JPS59144348A - Multipolarly magnetized magnet for rotary electric machine - Google Patents

Multipolarly magnetized magnet for rotary electric machine

Info

Publication number
JPS59144348A
JPS59144348A JP1486083A JP1486083A JPS59144348A JP S59144348 A JPS59144348 A JP S59144348A JP 1486083 A JP1486083 A JP 1486083A JP 1486083 A JP1486083 A JP 1486083A JP S59144348 A JPS59144348 A JP S59144348A
Authority
JP
Japan
Prior art keywords
magnet
electric machine
rotary electric
pole
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1486083A
Other languages
Japanese (ja)
Inventor
Akihiko Ikegami
昭彦 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP1486083A priority Critical patent/JPS59144348A/en
Publication of JPS59144348A publication Critical patent/JPS59144348A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To obtain a magnet of a high performance rotary electric machine by maximizing the width of the poles of the magnet at the center and minimizing at both ends. CONSTITUTION:A multipolarly magnetized magnet used for a rotary electric machine such as a motor, a generator or the like is constructed to maximize the width of the poles at the center of the pole and to minimize at both ends of the pole, and the side faces are shaped in smooth wavy shape. With this structure, the distribution of the effective magnetic flux becomes sinusoidal wave shape, and cogging can be reduced to zero.

Description

【発明の詳細な説明】 本発明は、電動機の駆動用等、回転庫づ六に用いる多極
層磁された磁石に於いて、フラッタ−成分の原因となり
、起動トルクを減少させる青、I!21転電機の特注上
有否な効呆金もたら丁ところのコギング全発生させる磁
束成分全減少させる為の、回転を懺用の多極着磁磁石の
、各磁愼味の幅の変化形状に関丁ゐ。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a multi-layered magnet used in a rotary box for driving an electric motor, etc., which causes a flutter component and reduces the starting torque. 21 Changing the shape of the width of each magnetic field of the multi-polar magnetized magnet for controlling rotation in order to completely reduce the magnetic flux component that causes cogging, which is a special feature of custom-made converters. Sekicho.

第1図に従来の回転電愼用多惚着磁磁石の形状金、刀2
図に該磁石の平面展開断血図と表面磁束音紋の分亜状態
を示す。
Figure 1 shows the shape of a conventional magnet for rotating electric machines.
The figure shows a planar developed blood cut diagram of the magnet and the state of separation of the surface magnetic flux trace.

第1図と第2図で、破線は各@極の想像上の分割線、矢
印は磁化の方向を示す。
In Figures 1 and 2, the dashed lines indicate imaginary dividing lines for each @pole, and the arrows indicate the direction of magnetization.

第2図の、磁石の表面磁束蜜咬の分布を衣ゎす曲線(以
下、崩値波形と呼ぶ)で、回転電域として求められる理
想的なM6波形、正弦波の形状である事が知られている
。第2凶の着磁波形で、正弦波と異な/:)点は、半周
期の波形のうち、最大値全示゛r点が、半彼艮の中心で
はなく、両側の肩の部分2か1ツ丁に分かれており、中
lb都が逆に低くなっている点で、これは正弦波より、
台形彼に近いと1える。この着磁波形の磁石上、例えば
有鉄lb型の電動機に使用した場合、着磁波形の両肩の
盛りあがっている部分が、口〜ターの回転運動に対して
反対向きの制動トルクとして働いてコギングを生じ、7
ラツタ一成分の増大、起動トルクの減少前の原因となる
ものでるる。このせ形及に近い形の着磁波形を、滑らか
な正弦波状の形状にする為には、庸仏磁界を磁石が紀和
しない程度の大きさに抑えて、同かつ着磁ヨークの形状
勿工夫すれば可能である。ところが、この方法によると
、着磁時に充分な磁界をたける事ができない為、磁石の
特性を充分に生かした製品が作れない事になり、従って
電動機としての特性も充分なものとは成し得なくなる。
The curve in Figure 2 that changes the distribution of the surface magnetic flux density of the magnet (hereinafter referred to as the collapse value waveform) is known to be the ideal M6 waveform and sine wave shape required for the rotating electric field. It is being This is the second worst magnetization waveform, which is different from the sine wave.The point is that the maximum value full display point of the half-cycle waveform is not at the center of the half-cycle, but at the shoulders 2 on both sides. It is divided into 1 tsu-cho, and the middle LB capital is lower than the sine wave.
If the trapezoid is close to him, it will be 1. When used on a magnet with this magnetized waveform, for example in a ferrous LB type electric motor, the raised portions on both shoulders of the magnetized waveform act as a braking torque in the opposite direction to the rotational movement of the magnet. Causes cogging, 7
This is the cause of the increase in the rattling component and the decrease in starting torque. In order to make the magnetization waveform, which is close to the curved shape, into a smooth sinusoidal shape, it is necessary to suppress the magnetic field to a level that the magnet does not harmonize with, and at the same time, to improve the shape of the magnetization yoke. It is possible if you do. However, with this method, it is not possible to generate a sufficient magnetic field during magnetization, so it is not possible to create a product that takes full advantage of the characteristics of the magnet, and therefore it is not possible to create a product that has sufficient characteristics as an electric motor. It disappears.

