JPS5914434B2 - Manufacturing equipment for band-shaped silicon crystals - Google Patents

Manufacturing equipment for band-shaped silicon crystals

Info

Publication number
JPS5914434B2
JPS5914434B2 JP8013181A JP8013181A JPS5914434B2 JP S5914434 B2 JPS5914434 B2 JP S5914434B2 JP 8013181 A JP8013181 A JP 8013181A JP 8013181 A JP8013181 A JP 8013181A JP S5914434 B2 JPS5914434 B2 JP S5914434B2
Authority
JP
Japan
Prior art keywords
band
silicon
crystal
die
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8013181A
Other languages
Japanese (ja)
Other versions
JPS57196795A (en
Inventor
公史 中川
昌匠 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8013181A priority Critical patent/JPS5914434B2/en
Publication of JPS57196795A publication Critical patent/JPS57196795A/en
Publication of JPS5914434B2 publication Critical patent/JPS5914434B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は帯状シリコン結晶の製造装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing band-shaped silicon crystals.

第1図に示すごとく、帯状シリコン結晶11は、シリコ
ン融液12中に垂直に立てられたノズル状構造物既ちキ
ャピラリ・ダイ13(13a、13b)の先端より、種
子結晶(図示せず)を用いて、ダイ13の先端の孔形状
に従った横断面を持って引上げられる。
As shown in FIG. 1, the band-shaped silicon crystal 11 is formed by a seed crystal (not shown) from the tip of a capillary die 13 (13a, 13b), which is a nozzle-like structure vertically erected in the silicon melt 12. is used to pull it up with a cross section that follows the shape of the hole at the tip of the die 13.

14はシリコン融液を収容するルツボであり外界より加
熱されシリコンを融液状に保っている。
Numeral 14 is a crucible containing a silicon melt, which is heated from the outside to keep the silicon in a melt state.

帯状シリコン結晶引上げに際し、ダイ13の中間空隙は
毛細管の役割りをはだし、ダイ13先端に融液を補給す
る。
When pulling a band-shaped silicon crystal, the intermediate gap in the die 13 plays the role of a capillary tube and supplies melt to the tip of the die 13.

中間空隙がこのような機能を持つためには、ダイ13は
シリコン融液12により“濡れる″という物理的性質を
持つ材料により作成されなければならない。
In order for the intermediate gap to have such a function, the die 13 must be made of a material that has the physical property of being "wettable" by the silicon melt 12.

これがダイ13の材質に要求される第1の特性である。This is the first characteristic required of the material of the die 13.

第2にダイ13に要求される特性はシリコン融液12と
接触して使用しても侵蝕変形することなく強固であると
言うことである。
The second characteristic required of the die 13 is that it be strong without being corroded or deformed even when used in contact with the silicon melt 12.

残念ながら現在までの所、これら二つの要求を完全に満
たすダイ材料は発見されていない。
Unfortunately, to date, no die material has been discovered that fully meets these two requirements.

即ち、濡れ特注の良い材料はシリコン融液に侵され、ま
た反対にシリコン融液に対し強固なものは濡れ特性が悪
い。
That is, materials with good wettability are attacked by silicon melt, and conversely, materials that are strong against silicon melt have poor wetting properties.

現在、シリコン帯状結晶を引き上げる際に用いられるダ
イは高密度モールドカーボンによシ作成されている。
Currently, dies used to pull silicon band crystals are made of high-density molded carbon.

高密度モールドカーボンは上記第1の要求は十分に満た
すが第2の要求に対しては不十分であり、カーボンがシ
リコン融液に溶解し、これが原因で引き上げられた帯状
結晶中には、シリコンカーバイドが混入し、これが結晶
の特性を低下させる原因の一つとなっている。
Although high-density molded carbon satisfies the first requirement, it is insufficient for the second requirement. Carbon dissolves in the silicon melt, and as a result, silicon is present in the pulled crystal band. Carbide is mixed in, and this is one of the causes of degrading the properties of the crystal.

本発明はこのような欠点に鑑み成されたものであり、現
在帯状結晶の引上げに用いられているカーボン製のキャ
ピラリ・ダイの構造に工夫を加え帯状結晶中へのシリコ
ンカーバイドの混入を防止した帯状シリコン結晶の製造
装置を提供するものである。
The present invention has been developed in view of these drawbacks, and has improved the structure of the carbon capillary die currently used for pulling band-shaped crystals to prevent silicon carbide from being mixed into the band-shaped crystals. The present invention provides an apparatus for manufacturing band-shaped silicon crystals.

