , the coefficient of thermal expansion is 6X
Cracks or cracks in ceramic sintered bodies are caused by organic materials that are less than 10-5 /°C and whose volume changes linearly when heated.

変形の防止に重要である。Important for preventing deformation.

中子を1種類の有ah料のみで成型すると、脱バインダ
ー処理時に、当該有機材料の分解が特定の温度で急激に
起るため、当該有機材料の膨張あるいは急激な軟化によ
る圧力等の影響で、成形体の内周面の溝等に亀裂あるい
は割れ、変形が生ずる。また、ポリエチレン、ポリプロ
ピレン等は加熱により、急激に膨張するので、かかる中
子材料どしては好ましくない。
If the core is molded using only one type of AH material, the organic material will rapidly decompose at a certain temperature during the binder removal process, and the organic material will expand or soften due to the effects of pressure, etc. , cracks, cracks, and deformation occur in the grooves, etc. on the inner peripheral surface of the molded body. Furthermore, polyethylene, polypropylene, etc. are not preferred as such core materials because they expand rapidly when heated.

ところが、この発明による中子は、熱膨張係数が6x1
0−5/℃未満であり、加熱時直線的容積変化を起こし
、150℃〜350°Cの分解温度を有しかつ各々分解
温度の異なる2種以上の有機材料を混合成形しているた
め、鋭バインダー処理時に中子の分解が徐々に進行して
消失するので、成形体の寸法精度の向上、安定化が計ら
れるとともに、亀裂、割れ、変形等が防止でき、生産性
の向上に極めて大きな効果がある。
However, the core according to this invention has a coefficient of thermal expansion of 6x1.
0-5/°C, causes a linear volume change when heated, has a decomposition temperature of 150°C to 350°C, and is made by mixing and molding two or more organic materials each having a different decomposition temperature. During the sharp binder treatment, the core gradually decomposes and disappears, improving the dimensional accuracy and stabilizing the molded product, and preventing cracks, cracks, deformation, etc., which greatly improves productivity. effective.

この発明にJ5いて、中子を構成する有機材料は、ステ
アリン酸、アタクチック、ポリプロピレン(API−’
)、ポリスチレン等は第1表に示づ如く、熱膨張係数が
6X10−5 i℃来満て分wl温度が150’C〜3
50°Cを有し、かつ分解温度が異なる2種以上の有機
材料を使用づることができ、これを混合成型したもので
ある。また、この発明に6(ブる中子は、A P P 
 30wt%〜65wt%、ポリスチレン 35wt%
〜70wt%からなるもの、あるいはさらに、ステアリ
ンf9 35wt%以下を配合成型したものカシ好まし
い。
In J5 of this invention, the organic material constituting the core is stearic acid, atactic, polypropylene (API-'
), polystyrene, etc. have a coefficient of thermal expansion of 6X10-5 as shown in Table 1.
Two or more types of organic materials having a temperature of 50°C and different decomposition temperatures can be used, and these are mixed and molded. In addition, this invention has 6 (Buru core is A P P
30wt% - 65wt%, polystyrene 35wt%
Preferably, the composition contains up to 70 wt% of stearin f9, or further contains 35 wt% or less of stearin f9.

この発明による中子を使用した則出成形法によるソフト
フェライト焼結体の残留炭素量は、通常成形法による成
形体の残留炭素量とほぼ同等である。
The amount of residual carbon in the soft ferrite sintered body produced by the regular molding method using the core according to the present invention is almost the same as the amount of residual carbon in the molded body produced by the normal molding method.

この発明による中子を構成する有機材料の熱膨張係数を
限定した理由は、熱膨張係数が  6X10−5/’C
以上になるど、焼結体に亀裂及び割れを発生し、製品歩
留を低1”lるので好ましくないためである。
The reason why the thermal expansion coefficient of the organic material constituting the core according to the present invention is limited is that the thermal expansion coefficient is 6X10-5/'C.
This is because cracks and fractures occur in the sintered body, reducing the product yield by 1", which is not preferable.

また、上記の中子の有機材料の分解温度を限定した理由
は、分解温度が150 ’C未満では有機材料の融点が
100℃」メ下と低くなり覆ぎ、射出成形により、高精
度な中子を製造することが困難となり、350℃を越え
る分解温度を右づる有機材料はその融点が230″C以
上ど高くなりすぎ、中子を製造する通常の射出成形機で
は射出成形温度が高くなりずぎ、量産化の点で好ましく
ないためである。
The reason for limiting the decomposition temperature of the organic material in the core is that if the decomposition temperature is less than 150'C, the melting point of the organic material will be as low as 100'C. This makes it difficult to manufacture cores, and the melting point of organic materials with decomposition temperatures exceeding 350°C is too high, exceeding 230"C, and the injection molding temperature of ordinary injection molding machines for manufacturing cores is too high. This is because it is unfavorable in terms of mass production.

第1表 以下にこの発明による実施例を示しその効果を明らかに
づる。
Examples according to the present invention are shown in Table 1 and below, and the effects thereof are clearly explained.