不発明は、これらの欠点を解決する為に、磁石の各磁極
部の幅を、磁極の中央部で最大に、磁極の両端部で最小
になる唾、なだらかに変化jろ形状とし、磁石の特性を
充分に引き出せるだけの着磁磁界を加えて磁石を飽和さ
せても、回転電機内で磁石と対向しているコアーたら見
た磁果分蒲を正弦波の形状となし、より高性能の回転室
F&に作成し得る回転電伝用多極着磁磁石全提供するも
のである。
In order to solve these drawbacks, the invention was designed so that the width of each magnetic pole part of the magnet is the largest at the center of the magnetic pole and the smallest at both ends of the magnetic pole, and the width changes gently. Even if the magnet is saturated by applying a magnetizing magnetic field that is strong enough to fully bring out its characteristics, the core facing the magnet in the rotating electrical machine will still have a sine wave shape as seen from the magnetic flux, which will result in higher performance. We provide all multi-polar magnetized magnets for rotating electrical transmission that can be made in the rotating chamber F&.

矢に、本発明の詳細な説明する。The details of the present invention will be explained in detail with reference to the arrows.

一般に、回転電戦等に使用する磁石の動作点のパーミア
ンス係数を簡易的に耐昇する118は、磁石断面積、磁
石長さく厚み)、空@断面1貢、空隙長さ、を谷々等価
旧な磁気回路に置き侠えて耐昇する。従ってここでもそ
の方法上用いて、第3図の等価回路に基づいて考える。
In general, 118, which simply increases the permeance coefficient at the operating point of magnets used in rotary electric warfare, etc., is equivalent to the magnet cross-sectional area, magnet length and thickness), air @ cross-section 1 load, and air gap length. It can be placed in the old magnetic circuit and resists rising. Therefore, this method will be used here as well, and consideration will be given based on the equivalent circuit shown in FIG.

第6図に於いて、Amは等価磁石lfT面積、Amは等
価磁石長さ、A2は等価空隙断面槓、A2は等価空隙長
さである。又、1は磁石、2は磁石と対向するコア、3
はバックヨークである。第6図の場合に、磁石の動作点
のパーミアンス係数には なる式で表わされる。ここで、磁石の幅會変化させる事
に甑って、kを変化させる時、(1)式に於いて” +
 j2 ’ + 2 m は変わらず、定数として扱え
るから、Aノ・I!、 m / fl、 li’ = 
cと置いて(1)弐全書き直すと、 k = c/ p、 rn       ・・・・川・
・・川・・(2+となる。更に磁石の鳴音Lhとして、
Am=LcxLb 。
In FIG. 6, Am is the equivalent magnet lfT area, Am is the equivalent magnet length, A2 is the equivalent air gap cross section, and A2 is the equivalent air gap length. Also, 1 is a magnet, 2 is a core facing the magnet, and 3
is the back yoke. In the case of FIG. 6, the permeance coefficient at the operating point of the magnet is expressed by the following equation. Here, when k is changed by changing the width of the magnet, in equation (1), `` +
Since j2' + 2 m does not change and can be treated as a constant, Ano・I! , m/fl, li' =
If we put it as c and rewrite (1) Nizen, k = c/ p, rn... river...
...River...(2+.Furthermore, as the sound Lh of the magnet,
Am=LcxLb.

q’=0/Lmとすると、(2)式は更に次の様に書き
直せる。
If q'=0/Lm, equation (2) can be further rewritten as follows.

