JPS59144694A - Composition for enhancing compression strength of paper - Google Patents

Composition for enhancing compression strength of paper

Info

Publication number
JPS59144694A
JPS59144694A JP1267883A JP1267883A JPS59144694A JP S59144694 A JPS59144694 A JP S59144694A JP 1267883 A JP1267883 A JP 1267883A JP 1267883 A JP1267883 A JP 1267883A JP S59144694 A JPS59144694 A JP S59144694A
Authority
JP
Japan
Prior art keywords
composition
paper
weight
parts
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1267883A
Other languages
Japanese (ja)
Inventor
黒川 明男
提 春樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1267883A priority Critical patent/JPS59144694A/en
Publication of JPS59144694A publication Critical patent/JPS59144694A/en
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高濃度で低粘性の作業性のすぐれた紙の圧縮
強度向上用組成物に関するもので更に詳しくは紙に折り
曲げによる割れの少い硬さを附与する紙の圧縮強度向上
用組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composition for improving the compressive strength of paper that has high concentration, low viscosity, and excellent workability. The present invention relates to a composition for improving the compressive strength of paper.

従来、紙の剛度向上による圧縮強度向上は、尿素−ホル
ムアルデヒド樹脂、メラミン−ポルムアルデヒド樹脂、
フェノール−ホルムアルデヒド樹脂等の熱硬化性樹脂、
変性澱粉系カルボキシメチルセルロース、ヒドロキシエ
チルセルロースの如き重合型高分子化合物が検討されて
きたが、それぞれ以下の如き欠点を有するため使用に到
っていない。即ち、尿素−ホルムアルデヒド樹脂、メラ
ミン−ホルムアルデヒド樹脂、フェノール−ホルムアル
デヒド樹脂の如き熱硬化性樹脂によって紙を加工した場
合には紙を硬くすることはできるが、脆くなり折り曲げ
によって割れ易い欠点を有する。
Conventionally, improving the compressive strength by increasing the stiffness of paper has been achieved using urea-formaldehyde resin, melamine-polmaldehyde resin,
Thermosetting resins such as phenol-formaldehyde resins,
Polymerizable polymer compounds such as modified starch-based carboxymethyl cellulose and hydroxyethyl cellulose have been studied, but they have not been used because they each have the following drawbacks. That is, when paper is processed with a thermosetting resin such as urea-formaldehyde resin, melamine-formaldehyde resin, or phenol-formaldehyde resin, the paper can be made hard, but it has the disadvantage that it becomes brittle and easily breaks when bent.

マタ変性澱粉、カルボキシメチルセルロース、ヒドロキ
シエチルセルロースの如き半合成品及びポリビニルアル
コール、ポリアクリルアミドの如キ重合型高分子化合物
の場合は、一般的に水溶液として用いられるが粘性が高
いので、作業性を良くするために水で希釈して低濃度に
調整する必要が生ずる。その結果、所定量の半合成品或
いは重合型高分子化合物を紙にスプレー或いは塗布して
含浸するためには、多くの希釈水も同時に含浸されるこ
とになり、その後の乾燥工程で多くの乾燥エネルギーを
要すると同時に、紙を硬くすることはできるが脆くなり
折り曲げによって割れ易い欠点を生ずる。
Semi-synthetic products such as polyester modified starch, carboxymethyl cellulose, and hydroxyethyl cellulose, and polymerizable polymer compounds such as polyvinyl alcohol and polyacrylamide are generally used as aqueous solutions, but their viscosity is high, so it is necessary to improve workability. Therefore, it becomes necessary to adjust the concentration to a low level by diluting it with water. As a result, in order to impregnate paper with a predetermined amount of semi-synthetic products or polymeric polymer compounds by spraying or coating it, a large amount of dilution water is also impregnated at the same time, and a large amount of drying water is required in the subsequent drying process. This method requires energy and, although the paper can be made hard, it becomes brittle and easily breaks when folded.

本発明者等は前記した欠点の解決のため、高濃度で低粘
性で尚かつ紙に加工した場合脆さをi4えずに圧縮強度
の向上を計れる組成物を得る目的で、鋭意研究を続けた
結果、ガラス転移点が60°C以下の高分子ラテックス
の存在下でメタクリルアミドを重合して得られる組成物
が、これらの目的を達成できるものであることを見い出
し、本発明を完成するに到った。
In order to solve the above-mentioned drawbacks, the present inventors have continued to conduct intensive research with the aim of obtaining a composition that is highly concentrated, has low viscosity, and can improve compressive strength without increasing brittleness when processed into paper. As a result, it was discovered that a composition obtained by polymerizing methacrylamide in the presence of a polymer latex having a glass transition point of 60°C or less can achieve these objects, and in order to complete the present invention. It has arrived.