まず、NシZTIフェライトの仮焼粉砕粉末に、結合剤
としてポリエチレン等の有機材料を13wt%添加して
加熱混練し、押出し成形機で数ミリサイズのペレットと
なし、このペレット成形材料を射出成形機内で加熱溶融
しておいた。つぎに、前記した第1図のロータリートラ
ンスコアの外形を形成する所要形状を有し焼結時の収縮
率を考慮した刈法の外金型を射出成形機に装着した。
First, 13 wt% of an organic material such as polyethylene as a binder is added to calcined and crushed powder of N-Si ZTI ferrite, heated and kneaded, formed into pellets of several millimeters in size using an extruder, and this pellet molding material is injection molded. It was heated and melted inside the machine. Next, an outer mold having the required shape to form the outer shape of the rotary transformer core shown in FIG. 1 and having a cutting method in consideration of the shrinkage rate during sintering was installed in an injection molding machine.

ステアリン酸(分解温度180°C) 、APP (分
解温度240℃)、ポリスチレン(分解温度280°C
)のうち2種あるいは3種の有機材わ1を含有し、第2
表に示す種々の組成からなり、前述した第2図に示づ−
如く第1図のロータリー1−ランスコアの内周面形状と
相似の外周形状を有し、焼結時の収縮率を考慮した寸法
からなる中子を、先に射出成形機内に装着した外金型内
にtrp着した。そして、外金型と中子とによって形成
される射出成形空間に上記の溶融月料を射出成形した。
Stearic acid (decomposition temperature 180°C), APP (decomposition temperature 240°C), polystyrene (decomposition temperature 280°C)
) containing two or three types of organic materials 1;
It consists of various compositions shown in the table, and is shown in Fig. 2 mentioned above.
A core having an outer circumferential shape similar to the inner circumferential shape of the rotary 1-lance core shown in Fig. 1 and having dimensions that take into account the shrinkage rate during sintering is first installed in an injection molding machine. TRP was deposited inside the mold. Then, the above molten material was injection molded into the injection molding space formed by the outer mold and the core.

得られた成形体を瓶バインダー炉にて400℃まで毎時
5°Cの昇温速度で昇温し、脱バインダー処理とともに
上記中子を加熱により分解消失さた。
The temperature of the obtained molded body was raised to 400° C. at a rate of 5° C./hour in a bottle binder furnace, and the binder was removed and the core was decomposed and disappeared by heating.

その後、この成形体を空気中、 1250°C,2時間
の条件で焼結することにより第1図のロータリー1−ラ
ンスコアを有だ。
Thereafter, this molded body was sintered in air at 1250°C for 2 hours to obtain the rotary 1-run core shown in Figure 1.

この発明による焼結体の磁気特性は通常成形法による焼
結体と同等であった。
The magnetic properties of the sintered body according to the present invention were equivalent to those of the sintered body produced by the conventional molding method.

また、得られたロータリートランスコアの亀裂、割れ状
況及び寸法精度を測定した。その結果を第2表に示す。
In addition, cracks, crack conditions, and dimensional accuracy of the obtained rotary transformer core were measured. The results are shown in Table 2.

なお、亀裂、割れ状況【よ、コア内周面の溝部の外観検
査の結果であり、各試料尚の測定個数は100個であっ
た。まk、寸法精度は、亀裂や割れの発生していない溝
部の幅の標準偏差で表わし、司法誤差規格は0.05 
mm以下である。
It should be noted that the cracks and breakage conditions are the results of the visual inspection of the grooves on the inner circumferential surface of the core, and the number of samples measured was 100. The dimensional accuracy is expressed as the standard deviation of the width of the groove where no cracks or cracks have occurred, and the judicial error standard is 0.05.
mm or less.

第2表から明らかなように、本発明の試料陽1〜5は、
亀裂、割れ及び変形がなく、高寸法精度のロータリート
ランスコアを得られたことがわかる。なa3、実施例で
は、ラフ1〜フエライトの成形について説明したが、他
のセラミックスの成形にも同様に適用できることは明ら
かである。
As is clear from Table 2, samples 1 to 5 of the present invention were
It can be seen that a rotary transformer core with high dimensional accuracy was obtained without cracks, cracks, or deformation. a3. In the examples, the molding of rough 1 to ferrite was explained, but it is clear that the present invention can be similarly applied to molding of other ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロータリートランスコアの縦断面図、第2図は
この発明による射出成形用中子の側面図である。 図中、1・・・ロータリートランスコア、2・・・溝部
、3・・・中子。 第1 子 第2
FIG. 1 is a longitudinal sectional view of a rotary transformer core, and FIG. 2 is a side view of an injection molding core according to the present invention. In the figure, 1... rotary transformer core, 2... groove, 3... core. 1st child 2nd child

Claims (1)