k=c7Lh        ・・・・旧・・・川・・
+3)この様に、磁石の幅會変化させる墨に依り、磁石
の動作点のパーミアンス係数を変化させるという操作を
、谷磁極中の、微小長さ部分について連続的に行なうと
、磁極全体としては完全に1liil!和する大きさの
着磁磁界を刃口えて磁石の特注全充分に生で為しながら
、コア刀)ら児た磁束(微小磁石の磁束密度と面積の績
9分布を台形状ではなく、清ら〃為な正弦波状の渚磁彼
形と″j心事がでさぁ。
k=c7Lh...old...river...
+3) In this way, if the operation of changing the permeance coefficient at the operating point of the magnet by changing the width of the magnet is performed continuously for a minute length part in the valley magnetic pole, the overall magnetic pole will become Completely 1liil! While customizing the magnet with a magnetizing magnetic field of a size that matches the sum of the magnets, the core sword) and the resulting magnetic flux (magnetic flux density and area distribution of micro magnets9 distribution are not trapezoidal but clear). I have a feeling about Nagisa's sine wave shape and his heart.

すなわち、(3)式で、Lh金減らすと、磁石の動作点
のノミーミアンス係叙は、Lhに反比例して壇える。
That is, in equation (3), when Lh is reduced, the nominal operating point of the magnet becomes inversely proportional to Lh.

磁石のB −H減磁特性図上で、動作点のパーミアンス
係数kkとして式で表わすと B=−kH・・・・・・・・・・・・・・・(4)とな
る。B−H減磁特性図上で、マイナーループをフェライ
ト磁石、希土類磁石等の場@を例にとって、近似式で示
すと、 43=H十Br    ・・・・・・・・・・・+5)
と表わされゐ。(4)式と(5)式の欠点のB(1)匝
が磁石の動作点での磁束密度の1区となる。これ全計誹
すると、仄式で与えられる。
When expressed as the permeance coefficient kk at the operating point on the B-H demagnetization characteristic diagram of the magnet, it becomes B=-kH (4). On the B-H demagnetization characteristic diagram, the minor loop is expressed by an approximate formula using the field of ferrite magnets, rare earth magnets, etc. as an example: 43=H+Br ・・・・・・・・・・・・・・・+5)
It is expressed as. B(1), which is a drawback of equations (4) and (5), is one section of the magnetic flux density at the operating point of the magnet. If we slander all of this, we will be given the following formula.

Br B −□         ・・・・・・・・・・・・
・・(6)1+に 従って有効磁束は、(6)式のBに、微小磁石の表面積
(S=ΔLnoxLh)2乗じた匝に比例する。こわを
(7)式に示す。
Br B −□ ・・・・・・・・・・・・
...(6) According to 1+, the effective magnetic flux is proportional to B in equation (6) multiplied by the square of the surface area of the micromagnet (S=ΔLnoxLh). The stiffness is shown in equation (7).

ΦOc(ΔLmxLb)xμ■ ・・・・・・・・・(
7)1+k (3)式と(7)弐′IJ)ら、微小磁石の幅を変化さ
せた時の有効磁束の変化を導く式を求めると となる。但し、△LmとBrは足載として、C“−ΔL
rn。
ΦOc(ΔLmxLb)xμ■ ・・・・・・・・・(
7) 1+k From equation (3) and (7) 2'IJ), the equation that leads to the change in effective magnetic flux when the width of the micromagnet is changed is determined as follows. However, △Lm and Br are assumed to be C"-ΔL
rn.

Br−C′と置いた。(8)式に於いて、C′は正であ
るから、ΦはLhに対して卑調増加蘭数となっている。
It was set as Br-C'. In equation (8), since C' is positive, Φ is a low-key increasing number with respect to Lh.

故に、微小磁石の幅會変化させる事に依って有効磁束の
1@全比?1]して変化させる事ができる。即ち、有効
磁束を正弦波状の分布として利用できる事となめ。
Therefore, by changing the width of the micromagnet, the effective magnetic flux can be reduced to 1@total ratio? 1] can be changed. In other words, the effective magnetic flux can be used as a sinusoidal distribution.