即ち本発明は、ガラス転移点が600C以下の高分子ラ
テックス囚〕の存在下で、メタクリルアミド(B”lを
重合してなる組成物であって、前記(A) : (B)
が重畢比で97:3〜40:60であることを特徴とす
る紙の圧縮強度向上用組成物である。
That is, the present invention provides a composition obtained by polymerizing methacrylamide (B"l) in the presence of a polymer latex having a glass transition point of 600C or less, which comprises the above (A): (B)
This is a composition for improving the compressive strength of paper, characterized in that the weight ratio is 97:3 to 40:60.

本発明の好しい一実施態様に従えば、ガラス転移点が6
0℃以下の高分子ラテックス(A)の存在下で、メタク
リルアミド(B)を水の存在下で、ラジカル重合法で重
合してなる組成物であって、前記込〕=(13〕が固形
重限比で97:3〜40:60好しくは95:5〜50
:50であることを特徴とする紙の圧縮強度向上用組成
物を得ることである。
According to a preferred embodiment of the invention, the glass transition temperature is 6
A composition obtained by polymerizing methacrylamide (B) in the presence of water using a radical polymerization method in the presence of a polymer latex (A) at a temperature of 0°C or lower, wherein The gravity ratio is 97:3 to 40:60, preferably 95:5 to 50
:50.

本発明に係る組成物が前記本発明の目的を達成できる理
由は必ずしも明らかではないが、高分子ラテックスにバ
ルブ繊維との水素結合を形成しやすい官能基を有するメ
タクリルアミドがグラフト重合すると共に生成するメタ
クリルアミドホモポリマーが高分子ラテックスに吸着さ
れやすいことによっていることが推察され、これが寄与
しているものと考えられる。
The reason why the composition according to the present invention is able to achieve the object of the present invention is not necessarily clear, but the reason is that methacrylamide, which has a functional group that easily forms a hydrogen bond with the valve fiber, is generated when polymer latex undergoes graft polymerization. It is presumed that this is due to the fact that methacrylamide homopolymer is easily adsorbed to polymer latex, and this is considered to be a contributing factor.

尚、ガラス転移点 (Tg)とは下記式〔1〕で計算さ
れる温度である。
Note that the glass transition point (Tg) is a temperature calculated using the following formula [1].

1 /(T g +273 ) =ΣWi / (Tg
 i +273 )・・・(1〕以下、本発明について
詳述する。
1 / (T g +273 ) = ΣWi / (T g
i +273 )...(1) The present invention will be described in detail below.

本発明において用いる高分子ラテックスとは、公知の重
合方法によって得られるSBR,、MBf(、、M−8
Bfも、Ni2B、 CR,III、  及びポリブタ
ジェンの如キ合成コムラテックス、酢酸ビニル系エマル
ション、酢酸ビニル−アクリル系エマルション、酢酸ビ
ニル−エチレン系エマルション及ヒアクリル酸エステル
系エマルションの如キエマルションラテックス、塩化ビ
ニル系ラテックス、塩化ビニリデン系ラテックス等であ
り、これらの高分子ラテックスのガラス転移点は60℃
以下であることが必要である。好ましくは40°C以下
である。高分子ラテックスのガラス転移点が60’Cを
越えるものであると、得られる組成物によって加工され
た紙の折り曲げによるワレ易すさの欠点が残る。
The polymer latex used in the present invention refers to SBR, MBf (,, M-8
Bf also includes Ni2B, CR, III, and synthetic comb latex such as polybutadiene, vinyl acetate emulsion, vinyl acetate-acrylic emulsion, vinyl acetate-ethylene emulsion, and hyacrylate emulsion emulsion latex, vinyl chloride. type latex, vinylidene chloride type latex, etc., and the glass transition point of these polymer latexes is 60°C.
It is necessary that the following is true. Preferably it is 40°C or less. If the glass transition point of the polymer latex exceeds 60'C, there remains the disadvantage that paper processed with the resulting composition tends to crack when folded.

前記高分子ラテックスにおいて、S D Rラテックス
はスチレン、ブタジェンをMi3几ラテラテックスタク
リル酸メチルとブタジェンを、MSBRラテックスはメ
タクリル酸メチル、スチレン、ブタジェンを、N 13
1(、ラテックスはアクリルニトリル、ブタジェンを、
C11,ラテックスはクロロプレンを、11もラテック
スはイソプレンを、ポリブタジェンラテックスはブタジ
ェンを、酢酸ビニル−アクリル系エマルゾヨyは酢酸ビ
ニルとアクリル酸エステル(メチル、エチル、フチル、
2−エチルヘキ・カレ)、メタクリル酸エステル(メチ
ル、エチル、ブチル。
In the polymer latex, the SDR latex contains styrene, butadiene, Mi3 lateratex, methyl stacrylate and butadiene, and the MSBR latex contains methyl methacrylate, styrene, butadiene, and N13.
1 (The latex uses acrylonitrile and butadiene,
C11, latex uses chloroprene, 11 latex uses isoprene, polybutadiene latex uses butadiene, vinyl acetate-acrylic emulsion contains vinyl acetate and acrylic esters (methyl, ethyl, phthyl,
2-ethylhex-carare), methacrylic acid esters (methyl, ethyl, butyl).

