JPS59144352A - Multipolarly magnetized magnet for rotary electric machine - Google Patents

Multipolarly magnetized magnet for rotary electric machine

Info

Publication number
JPS59144352A
JPS59144352A JP58014852A JP1485283A JPS59144352A JP S59144352 A JPS59144352 A JP S59144352A JP 58014852 A JP58014852 A JP 58014852A JP 1485283 A JP1485283 A JP 1485283A JP S59144352 A JPS59144352 A JP S59144352A
Authority
JP
Japan
Prior art keywords
magnet
electric machine
rotary electric
shape
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58014852A
Other languages
Japanese (ja)
Inventor
Akihiko Ikegami
昭彦 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58014852A priority Critical patent/JPS59144352A/en
Publication of JPS59144352A publication Critical patent/JPS59144352A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To obtain a multipolarized magnet of a high performance rotary electric machine by forming the surface of each pole in smooth crest shape. CONSTITUTION:An axial gap type rotary electric machine is formed of multipolarized magnet. The surface of each pole is formed in smooth crest shape by this magnet, and the actual magnetic flux density distribution of the case associated in a rotary electric machine is formed in a sinusoidal wave shape as shown. In this manner, cogging component can be reduced to zero, thereby increasing the starting torque.

Description

【発明の詳細な説明】 本発明は、電動機の駆動用等、回転電機に用いる多極着
磁された磁石に於いて、7ラツク一成分の原因となり、
起動トルフケ減少させる弄、回転電機の特性上有害な効
果をもたらすところのコキングを発生させる磁束成分2
減少させる為の、アキシャルギャップ型回転電域用の多
極増磁磁石の表面の形状に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a multi-pole magnetized magnet for use in rotating electric machines, such as for driving electric motors, which causes 7-lack one component,
Magnetic flux component 2 that reduces startup torque and generates coking, which has a harmful effect on the characteristics of rotating electrical machines.
This invention relates to the surface shape of a multipole magnetizing magnet for an axial gap type rotating electric field.

第1図に従来のアキシャルギャップ型回転電機用多極着
磁磁石の形状會、第2凶に該磁石の平面展開断面図と表
面磁束密度の分布状態を示す。
FIG. 1 shows the shape of a conventional multi-polar magnetized magnet for an axial gap type rotating electric machine, and FIG. 2 shows a planar developed cross-sectional view of the magnet and the distribution of surface magnetic flux density.

第1図と第2図で、破線に各磁極の想像上の分割線、矢
印に磁化の方向忙示す。
In FIGS. 1 and 2, the dashed lines indicate imaginary dividing lines for each magnetic pole, and the arrows indicate the direction of magnetization.

第2図の、磁石の表面磁束@度の分布上表わす曲線(以
下、N磁波形と呼ぶ〕で、回転電機として求められる理
想的な着磁波形は、正弦波の形状である事が知られてい
る。第2図の着磁波形で、正弦波と異る点は、半周期の
波形のうち、最・入植【示す点が、半波長の中心ではな
く、両側の肩の部分2か所に分力)れており、中心部が
逆に低くなっている点で、これば正弦波より、台形波に
近いと百える。この着磁波形の磁石r1例えば有鉄心型
の電動機に・開用した場合、着磁波形の両肩の盛ジあが
っている部分が、ローターの回転運動に対して反対向き
の制動トルクとして働いてコギング2生じ、7シンタ一
成分の増大、起動トルクの減少等の原因となるものであ
る。この台形仮に近い形の眉憬波形忙、滑ら刀λな正弦
波状の形状にする為には、増磁磁界を磁石が飽和しない
程度の大きさに抑えて、向かつ増磁ヨークの形状を工夫
すれば可能である。ところが、この方法によると、眉a
時に充分な磁界tかける事ができない為、磁石の特注i
充分に生〃為した製品が作れない事になり従って電動機
としての特注も充分なものとは成し得なくなる。
It is known that the ideal magnetization waveform required for a rotating electric machine is a sine wave shape, as shown in the curve (hereinafter referred to as the N magnetic waveform) shown in Figure 2, which represents the distribution of surface magnetic flux @ degree of a magnet. The difference between the magnetization waveform in Figure 2 and the sine wave is that the point shown is not at the center of the half-wave, but at the two shoulders on both sides. This wave is closer to a trapezoidal wave than a sine wave in that the center is lower. When the magnet r1 with this magnetized waveform is used, for example, in a core type electric motor, the raised portions on both shoulders of the magnetized waveform act as a braking torque in the opposite direction to the rotational movement of the rotor. This causes cogging 2, an increase in the 7-sinter component, and a decrease in starting torque. In order to create a curved sine wave shape that is close to a trapezoid, the magnetizing magnetic field should be suppressed to a level that does not saturate the magnet, and the shape of the magnetizing yoke should be devised. It is possible if you do. However, according to this method, eyebrow a
Sometimes it is not possible to apply a sufficient magnetic field, so we have to make custom-made magnets.
This means that it will not be possible to produce a sufficiently well-made product, and therefore, a custom-made electric motor will not be able to be made sufficiently.