以上説明した方法に依って、磁石の形状を第4凶1.又
は第5図に示す様にすると、対向するコアー或いは巻線
の利用できる有効磁束の分布は第6図に示す様に正弦波
状となり、コギングが理論的に零になる1で低減、でき
る為、電wJJ機に使用すればワウ・フラッタ−の低(
城、起動トルクの壇刃口、消費電流値の低減、七−ター
効率の向上等に著しい効果を生ずる。また、発電機に用
い′fC,場合は、清ら7Jhな正弦波状の発電電圧が
得られ、該発電電圧波形の利用に■利でろゐという効果
もめゐ。同、第4図と第5図で破線は谷磁憾の想漂上の
分割臆矢印は磁化の方向を示す。
Using the method explained above, the shape of the magnet can be changed to Or, if it is done as shown in Fig. 5, the distribution of effective magnetic flux that can be used by the opposing cores or windings becomes sinusoidal as shown in Fig. 6, and cogging can be reduced by 1, which theoretically becomes zero. Low wow and flutter when used on electric wJJ machines (
It produces remarkable effects in terms of speed, starting torque, reduction of current consumption, improvement of seven-wheel efficiency, etc. In addition, when used in a generator, a pure 7Jh sinusoidal generated voltage can be obtained, and the generated voltage waveform can be used profitably. In FIGS. 4 and 5, the broken line indicates the direction of magnetization.

従って、本発明の、各磁極の幅が磁極の中央部で最大、
磁極の両端部で最小となめ様に側聞がなたら7Jλな波
形の形状をなす多極着磁磁石ば、電動機−発電磯等広汎
カ軛囲の回転直載に応用可能であり、特に電動機につい
て百えば、ブラシ竹、ブラシレス、人凰、小型等を問わ
ず使用でき心。
Therefore, in the present invention, the width of each magnetic pole is maximum at the center of the magnetic pole.
A multi-pole magnetized magnet with a waveform of 7Jλ with the minimum slanted sides at both ends of the magnetic poles can be applied to a wide range of applications such as electric motors and power generation rocks, and is particularly applicable to electric motors. In other words, it can be used regardless of whether it is brushed bamboo, brushless, human or small.

また、不発明に係る形状の磁石は、各図で示したラジア
ルギャップ型の・反用形態のみならす、アキシャルギャ
ップ型のN転電磯にも同様の方法によって対応し、使用
する事ができる。
Further, the magnet having the shape according to the invention can be applied and used not only in the radial gap type/reverse type shown in each figure, but also in the axial gap type N-type electric iso by the same method.

同、不発明に〃S刀詣る形状の磁石の製造は、射出成形
法を用いるのが、形状の自由曲等の凹刀1ら最適である
が、その他に、切削法、焼結法、玉箱成形法等に依って
も艮いし、又、それらの方法の組み合わせに依って製造
してもか普わない。
In order to manufacture a magnet with a shape similar to the one described above, it is best to use injection molding, such as a concave blade 1 with a free curved shape, but there are other methods such as cutting, sintering, etc. It may be manufactured by a ball box molding method or the like, or by a combination of these methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の′亀動愼用多極焉磁磁石の代表的な形
状のもの。第2図は、渠1図の磁石の平面展開断面図と
、該磁石の表面磁束密度の分布状態を衣V丁曲縁。第3
図は一般的な電動域で、磁°石の動作点のハーミアンス
係数を算出する為の等価磁気回路の参考図。第4図と第
5凶は、不発明のlだらカニな波形の磁惨側面形状をM
する磁石形状の例。第6凶は、第4図、第5図の磁石の
平面展開#T面図と、該磁石の磁果督度全空隙全隔てて
対間するコアー上で測つ″fL場会の磁束密度の分布状
態上表わす曲線。各図中の矢印は、磁極の磁化方向全示
踵破線は各磁惚の想渾上の分割綴葡示す。 1 ・・・等1曲端石 2・・4+価な空隙を隔てて対間するコアー3・・・バ
ックヨーク 以   上 出願人 ゛株式会社瞠肋硝工舎 第4I¥! 第5図 第6図 手続補正書°(方式) 昭和58年  特許卯第 14860弓2、発明の名称 回転嘔機用多極着礎磁石 3 補正をする者 代表斬役中村恒也 4代理人 5、補正命令の日付 昭和58年4月26日 別紙の通!llt′:) 手続補正筈(方式) 「第6図は一般的な亀1lilI機で、磁石の動作点の
パーミアンス係数全算出する為の等価磁気回路の参考図
。」 とあるを、 「第3図は一般的な也勅機で、磁石の動作点のパーミア
ンス係数を舅、出する為の等価磁気回路を示す図。」 
に補正する。 以   上
Figure 1 shows a typical shape of a conventional multi-pole magnet. Figure 2 is a planar developed cross-sectional view of the magnet shown in Figure 1 and the distribution of the surface magnetic flux density of the magnet. Third
The figure is a reference diagram of an equivalent magnetic circuit for calculating the harmeance coefficient of a magnet's operating point in a general electric range. Figures 4 and 5 are M
Examples of magnet shapes. The sixth problem is the flat developed #T plane view of the magnet in Figures 4 and 5, and the magnetic flux density of the ``fL field'' measured on the pair of cores separated by the entire magnetic field gap of the magnet. A curve expressed on the distribution state of.The arrows in each figure indicate the entire magnetization direction of the magnetic poles.The broken heel line indicates the division spelling on the imagination of each magnetic field.1...etc.1 curved edge stone2...4+ valence Core 3... back yoke and above, which are interposed with a gap in between. Applicant: ゛Marisho Glass Co., Ltd. No. 4 I\! Figure 5 Figure 6 Procedural amendment ° (Method) 1988 Patent number 14860 Bow 2, Name of the invention Multipolar foundation magnet for rotary machine 3 Person making the amendment Representative Tsuneya Nakamura 4 Agent 5 Date of amendment order April 26, 1980 Attached letter!llt': ) Procedural correction should be made (method) ``Figure 6 is a reference diagram of the equivalent magnetic circuit for calculating all the permeance coefficients at the operating point of the magnet for a general Kame 1liI machine.'' This is a diagram showing an equivalent magnetic circuit for calculating the permeance coefficient at the operating point of a magnet using a conventional machine.
Correct to. that's all