2−エチルヘキシル)等ヲ、酢酸ビニル−エチレン系エ
マルンヨンラテックスは酢酸ビニルとエチレンヲ、アク
リル酸エステル系エマルションラテックスはアクリル酸
エステル(メチル、エチル。
Vinyl acetate-ethylene emulsion latex contains vinyl acetate and ethylene, and acrylic ester emulsion latex contains acrylic esters (methyl, ethyl, etc.).

ブチル、2−エチルヘキシル)、メタクリル酸エステル
(メチル、エチル、フチルウ2−エチルヘキシル)等を
、塩化ビニル系ラテックスは塩化ビニル、酢酸ビニル或
いはエチレンを、塩化ビニリデン系ラテックスは塩化ビ
ニリデン、塩化ビニル、アクリル酸エステルをそれぞれ
主原料にしているが、これら主原料以外にこれら主原料
と共重合可能な下記の如き単量体も、得られる高分子ラ
テックスの物性改善のために用いることができ、これら
を用いて改善された高分子ラテックスも本発明に用いる
高分子ラテックスとして使用できることは言うまでもな
い。
butyl, 2-ethylhexyl), methacrylate esters (methyl, ethyl, phthyl-2-ethylhexyl), etc. Vinyl chloride-based latex uses vinyl chloride, vinyl acetate, or ethylene, vinylidene chloride-based latex uses vinylidene chloride, vinyl chloride, acrylic acid, etc. Although esters are used as the main raw materials, in addition to these main raw materials, the following monomers that can be copolymerized with these main raw materials can also be used to improve the physical properties of the resulting polymer latex. Needless to say, a polymer latex improved by the above method can also be used as the polymer latex used in the present invention.

即ち前記各々の高分子ラテックスの主原料と共重合可能
な単量体としては決起の如きものをあげることができる
が、これらは例示であってこの外t にも主原料と共重合可能な単量はすべて使用することが
できるのは言うまでもない。これらの物性改善のための
単量体は予じめ高分子ラテックスと共重合させておいて
もよいし、又場合によっては高分子ラテックスの存在下
にメタクリルアミドを重合させる場合に併用してもよい
In other words, there are a number of monomers that can be copolymerized with the main raw materials of each of the polymer latexes mentioned above, but these are just examples, and there are also monomers that can be copolymerized with the main raw materials. Needless to say, any amount can be used. These monomers for improving physical properties may be copolymerized with the polymer latex in advance, or in some cases, they may be used in combination when methacrylamide is polymerized in the presence of the polymer latex. good.

即ち上記単量体とは、アクリル酸、メタクリル酸、イタ
ボン酸、マレイン酸、フマール酸、クロトン酸の如きエ
チレン系不飽和カルボン酸、ブタジェン、イソプレン、
クロロブレンの如キ共役’yオレフィン、スチレン、メ
チルスチレンの如キ芳香族ビニル化合物、メタクリル酸
メチル、メタクリル酸エチル、メタクリル酸ブチル、ツ
タクリル酸−2−エチルヘキシルの如きメタクリル酸エ
ステル、アクリル酸メチル、アクリル酸エチル、アクI
J )し酸ブチル、アクリル酸−2−エチルヘキシル等
のアクリル酸エステル、アクリロニトリル、メタクリル
ニトリルの如きエチレン系ニトリル化合物、アクリル酸
−β−ヒドロキシエチノベメタクリル酸−β−ヒドロキ
シエチル、アクリルアミド、メタクリルアミド、I’J
−メチロールアクリルアミド、           
  テ雲Hへ N−メチロールメタクリルアミド、N−
ブトキシメチルアクリルアミド、アクリル酸グリシジル
、メタクリル酸グリシジルの如き親水性単量体、ジメチ
ルアミンエチルメタクリレート、トリメチルアミノエチ
ルメタクリレート、ジエチルアミノエチルメタクリレー
ト、トリメチルアミノエチルメタクリ1/、−−)の如
き陽イオン性ビニル系単量体、酢酸ビニル、塩化ビニル
、塩化ビニリデン等である。
That is, the above monomers include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itabonic acid, maleic acid, fumaric acid, and crotonic acid, butadiene, isoprene,
Conjugated olefins such as chlorobrene, aromatic vinyl compounds such as styrene and methylstyrene, methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl oxacrylate, methyl acrylate, and acrylic. Ethyl acid, Aku I
J) Acrylic acid esters such as butyl phosphate and 2-ethylhexyl acrylate, ethylene-based nitrile compounds such as acrylonitrile and methacrylnitrile, β-hydroxyethinoacrylate, β-hydroxyethyl methacrylate, acrylamide, methacrylamide, I'J
- methylol acrylamide,
To the cloud H N-methylol methacrylamide, N-
Hydrophilic monomers such as butoxymethylacrylamide, glycidyl acrylate, glycidyl methacrylate, cationic vinyl monomers such as dimethylamine ethyl methacrylate, trimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, trimethylaminoethyl methacrylate 1/, --) monomers, vinyl acetate, vinyl chloride, vinylidene chloride, etc.