本発明の特徴を詳細に述べる前に帯状シリコン結晶中へ
のシリコンカーバイド混入機構について説明する。
Before describing the features of the present invention in detail, the mechanism of silicon carbide mixing into band-shaped silicon crystals will be explained.

シリコンカーバイドは直径数10pm程度の結晶であり
、帯状結晶を弗酸硝酸混合液等で溶解させると残渣とし
て肉眼でも認識できる大きさを持っている。
Silicon carbide is a crystal with a diameter of about 10 pm, and when a band-shaped crystal is dissolved in a mixed solution of hydrofluoric acid and nitric acid, it has a size that can be recognized with the naked eye as a residue.

このような大きさのシリコンカーバイドが混入する経路
を調べるため、発明者は帯状結晶引上げに使用した後の
ダイを縦割シにして研鏡したところ、ダイ外部にはシリ
コンカーバイドはほとでど認められず、中間空隙部の壁
面よシ結晶成長する形でシリコンカーバイドが存在して
いた。
In order to investigate the route by which silicon carbide of this size gets mixed in, the inventor cut the die after it had been used for pulling a band-shaped crystal and polished it with a mirror, and found that there was almost no silicon carbide outside the die. Silicon carbide was present in the form of crystal growth on the wall surface of the intermediate cavity.

結晶粒の大きさは帯状結晶中に認められるものとほぼ同
等であった。
The size of the crystal grains was almost the same as that observed in band-shaped crystals.

この事実よシ、発明者は帯状結晶中に混入しているシリ
コンカーバイドはダイの中間空隙部壁面に結晶成長した
ものが何等かの機会にはげ落ちて取シ込まれるのである
と結論した。
Based on this fact, the inventor concluded that the silicon carbide mixed in the band-like crystals is a result of crystal growth on the wall surface of the intermediate cavity of the die, which flakes off at some opportunity and is incorporated.

次に発明者はキャピラリ・ダイ中間空隙部にシリコンカ
ーバイドが結晶成長する原因を探るべく、キャピラリ・
ダイ空隙部に石英管でカバーされだ熱電対を挿入し温度
を測定した。
Next, the inventors investigated the cause of silicon carbide crystal growth in the capillary-die intermediate gap.
A thermocouple covered with a quartz tube was inserted into the die cavity to measure the temperature.

その結果、中間空隙部のシリコン融液の温度は上端部が
最も低温であシ、下方に行くに従い高温となっていた。
As a result, the temperature of the silicon melt in the intermediate gap was the lowest at the upper end, and increased toward the bottom.

この事実よシ、発明者はシリコン融液には炭素が溶解し
ておシ、融液が中間空隙部を通過して上昇し、温度低下
を経るに従い炭素溶解度が低下し、溶解しきれなくなっ
た炭素がシリコンカーバイドの形で中間空隙部壁面に結
晶の形で析出すると結論した。
Based on this fact, the inventor discovered that carbon dissolves in the silicon melt, and as the melt passes through the intermediate gap and rises, the solubility of carbon decreases as the temperature decreases, and it is no longer completely dissolved. It is concluded that carbon is precipitated in the form of crystals on the walls of the intermediate cavity in the form of silicon carbide.

結晶中にシリコンカーバイドが混入する機構は以上の如
くであるため、これを避けるには、中間空隙部で温度低
下の無いキャピラリ・ダイを作成すればよい。
Since the mechanism by which silicon carbide is mixed into the crystal is as described above, this can be avoided by creating a capillary die in which the temperature does not drop in the intermediate cavity.

以上の考察に基づいて、本発明におけるキャピラリ・ダ
イは、側端部にのみシリコン融液の上昇経路を有し、こ
の上昇経路を介して上昇したシリコン融液が先端部の結
晶成長領域に水平方向に供給されるように構成する。
Based on the above considerations, the capillary die of the present invention has a rising path for the silicon melt only at the side end, and the silicon melt rising through this rising path is horizontal to the crystal growth region at the tip. It is configured to be supplied in the direction.

これにより、シリコンカーバイドはダイ側端部の縦方向
に温度勾配が形成されるシリコン融液上昇経路でのみ析
出し、縦方向に温度勾配のない結晶成長領域では析出さ
れず、従って良質の帯状シリコン結晶が得られる。
As a result, silicon carbide is precipitated only in the ascending path of the silicon melt where a temperature gradient is formed in the vertical direction at the end of the die, and is not precipitated in the crystal growth region where there is no temperature gradient in the vertical direction. Crystals are obtained.