Claims (1)

【特許請求の範囲】[Claims] 回転電機に用いる多極着磁された磁石に於いて各磁極の
幅が、磁極の中央部で最大に、磁極の両端部で取手にな
る様に、側面がなだらかな、波形の形状をtす事全%敵
とする回転電機用多極着磁磁石。
In multi-pole magnetized magnets used in rotating electric machines, each magnetic pole is shaped in a waveform shape with gentle sides so that the width of each magnetic pole is maximum at the center of the magnetic pole and handles are formed at both ends of the magnetic pole. Multipolar magnetized magnets for rotating electric machines are the enemy of all.
JP1486083A 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine Pending JPS59144348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1486083A JPS59144348A (en) 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1486083A JPS59144348A (en) 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS59144348A true JPS59144348A (en) 1984-08-18

Family

ID=11872777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1486083A Pending JPS59144348A (en) 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS59144348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153454A (en) * 1983-02-16 1984-09-01 Kichi Kaiba Coreless motor
EP0193611A1 (en) * 1984-08-29 1986-09-10 Fanuc Ltd. Permanent magnet field system synchronous motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153454A (en) * 1983-02-16 1984-09-01 Kichi Kaiba Coreless motor
EP0193611A1 (en) * 1984-08-29 1986-09-10 Fanuc Ltd. Permanent magnet field system synchronous motor

Similar Documents

Publication Publication Date Title
KR920000717B1 (en) Brushless motor
EP0746079B1 (en) Motor with built-in permanent magnets
JPS61280744A (en) Rotor with permanent magnet
JPS62110468A (en) Permanent magnet field type brushless motor
JP2004072957A (en) Rotor of permanent magnet type dynamo electric machine
JPH11299131A (en) Motor with gap having various shape
JP2004015978A (en) Linear motor
JP2823817B2 (en) Permanent magnet embedded motor
JP3211457B2 (en) Brushless motor
JP2004135375A (en) Rotor structure of coaxial motor
JPS59144352A (en) Multipolarly magnetized magnet for rotary electric machine
JPS59144348A (en) Multipolarly magnetized magnet for rotary electric machine
JP3350971B2 (en) PM type vernier motor
JP2009240127A (en) Axial-type rotating machine
JPS6074940A (en) Motor-driven motor
JPS59139842A (en) Multipolarized magnet for rotary electric machine
JP2598770Y2 (en) Rotating electric machine
JPS6091858A (en) Electromagnetic drive device using permanent magnet
JPH0681463B2 (en) Rotating electric machine
JP3509407B2 (en) Permanent magnet motor
JP2004120829A (en) Permanent magnet synchronous motor
DE3879485D1 (en) SELF-STARTING SINGLE-PHASE SYNCHRONOUS MOTOR.
JP3720940B2 (en) Reluctance motor
JPS6192134A (en) Motor
JPS5571163A (en) Rotary electric machine