本発明の特徴は、ガラス転移点60°C以下の高分子ラ
テックス囚〕の存在下でメタクリルアミド〔■3)を固
形分重量比で(A、l : CB)が97:3〜40:
60の範囲で重合する点にあり、このように(A3 :
 (+33の割合を特定している理由は次の通りである
。即ち高分子ラテックス対メタクリルアミドが97:3
より高分子ラテックスの割合が大きくなると最終的に得
られる組成物によって加工された紙の圧縮強度向上が不
十分である。また高分子ラテックス対メタクリルアミド
が40:60よりメタクリルアミドの割合が大きくなる
と最終的に得られる組成物の粘性が高くなり作業性上好
しくなく、更にり好しくない。
The feature of the present invention is that in the presence of a polymer latex prisoner with a glass transition point of 60°C or less, methacrylamide [■3] is added at a solid content weight ratio (A, l: CB) of 97:3 to 40:
60, and thus (A3:
(The reason for specifying the ratio of +33 is as follows. That is, the ratio of polymer latex to methacrylamide is 97:3.
When the proportion of polymer latex becomes larger, the compressive strength of the paper processed by the final composition is insufficiently improved. Furthermore, if the ratio of polymer latex to methacrylamide is greater than 40:60, the viscosity of the final composition becomes high, which is unfavorable in terms of workability, and even more unfavorable.

本発明に係る組成物を得るため、高分子ラテックスの存
在下でメタクリルアミドの重合を行う方法は、メタクリ
ルアミドのみの重合を行う方法で行うことができる。即
ち過硫酸のカリウム、ナ]・リウム或いはアンモニウム
塩、過酸化水素の如き過酸化物のみを用いてラジカル重
合を行うか或いは前記の如き過酸化物と酸性亜硫酸ソー
ダ、チオ硫酸ソーダの如き還元剤との併用即ちレドック
ス重合により行うことができるが、重合途中までは前記
過酸化物のみを用いてラジカル重合を行い、その後前記
還元剤又はトリメチルアミン、トリエチルアミンの如き
トリアルキルアミン類、トリエタノールアミンの如きト
リアルカノールアミン類、ジメチルアミン、ジエチルア
ミンの如きジアルキルアミン類ンエタノールアミンの如
きジアルカノールアミン類、ブチルアミンの如きモノア
ルキルアミン類、モノエタノールアミンの如きモノアル
カノールアミン類等を添加して重合を進行させることも
できる。
In order to obtain the composition according to the present invention, a method of polymerizing methacrylamide in the presence of a polymer latex can be carried out by a method of polymerizing only methacrylamide. That is, radical polymerization is carried out using only a peroxide such as potassium, sodium, or ammonium salt of persulfate, or hydrogen peroxide, or the above-mentioned peroxide and a reducing agent such as acidic sodium sulfite or sodium thiosulfate. However, radical polymerization is carried out using only the above-mentioned peroxide until the middle of the polymerization, and then the above-mentioned reducing agent or trialkylamines such as trimethylamine, triethylamine, triethanolamine, etc. Polymerization is proceeded by adding trialkanolamines, dialkylamines such as dimethylamine, diethylamine, dialkanolamines such as ethanolamine, monoalkylamines such as butylamine, monoalkanolamines such as monoethanolamine, etc. You can also do that.

上記アミン化合物類は例示であり他の1級、2級、3級
アミン化合物も同様に使用できることは言うまでもない
The above amine compounds are just examples, and it goes without saying that other primary, secondary, and tertiary amine compounds can be used in the same manner.

重合終了後に得られる本発明に係る組成物は苛性ソーダ
、苛性カリ、アンモニア及び上記アミン化合物酸いは硫
酸、硝酸、ギ酸、酢酸、塩酸の如き酸を用いて中和し長
期保存に耐えるようにすることもできる。
The composition according to the present invention obtained after the polymerization is neutralized using caustic soda, caustic potash, ammonia, and the above amine compound acids, or an acid such as sulfuric acid, nitric acid, formic acid, acetic acid, or hydrochloric acid to make it durable for long-term storage. You can also do it.

本発明に係る紙の圧縮強度向上用組成物は上質函工程の
ように紙の折曲げ工程を経るような紙の圧縮強度向上の
ために用いることができる。
The composition for improving the compressive strength of paper according to the present invention can be used to improve the compressive strength of paper that undergoes a paper folding process such as a high-quality box process.

るものではない。It's not something you can do.