【特許請求の範囲】 1 射出成形用セラミックス原料を溶融し、外金型と、
熱膨張係数が6x10−5/°C未満で150℃〜35
0℃の分解温度を有しかつ各々分解温度の異なる2種以
上の有機材料からなり筒状セラミックス焼結体の内周面
形状と相似の外周形状を有する中子とによって形成され
る射出成形空間に上記の溶融材料を射出し、射出成形し
た成形体を脱バインダー処理して同時に上記中子を加熱
により分解消失したのち、上記成形体を焼結覆ることを
特徴とザる筒状セラミックスの製造方法。 2 熱膨張係数が6X10−5 /’C未満で150℃
〜350℃の分解温度を有し、かつ各々分解温度の異な
る2種以上の有機材料からなり、筒状セラミックス焼結
体の内周面形状と相似の外周形状を有することを特徴と
する筒状セラミックスの射出成形用中子
[Claims] 1. Melting ceramic raw material for injection molding, forming an outer mold,
Thermal expansion coefficient is less than 6x10-5/°C and 150°C to 35
An injection molding space formed by a core having an outer peripheral shape similar to the inner peripheral surface shape of a cylindrical ceramic sintered body made of two or more types of organic materials each having a decomposition temperature of 0°C and different decomposition temperatures. Production of cylindrical ceramics characterized by injecting the above-mentioned molten material, debinding the injection-molded compact, simultaneously decomposing and disappearing the core by heating, and then sintering and covering the above-mentioned compact. Method. 2 150℃ when the coefficient of thermal expansion is less than 6X10-5/'C
A cylindrical material having a decomposition temperature of ~350°C, made of two or more organic materials each having a different decomposition temperature, and having an outer circumferential shape similar to the inner circumferential shape of the cylindrical ceramic sintered body. Core for ceramic injection molding
JP2037283A 1983-02-09 1983-02-09 Manufacture of cylindrical ceramics and core for injection molding Granted JPS59145104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037283A JPS59145104A (en) 1983-02-09 1983-02-09 Manufacture of cylindrical ceramics and core for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037283A JPS59145104A (en) 1983-02-09 1983-02-09 Manufacture of cylindrical ceramics and core for injection molding

Publications (2)

Publication Number Publication Date
JPS59145104A true JPS59145104A (en) 1984-08-20
JPH0140725B2 JPH0140725B2 (en) 1989-08-31

Family

ID=12025232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037283A Granted JPS59145104A (en) 1983-02-09 1983-02-09 Manufacture of cylindrical ceramics and core for injection molding

Country Status (1)

Country Link
JP (1) JPS59145104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034707A (en) * 2012-08-09 2014-02-24 Castem Co Ltd Method for producing metal powder sintered compact having hollow part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776955B1 (en) * 2000-09-05 2004-08-17 Advanced Materials Technologies, Pte., Ltd. Net shaped articles having complex internal undercut features

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146605A (en) * 1974-05-17 1975-11-25
JPS5129170A (en) * 1974-09-04 1976-03-12 Matsushita Electric Ind Co Ltd
JPS53113808A (en) * 1977-03-16 1978-10-04 Kaabon Seramu Kk Method of manufacturing ringgshaped refractories with hollow opening

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146605A (en) * 1974-05-17 1975-11-25
JPS5129170A (en) * 1974-09-04 1976-03-12 Matsushita Electric Ind Co Ltd
JPS53113808A (en) * 1977-03-16 1978-10-04 Kaabon Seramu Kk Method of manufacturing ringgshaped refractories with hollow opening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034707A (en) * 2012-08-09 2014-02-24 Castem Co Ltd Method for producing metal powder sintered compact having hollow part

Also Published As

Publication number Publication date
JPH0140725B2 (en) 1989-08-31

Similar Documents

Publication Publication Date Title
US5972269A (en) Method of forming cavities in ceramic or metal injection molded parts using a fugitive core
JP2002155302A (en) Method for forming hollow article
JPH0673713B2 (en) Thermoplastic compound for producing cast cores and method for producing such cores
JPS593066A (en) Manufacture of ceramic thin tube
US5043117A (en) Method of manufacturing ceramic products, and a method of manufacturing ceramic springs
US4139393A (en) Ceramic core for use in making molds and dies
JPS59145104A (en) Manufacture of cylindrical ceramics and core for injection molding
US2973278A (en) Manufacture of sintered vitreous silica
JPH1192803A (en) Production of metal and ceramic powder injection-molded parts having hollow part with complicated shape
JPH0620858A (en) Manufacture of ferrite core by injection molding
JP3039021B2 (en) Manufacturing method of rotary transformer
JPS61117164A (en) Manufacture of ceramic injection molding
JP2000072556A (en) Powder sintered compact by injection molding and its production
JPS63237402A (en) Manufacture of sintered rare-earth magnet
JPS61101447A (en) Manufacture of ceramic formed body
JPH03233908A (en) Ferrite magnetic substance and its manufacture
JPS58147008A (en) Preparation of soft magnetic ferrite material
JPH03190204A (en) Ferrite magnetic material and manufacture thereof
JPH01131052A (en) Production of sintered material
SU401648A1 (en) METHOD OF MANUFACTURING GLASS WORKS WITH INSERTS
JPH01319910A (en) Magnetic substance and manufacture thereof
JPH073303A (en) Production of metallic or ceramic sintered compact
JP3488742B2 (en) Manufacturing method of soft ferrite
JPS61111972A (en) Process for dewaxing ceramic injection molded body
JPH02111654A (en) Composition for injection molding