本発明の実施例の要部構造を第2図に示す。FIG. 2 shows the main structure of an embodiment of the present invention.

第1図と異なるのはキャピラリ・ダイ21 (21a。What is different from FIG. 1 is the capillary die 21 (21a).

21b)の構造である。21b).

即ちダイ21は、第2図aの破線より外側の周辺部にの
み空隙が形成され、中央部には空隙がない。
That is, in the die 21, a void is formed only in the peripheral portion outside the broken line in FIG. 2a, and there is no void in the central portion.

ダイ21の両側端部に、矢印で示すようにダイ先端位置
までシリコン融液を垂直方向に上昇させる上昇経路Al
7 A2が形成されている。
A rising path Al is provided at both ends of the die 21 to vertically raise the silicon melt to the die tip position as shown by arrows.
7 A2 is formed.

この上昇経路A11 A2でのシリコン融液の冷却に従
いシリコンカーバイドはダイ壁面に析出する。
As the silicon melt cools along this ascending path A11-A2, silicon carbide is deposited on the die wall surface.

しかし、この融液上昇経路A17 A2の上方には帯状
結晶成長位置は無く、上昇した融液は矢印の如く水平方
向に経路を変え結晶成長領域Bに供給される。
However, there is no belt-shaped crystal growth position above this melt rising path A17A2, and the rising melt changes its path in the horizontal direction as shown by the arrow and is supplied to the crystal growth region B.

この結晶成長領域Bでは融液の温度低下は無く、従って
グイ壁面へのシリコンカーバイドの析出はない。
In this crystal growth region B, there is no temperature drop of the melt, and therefore no silicon carbide is deposited on the goo wall surface.

結晶成長領域Bの両端部には、融液表層流のストッパ2
20,222が設けられている。
At both ends of the crystal growth region B, there are stoppers 2 for the surface flow of the melt.
20 and 222 are provided.

これにより垂直方向の融液の流れによって発生したシリ
コンカーバイドがグイ壁面からはげ落ち浮上して融液表
面に達した時それが融液の動きによって結晶成長領域B
に到達する事を防いでいる。
As a result, when the silicon carbide generated by the vertical melt flow flakes off from the goo wall surface and floats to the melt surface, it is moved by the movement of the melt into the crystal growth area B.
It prevents it from reaching .

発明者が上述の如き形状の高密度モールドカーボンから
なるダイを用いて帯状シリコン結晶の引上げを行った結
果、従来帯状結晶1d当りほぼ1箇存在したシリコンカ
ーバイドは、実質的にほとんど零となシ、まれに発見さ
れるものについてもその大きさは小さく10μm以下で
あった。
As a result of the inventor pulling a band-shaped silicon crystal using a die made of high-density molded carbon having the shape described above, silicon carbide, which conventionally existed at approximately one point per 1 d of band-shaped crystal, was reduced to virtually zero. , even those rarely found were small in size, less than 10 μm.

また、帯状結晶を構成する個々の微結晶の粒径は大きく
なり、有害度の低い双晶粒界がほとんどを占めるように
なった。
In addition, the grain size of the individual microcrystals constituting the band-shaped crystals has increased, and less harmful twin grain boundaries have come to occupy most of the grains.

また、帯状結晶の表面凹凸は従来の数10μm以下へと
低下し、結晶の引上げ失敗は大幅に少くなった。
Furthermore, the surface irregularities of the band-shaped crystals have been reduced to several tens of micrometers or less compared to the conventional method, and the number of crystal pulling failures has been significantly reduced.

これは帯状結晶を縦方向へ駆動するローラにシリコンカ
ーバイドが引っかかる事がなく引上げが円滑となったた
めである。
This is because the silicon carbide was not caught by the rollers that drive the strip crystal in the vertical direction, and the pulling was smooth.

以上説明したように本発明によれば、カーボン製キャピ
ラリ・ダイの構造を改良して、帯状シリコン結晶へのシ
リコンカーバイドの混入を防止し良質の帯状シリコン結
晶を得ることができる。
As explained above, according to the present invention, the structure of the carbon capillary die is improved, silicon carbide is prevented from being mixed into the band-shaped silicon crystal, and high-quality band-shaped silicon crystal can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは従来の帯状シリコン結晶の製造装置を概
念的に説明する正面図と側面図、第2図a、bは本発明
の一実施例の要部構造を概念的に説明する正面図と側面
図である。 11・・・・・・帯状シリコン結晶、12・・・・・・
シリコン融液、2H21a、21b)・・・・・・キャ
ピラリ・ダイ、A11 A2・・・・・・融液上昇経路
、B・・・・・・結晶成長領域、22゜、22□・・・
・・・ストッパ。
1A and 1B are a front view and a side view conceptually explaining a conventional band-shaped silicon crystal production apparatus, and FIGS. 2A and 2B are conceptually explaining the main structure of an embodiment of the present invention. They are a front view and a side view. 11... Band-shaped silicon crystal, 12...
Silicon melt, 2H21a, 21b)... Capillary die, A11 A2... Melt rising path, B... Crystal growth region, 22°, 22□...
...Stopper.