実施例 1 塩化ビニル60重量%、塩化ビニリデン40重量からな
る固形分45チ、PH6,8の塩化ビニリゾへ ン系ラテックス(Tgは32℃)720部、蒸留水25
1部、メタクリルアミド17部を冷却管、攪拌機及び温
度計付きのフラスコに役人し、撹拌しながら以下の操作
を行う。先ず、フラスコを加温し、フラスコ内液温を5
0’Cに昇温する。次いで過硫酸カリウム6.0部と5
0重量%のトリエタノ〜ルアミン6.0部を投入して1
0時間の重合反応を行う。その結果、固形分35重量%
、プルツクフィルド粘度が25°Cで180センチボイ
ズの本紙発明に係る紙の圧縮強度向上用組成物(以下、
組成物−■と記す) 1ooo 部を得た。
Example 1 720 parts of vinylizohene chloride latex (Tg is 32°C) with a solid content of 45 parts and a pH of 6.8 (Tg is 32°C) consisting of 60% by weight of vinyl chloride and 40% by weight of vinylidene chloride, and 25 parts by weight of distilled water.
1 part of methacrylamide and 17 parts of methacrylamide were placed in a flask equipped with a condenser, a stirrer, and a thermometer, and the following operations were performed while stirring. First, warm the flask and bring the temperature of the liquid inside the flask to 5.
Raise the temperature to 0'C. Next, 6.0 parts of potassium persulfate and 5
Adding 6.0 parts of 0% by weight triethanolamine to 1
Carry out the polymerization reaction for 0 hours. As a result, the solid content was 35% by weight.
, a composition for improving the compressive strength of paper according to the present paper invention having a Pulckfield viscosity of 180 centivoids at 25°C (hereinafter referred to as
100 parts of composition (denoted as ■) were obtained.

実施例 2 スチレン30重量係、メタクリル酸メチル30重量%、
ブタジェン38.5重量係及びアクリル酸1.5重量係
からなる固形分50重量%、I)117.0のM S 
T3 Rラテックス(T gは一1°G ) 475.
3部、蒸留水408.8部、メタクリルアミド101.
9部を冷却管、攪拌機及、び温度計利きのフラスコに投
入し、攪拌しながら以下の操作を行う。
Example 2 Styrene 30% by weight, methyl methacrylate 30% by weight,
Solids content 50% by weight consisting of 38.5 parts by weight of butadiene and 1.5 parts by weight of acrylic acid, I) MS of 117.0
T3 R latex (T g is -1°G) 475.
3 parts, distilled water 408.8 parts, methacrylamide 101.
Pour 9 parts into a flask equipped with a cooling tube, a stirrer, and a thermometer, and perform the following operations while stirring.

先ず、フラスコを加温し、フラスコ内液温を50°Cに
昇温する。次いで過硫酸カリウム7.0部を投入して1
.5時間の重合反応を行った後50重量%のジェタノー
ルアミン7.0部を加えて更に8.5時間の重合反応を
行う。その結果固形分35重量%、プルツクフィルド粘
度が25℃で190センチボイズの本紙発明に係る紙の
圧縮強度向上用組成物(以下、組成物−IIと記す) 
1ooo 部を得た。
First, the flask is heated to raise the temperature of the liquid inside the flask to 50°C. Next, 7.0 parts of potassium persulfate was added and 1
.. After carrying out the polymerization reaction for 5 hours, 7.0 parts of 50% by weight jetanolamine was added and the polymerization reaction was further carried out for 8.5 hours. As a result, a composition for improving the compressive strength of paper according to the invention of this paper (hereinafter referred to as Composition-II) had a solid content of 35% by weight and a Pulckfield viscosity of 190 centivoise at 25°C.
100 parts were obtained.

実施例 3 メチ9フ25重量係、メタクリル酸メチル10重量%、
アクリル酸ブチル58重量%、メタクリル酸−β−ヒド
ロキシエチル2重量係、メタクリル酸2重量%、アクリ
ルアミド3重量%よりなる固形分45重量%、P)16
.8のアクリル酸エステル係ラテックス(Tgは−10
G ) 372.2部、メタクリルアミド167.5部
、蒸留水440.3部を冷却管、攪拌機及び温度計付き
フラスコに投入し、攪拌しながら以下の操作を行う。
Example 3 Methi 9F 25% by weight, methyl methacrylate 10% by weight,
Solid content: 45% by weight, consisting of 58% by weight of butyl acrylate, 2% by weight of β-hydroxyethyl methacrylate, 2% by weight of methacrylic acid, and 3% by weight of acrylamide, P) 16
.. 8 acrylic ester latex (Tg is -10
G) 372.2 parts, 167.5 parts of methacrylamide, and 440.3 parts of distilled water are placed in a flask equipped with a cooling tube, a stirrer, and a thermometer, and the following operations are performed while stirring.