本発明に、これらの欠点荀解決する為に、磁石の各磁極
部の表面をなだらかな山形の形状とし、磁石の特注を充
分に引き出せるだけの着磁但界−會加えて磁石−全飽和
させても、回転電機ビ3で磁石と対向しているコアー刀
)ら児た磁束@度分布ケ正弦波の形状となし、より普性
能の回転篭g=作成し得る回転電愼用多極増磁磁石を提
供するものである。
In order to solve these drawbacks, the present invention has the surface of each magnetic pole part of the magnet in a gentle mountain shape, and in addition to the magnetization field sufficient to fully bring out the customization of the magnet, the magnet is fully saturated. Even if the core blade is facing the magnet in the rotating electric machine B3), the magnetic flux @ degree distribution will have a sinusoidal shape, and the rotating cage with more general performance can be created. It provides a magnet.

次に、不発明の特’@’に説明する。Next, we will explain the characteristic of non-invention '@'.

一般に、回転電機等に使用する磁石の動作点のハーミア
ンス係eを簡易的に計算する時は、磁石断面積、磁石長
さく厚み)、空111!断面槙、空隙長さ、r各々等価
的な磁気回路に置き侠えて計算する。従ってここでもそ
の方法を用いて、第4図の等価回路に基づいて考える。
In general, when calculating the harmeance coefficient e at the operating point of a magnet used in a rotating electric machine, etc., it is necessary to calculate the following: magnet cross-sectional area, magnet length, thickness), sky 111! The cross section, gap length, and r are each calculated by placing them in an equivalent magnetic circuit. Therefore, this method will be used here as well, and consideration will be given based on the equivalent circuit shown in FIG.

第6図に於いて、Afflに等動磁石断面積、μmは等
価磁石長さ、八1に等価空隙断面槓、λ゛2に等価空隙
長さである。又、1は磁石、2V:L磁石と対向するコ
ア、3はバンクヨークである。第6図の場合に、磁石の
動作点のパーミアンス係数に、 なる式で表わされる。ここで、磁石の厚さ?変化させる
事に依って、空隙の長さ?同寸法だけ変化させる様な操
作を行なうと、(1)式に於いて、Al’とAmは変化
せずに、定数として扱う事ができるから、At’/′A
m=Cと置いて、(1)弐を書き直すととなる。この様
な磁石の厚さ?変化させる事に依って同時□に空隙狡さ
を変化させるという操作全磁石の各嵯愼中の微小部分に
ついて連続的に行なって行くと、各磁極部の微小磁石の
動作点のパーミアンス係数を滑ら刀−に連続的に変化さ
せる事ができる。従ってこの方法にがれば、磁石が児全
に飽和する大きさの着磁磁界を与えて、磁石の特性音充
分に生かしながら、回転電機にとって有否な台形状の潰
磁波形?避け、滑らかな正弦阪状の着磁波形會得る事が
できる。
In FIG. 6, Affl is the constant moving magnet cross-sectional area, μm is the equivalent magnet length, 81 is the equivalent air gap cross section, and λ2 is the equivalent air gap length. Further, 1 is a magnet, a core facing the 2V:L magnet, and 3 is a bank yoke. In the case of Fig. 6, the permeance coefficient at the operating point of the magnet is expressed by the following formula. Where is the thickness of the magnet? By changing the length of the void? If we perform an operation that changes the same dimension, Al' and Am do not change in equation (1) and can be treated as constants, so At'/'A
If we put m=C and rewrite (1) 2, we get How thick is a magnet like this? By changing the air gap width at the same time, the permeance coefficient at the operating point of the minute magnet in each magnetic pole section can be slid. It can be changed continuously into a sword. Therefore, according to this method, a magnetizing magnetic field large enough to fully saturate the magnet can be applied, making full use of the characteristic sound of the magnet, and producing a trapezoidal crushing waveform that is useful for rotating electric machines. Therefore, it is possible to obtain a smooth sinusoidal waveform of magnetization.

例えば、(2)式に於いて、n rn k 2.5から
2.3に変化させる事に依り、同時に℃vが0.5から
0.7に変化したとすると、磁石の動作点のパーミアン
ス係数に、次の比率で変化する。
For example, in equation (2), if by changing n rn k from 2.5 to 2.3, and at the same time ℃v changes from 0.5 to 0.7, the permeance at the operating point of the magnet The coefficient changes at the following ratio:

=0.65’7 ここで、k、if’1寸法変化前の磁石の動作点のパー
ミアンス係数、k2は寸法変化後の磁石の動作点のパー
ミアンス係数である。実際にほこの計尊号法を各々の磁
石及び回転電機の形状寸法に合わせて適用すれば艮い。
=0.65'7 Here, k, if'1 is the permeance coefficient at the operating point of the magnet before the dimensional change, and k2 is the permeance coefficient at the operating point of the magnet after the dimensional change. In reality, it is possible to apply Hoko's Keisongo method according to the shape and size of each magnet and rotating electrical machine.