Claims (1)

【特許請求の範囲】 1 シリコン融液を収容したルツボにカーボン製のキャ
ピラリ・ダイを配し、このキャビシリ・ダイ先端部に上
昇したシリコン融液に種子結晶を接触させ、この種子結
晶を引上げることにより帯状シリコン結晶を製造する装
置において、前記キャピラリ・ダイは、側端部にのみシ
リコン融液の上昇経路を有し、この上昇経路を介して上
昇したシリコン融液が先端部の結晶成長領域に水平方向
に供給されるように構成されていることを特徴とする帯
状シリコン結晶の製造装置。 2 キャピラリ・グイ先端部の結晶成長領域両端部にシ
リコン融液の表層流を防止するストッパを有する特許請
求の範囲第1項記載の帯状シリコン結晶の製造装置。
[Claims] 1. A carbon capillary die is placed in a crucible containing a silicon melt, a seed crystal is brought into contact with the silicon melt rising to the tip of the capillary die, and the seed crystal is pulled up. In the apparatus for producing a band-shaped silicon crystal, the capillary die has a rising path for the silicon melt only at the side end, and the silicon melt rising through this rising path reaches the crystal growth region at the tip. 1. An apparatus for producing a band-shaped silicon crystal, characterized in that it is configured to be supplied in a horizontal direction. 2. The device for producing a band-shaped silicon crystal according to claim 1, which has stoppers at both ends of the crystal growth region at the tip of the capillary gouer to prevent surface flow of the silicon melt.
JP8013181A 1981-05-28 1981-05-28 Manufacturing equipment for band-shaped silicon crystals Expired JPS5914434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8013181A JPS5914434B2 (en) 1981-05-28 1981-05-28 Manufacturing equipment for band-shaped silicon crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8013181A JPS5914434B2 (en) 1981-05-28 1981-05-28 Manufacturing equipment for band-shaped silicon crystals

Publications (2)

Publication Number Publication Date
JPS57196795A JPS57196795A (en) 1982-12-02
JPS5914434B2 true JPS5914434B2 (en) 1984-04-04

Family

ID=13709670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8013181A Expired JPS5914434B2 (en) 1981-05-28 1981-05-28 Manufacturing equipment for band-shaped silicon crystals

Country Status (1)

Country Link
JP (1) JPS5914434B2 (en)

Also Published As

Publication number Publication date
JPS57196795A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
JP5276446B2 (en) Method and apparatus for pulling low liquidus viscosity glass
US4956208A (en) Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
Pollock Filamentary sapphire: Part 1 Growth and microstructural characterisation
JPS59156993A (en) Method and device for doping cz single crystal
JPH0139998B2 (en)
JP3496388B2 (en) Supply method and supply pipe for granular silicon raw material
JPS5914434B2 (en) Manufacturing equipment for band-shaped silicon crystals
NL8000851A (en) METHOD AND APPARATUS FOR MANUFACTURING CRYSTALS
JPS5994813A (en) Taped silicon unit producing apparatus
JPH07256624A (en) Method and device for continuously casting silicon plate
JPH09249494A (en) Crucible for melting silicon
JPS63199049A (en) Continuous crystal growth method
US4260007A (en) Method and apparatus for casting amorphous filament using a crucible with a boric oxide seal
US4213940A (en) Apparatus for pulling monocrystalline ribbon-like bodies out of a molten crystalline film
JP4086006B2 (en) Method for producing compound semiconductor single crystal
JP2636929B2 (en) Method for producing bismuth germanate single crystal
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPS5845191A (en) Method and device for manufacturing crystalline ribbon
JPS62161443A (en) Casting method for fine metallic wire
JPH06206788A (en) Crucible for producing single crystal and production of single crystal
JP3318012B2 (en) Method and apparatus for producing metal single crystal
JP4863635B2 (en) Casting method of polycrystalline silicon ingot
JPS6090892A (en) Method and device for producing belt-like silicon crystal
JPS5973492A (en) Apparatus for preparation of silicon strip crystal