先ずフラスコを加温し、フラスコ内液温を50°Cに昇
温する。次いで過硫酸カリウム10部及び50%ジエチ
ルアミン10部を投入し10時間の取合反応を行う。そ
の結果固形分35重−11t(%、プルツクフィルド粘
度が25℃で250センチボイズの本願発明に係る紙の
圧縮強度向上用組成物(以下組成物=I11と記す) 
1000部を得た。
First, the flask is heated to raise the temperature of the liquid inside the flask to 50°C. Next, 10 parts of potassium persulfate and 10 parts of 50% diethylamine were added, and a combination reaction was carried out for 10 hours. As a result, the composition for improving the compressive strength of paper according to the present invention (hereinafter referred to as composition = I11) had a solid content of 35 weight - 11 t (%) and a Pulckfield viscosity of 250 centivoids at 25°C.
Obtained 1000 copies.

比較例 1 スチレン40重量係、メタクリル酸メチル42tt%、
アクリル酸3重量%、アクリル酸ブチル15重量係から
なる固形分50重量%、PI−16、8のアクリル酸エ
ステル系ラテックス(T gば69°C)を実施例2に
於けるSB几シラテックスTgは一1°C)の代りに用
いる以外は全く同一操作にて、比較対照例の組成物(以
下比較例−1組成物と記す)1000部を得た。比較例
−丁組成物は固形分35重t%、プルツクフィルド粘度
が25℃で195センチボイズであった。
Comparative Example 1 Styrene 40% by weight, methyl methacrylate 42tt%,
An acrylic acid ester latex of PI-16,8 (Tg: 69°C) with a solid content of 50% by weight consisting of 3% by weight of acrylic acid and 15% by weight of butyl acrylate was used as the SB Silatex in Example 2. 1000 parts of a comparative composition (hereinafter referred to as Comparative Example-1 composition) was obtained in exactly the same manner except that Tg was used instead of -1°C. Comparative Example - The composition had a solids content of 35% by weight and a Pulckfield viscosity of 195 centiboise at 25°C.

比較例 2 タクリルアミド量が少い場合について例示する。Comparative example 2 A case where the amount of tacrylamide is small will be exemplified.

即ち実栴例2で用いたMSBR(Tgは一1°C)68
0部、蒸留水310部、メタクリルアミド7部を実施例
2で用いたフラスコに投入ビ攪拌しながら以下の操作を
行う。
That is, the MSBR used in Practical Example 2 (Tg is -1°C) 68
0 parts, 310 parts of distilled water, and 7 parts of methacrylamide were added to the flask used in Example 2, and the following operations were performed while stirring.

先ずフラスコを加温し、フラスコ内液温を50°Cに昇
温する。次いで過硫酸カリウム2部を投入(−て、1.
5時間の重合反応を行った後50重量%のジェタノール
アミン2部を加えて更に8.5時間の重合反応を行う。
First, the flask is heated to raise the temperature of the liquid inside the flask to 50°C. Next, add 2 parts of potassium persulfate (1.
After carrying out the polymerization reaction for 5 hours, 2 parts of 50% by weight jetanolamine was added and the polymerization reaction was further carried out for 8.5 hours.

その結果、固形分35重量%、プルツクフィルド粘度が
25℃で3.5センチボイズの比較対照例の組成物(以
下比校例−11−組成物と記す)、1ooo部を得た。
As a result, 100 parts of a comparative composition (hereinafter referred to as Comparison Example-11 composition) having a solid content of 35% by weight and a Pulckfield viscosity of 3.5 centivoise at 25° C. was obtained.

比較例 3 タクリルアミド量が多い場合について例示する。Comparative example 3 A case where the amount of tacrylamide is large will be exemplified.

即ち実施例2で用いたMSf3Rラテックス、(Tgは
一1°C) 232.4部、蒸留水527.8部、メタ
クリルアミド215.8部を実施例2で用いたフラスコ
に投入口、攪拌しながら以下の操作を行う。
That is, 232.4 parts of the MSf3R latex used in Example 2 (Tg is -1°C), 527.8 parts of distilled water, and 215.8 parts of methacrylamide were added to the flask used in Example 2 and stirred. While doing so, perform the following operations.

先ずフラスコを加温し、フラスコ内液温を50℃に昇温
する。次いで過硫酸カリウム12部を投入して1.5時
間の重合反応を行った後50重量襲のジェタノール12
部を加えて更に8.5時間の重合反応を行う。その結果
固形分35重量%、プルツクフィルド粘度が25°Cで
1050センチポイズの比較対照例の組成物(1扶T比
較例−111−組成物と記す)1000部を得た。
First, the flask is heated to raise the temperature of the liquid inside the flask to 50°C. Next, 12 parts of potassium persulfate was added and a polymerization reaction was carried out for 1.5 hours.
The polymerization reaction was further carried out for 8.5 hours. As a result, 1000 parts of a comparative composition (referred to as 1-T Comparative Example-111-composition) having a solid content of 35% by weight and a Pulckfield viscosity of 1050 centipoise at 25°C was obtained.

応用例 実施例1〜3において得られた本願発明の紙の圧縮強度
向上用組成物の有用性について比1咬例1〜3において
得られた比較例−工〜l’ll−組成物及び下記に示す
従来用いられるポリアクリルアミド及びメラミン−ホル
ムアルデヒド樹脂との比較によって例示する。
Application Examples Regarding the usefulness of the compositions for improving the compressive strength of paper of the present invention obtained in Examples 1 to 3 Comparative Example 1 Comparative Examples obtained in Examples 1 to 3 and the following compositions This will be illustrated by comparison with conventionally used polyacrylamide and melamine-formaldehyde resins.

従来検討されているポリアクリルアミドとして固形分2
0重it%でプルツクフィルド粘度が250Gで350
0センチボイズのもの(商品名ザンタックスC8−18
:三井東圧化学株式会社製)を用い又メラミン−ホルム
アルデヒド樹脂として固形分80重量係でプルツクフィ
ルド粘度が25℃で1050センチボイズのもの(商品
名ニーラミンP−6300:三井東圧化学株式会社製)
を用いた。
The solid content of polyacrylamide, which has been considered so far, is 2.
At 0 weight it%, the Pruckfield viscosity is 250G and 350
0 centimeters (product name: Xantax C8-18)
: manufactured by Mitsui Toatsu Chemical Co., Ltd.) and a melamine-formaldehyde resin with a solid content of 80% by weight and a Purckfield viscosity of 1050 centibois at 25°C (trade name Neelamine P-6300: manufactured by Mitsui Toatsu Chemical Co., Ltd.) )
was used.

先ず、実施例1〜III組成物、比較例−I〜III 
=組成物、ポリアクリルアミド及びメラミン−ホルムア
ルデヒド樹脂を固形分重量でそれぞれ5チになるように
蒸留水で希釈調整する。次いでSCP対段ボール故紙が
重量比で50:50よりなる坪量125g/m”、JI
S規格(P−8122)に定められたステキヒトサイズ
度が15〜16秒の原紙を25CrIL×30cIn角
に切断して重量を測定すると9,375りであった。次
に組成物−■の固形分重量で5%希釈液に上記切断原紙
を5分間浸漬した後2本のロール間で絞って重量を測定
した結果18.759であった。これを30分間室温で
乾燥した後表面温度110°Cのドラムドライヤーを用
いて2.5分間の乾燥を行って組成物−■加工紙を得た
。またこの操作において前記組成物−■の固形分5重量
%の希釈液を用いる代りに組成物■、Elf、比較例−
■〜III MJ成物、ポリアクリルアミド及びメラミ
ン−ホルムアルデヒド樹脂等の固形分5重量%の希釈液
を用いる以外、希釈液浸漬後ロール間で絞って重量を測
定した結果の重量も同一であることも含めて全く同一操
作にて、組成物=II、 Ill、比較例−■、1■、
III・組成物、ポリアクリルアミド及びメラミン−ホ
ルムアルデヒド樹脂によるそれぞれの加工紙を得た。こ
れらの加工紙を相対湿度65係、温度20°Cの恒湿恒
温室で24時間のシーズニングを行って、圧縮強さと割
れの試験を行った。
First, Examples 1 to III compositions, Comparative Examples I to III
= The composition, polyacrylamide, and melamine-formaldehyde resin are each diluted with distilled water to a solid content of 5 g. Next, the weight ratio of SCP to cardboard waste paper was 50:50, basis weight 125 g/m'', JI
A base paper with a Steckigt sizing degree of 15 to 16 seconds as defined in the S standard (P-8122) was cut into 25 CrIL x 30 cIn squares and the weight was measured, and the weight was 9,375. Next, the above-mentioned cut base paper was immersed in a 5% diluted composition (solid content weight) for 5 minutes, squeezed between two rolls, and its weight was measured, and the result was 18.759. This was dried for 30 minutes at room temperature and then dried for 2.5 minutes using a drum dryer with a surface temperature of 110°C to obtain a composition-① processed paper. In addition, in this operation, instead of using a diluted solution of the above-mentioned composition -1 with a solid content of 5% by weight, compositions -1, Elf, and Comparative Example-
■~III Unless a diluent with a solid content of 5% by weight is used for MJ products, polyacrylamide, melamine-formaldehyde resin, etc., the weights measured by squeezing between rolls after being immersed in the diluted solution may also be the same. Composition = II, Ill, Comparative Example -■, 1■,
III. Each processed paper with composition, polyacrylamide and melamine-formaldehyde resin was obtained. These processed papers were seasoned for 24 hours in a constant humidity and constant room at a relative humidity of 65 degrees and a temperature of 20°C, and then tested for compressive strength and cracking.

尚圧縮強さはJIS規格(P−8125)に定められた
圧縮強さ試験方法に従った。割れはそれぞれの加工紙を
57B、X 10 cr/l角に切り取り、5儂×5α
角になるように180°折り曲げ、プレス(幾に挟んで
3kl?/dの圧で5分間のプレスを行って後、プレス
機から取り出してその折り曲げられた部分の割れ具合を
肉眼で判定した。
The compressive strength was measured according to the compressive strength testing method specified in the JIS standard (P-8125). For the cracks, cut each piece of processed paper into a 57B,
After bending 180° to form a corner and pressing for 5 minutes at a pressure of 3 kl/d, the piece was removed from the press and the degree of cracking at the bent portion was visually judged.

ら高分子ラテックスのガラス転移点が加工紙の割れに影
響し、本執発明のすぐれていることがわかる。又組成物
■と比較例−■−組成物から高分子ラテックスとメタク
リルアミドの固形重量比によって有用性が大きく異るこ
とは明らかであり、更して明らかに有用性に差があり、
本願発明の範囲がすぐれていることがわかる。従来検討
されているポリアクリルアミド及びメラミン−ホルムア
ルデヒド樹脂は加工紙の割れの点で本願発明の組成物に
劣り、更にポリアクリルアミドは粘性が高い点でも劣る
It can be seen that the glass transition point of the polymer latex affects the cracking of the processed paper, demonstrating the superiority of the present invention. Furthermore, it is clear from the composition (1) and the comparative example (2) that the usefulness differs greatly depending on the solid weight ratio of polymer latex and methacrylamide, and furthermore, there is a clear difference in usefulness.
It can be seen that the scope of the present invention is excellent. Conventionally studied polyacrylamide and melamine-formaldehyde resins are inferior to the composition of the present invention in terms of cracking of processed paper, and polyacrylamide is also inferior in terms of high viscosity.

この実施例によって本発明に係る組成物は、粘性が低く
、紙に割れ易いようなもろさを残さずに高い圧縮強度を
附与できることが明らかである。
It is clear from this example that the composition according to the invention has a low viscosity and can impart high compressive strength to the paper without leaving it brittle enough to break easily.

Claims (1)

【特許請求の範囲】[Claims] ガラス内転位点が60℃以下の高分子ラテックス(A)
の存在下で、メタクリルアミド[13]を重合してなる
組成物であって、前記(A) : (B)が固形重量比
で97=3〜40:60であることを特徴とする紙の圧
縮強度向−に用組成物。
Polymer latex (A) with a glass dislocation point of 60°C or less
A composition obtained by polymerizing methacrylamide [13] in the presence of a paper, characterized in that the solid weight ratio of (A):(B) is 97=3 to 40:60. Composition for compressive strength.
JP1267883A 1983-01-31 1983-01-31 Composition for enhancing compression strength of paper Granted JPS59144694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267883A JPS59144694A (en) 1983-01-31 1983-01-31 Composition for enhancing compression strength of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267883A JPS59144694A (en) 1983-01-31 1983-01-31 Composition for enhancing compression strength of paper

Publications (1)

Publication Number Publication Date
JPS59144694A true JPS59144694A (en) 1984-08-18

Family

ID=11812031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267883A Granted JPS59144694A (en) 1983-01-31 1983-01-31 Composition for enhancing compression strength of paper

Country Status (1)

Country Link
JP (1) JPS59144694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914142A (en) * 1987-05-19 1990-04-03 Dainippon Ink And Chemicals, Inc. Method of producing emulsion polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914142A (en) * 1987-05-19 1990-04-03 Dainippon Ink And Chemicals, Inc. Method of producing emulsion polymer

Similar Documents

Publication Publication Date Title
JPH05339896A (en) Paper sizing agent and paper sizing
US4115331A (en) Surface sizing compositions for paper
US4030970A (en) Surface sizing of paper with an acrylic copolymer where scum formation is minimized
CN109537358B (en) Polymerization dispersant and environment-friendly surface sizing agent prepared by adopting same
JPH06299494A (en) Sizing agent composition for papermaking and production of paper using the same
JPS59144694A (en) Composition for enhancing compression strength of paper
KR900014432A (en) How to prevent polymer scale adhesion during polymerization
JPH11279983A (en) Surface-sizing agent for paper making
JPH11256496A (en) Surface sizing agent for paper manufacturing
JP2007131747A (en) Adhesive composition
JP3532308B2 (en) Paper processing agent
JP3348920B2 (en) Emulsion composition
JP3351084B2 (en) How to size paper
JP2005336646A (en) Additive for papermaking and paper obtained therefrom
JP3111681B2 (en) Method for producing paper or paperboard with excellent interlayer strength
JP2761923B2 (en) Paper making method
JP3099147B2 (en) Processing agent for paper
JPH0261493B2 (en)
JP6493792B2 (en) Surface paper strength enhancer, surface coating liquid and surface coated paper
JPH10259590A (en) Improving agent for surface paper quality using modified starch
JPH06107956A (en) Emulsion composition
JPS59130398A (en) Composition for enhancing paper rigidity
JP3771661B2 (en) Aqueous resin composition for bonding
JPH03213597A (en) Production of paper having improved horizontal rule fracture
JP3099148B2 (en) Processing agent for paper