以上説明した内容ケ具体的な例で示すと、第4図及び第
5図の様になる。第6図に各磁石の半回展開断面図と磁
石に対向するコアーの表1fDから見た磁束密匿の分布
状悪食示す。第4図〜第6図で破゛線に各磁極の想像上
の分割線【表わし、矢印に磁化の方向を示す。又、第4
図と第5図の磁石に上側、市側のどちら側2直用囲とし
ても良い。第4図と第5図は、各々N、b6極看厭の場
合の例であるが、これμm般にN、S2n惚(n=1゜
2、・・・)ytrmで吠用する場合に適用し得るもの
である。
A concrete example of the contents explained above is shown in FIGS. 4 and 5. FIG. 6 shows a semi-expanded sectional view of each magnet and the distribution of magnetic flux tightness seen from Table 1fD of the core facing the magnet. In FIGS. 4 to 6, the broken lines represent imaginary dividing lines for each magnetic pole, and the arrows indicate the direction of magnetization. Also, the fourth
The magnets shown in Figures 1 and 5 may be placed with two-direction enclosures on either side, the upper side or the city side. Figures 4 and 5 are examples of cases where N and b6 poles are used, respectively, but in general when using N and S2n (n = 1°2, ...) ytrm, It is applicable.

以上説明したように、不発明の、各磁極の表面がゆゐや
たな山形2成す磁石形状に用いると、回転電機に組み込
んだ場合の実用磁束密度分布r磁石の特注?充分に生7
1λしながら滑らかな正弦波状と成し得る為、回転電機
の諸特性葡損なう事なくコギング成分盆理崗的には零で
ある1でに低減でき、従ってフラッタ−成分の減少、起
動トルクの工■7J11.消費電力量の低減等に、者し
い効果ケ生ずるものでADゐ。また、一般にアキシャル
ギャップ型の回転電機では、コギングが大きくな9過ぎ
る為にコアレス型とする場合が多いが、不発明に係ゐ磁
石r用いれば、M鉄芯型構這として、磁束のM幼利用を
図ることができる。
As explained above, if the uninvented magnet shape in which the surface of each magnetic pole forms two gently sloping chevrons is used, the practical magnetic flux density distribution when incorporated into a rotating electrical machine can be customized. fully raw 7
Since it is possible to form a smooth sinusoidal wave with 1λ, the cogging component can be reduced to 1, which is essentially zero, without impairing the various characteristics of the rotating electrical machine.Therefore, it is possible to reduce the flutter component and improve the starting torque. ■7J11. ADゐIt has a significant effect on reducing power consumption, etc. In addition, in general, axial gap type rotating electric machines are often made of coreless type because the cogging is too large, but if the magnet r according to the invention is used, it becomes M iron core type structure. You can plan to use it.

従って、本発明の各@極の表向がゆるやかな山形會成す
形状の多極着磁磁石を電動機に用いる場合、ブラシ付、
プランレス、大型、小型−#−勿問わず、床机な範囲の
電動機に使用可能でめジ、谷々の電動機の緒特性全向上
なし得心ものである。筐た、該磁石全発電機に用いれば
、清ら刀為な正弦仮状の発電電圧が得られ、該発電電圧
波形の利用にM利であるという効果もある。
Therefore, when using the multi-pole magnetized magnet of the present invention in a shape where the surface of each @ pole forms a gentle chevron shape, it is possible to use a brushed magnet,
It can be used for planless, large, and small motors, such as floor desks, etc., and is ideal for completely improving the characteristics of motors of all sizes. If used in an all-magnetic generator, a clean sinusoidal generated voltage can be obtained, and there is also the effect that the generated voltage waveform can be used at an M profit.

同、本発明に〃)〃・る形状の磁石の製造は、射出成形
法を用いるのが、形状の自由度等の面〃λら最適である
が、その他に、切削法、焼結法、圧縮成形法等に依って
も良いし、また、それらの方法の組み合わせに依って製
造しても刀λ1vない。
Similarly, in order to manufacture the magnet having the shape of the present invention, it is optimal to use the injection molding method in terms of the degree of freedom of the shape, etc. However, there are other methods such as the cutting method, the sintering method, The blade λ1v may be produced by a compression molding method or the like, or by a combination of these methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の電動機用多極層@磁石の代表的な形状
のもの、第2図は、第1図の磁石の平向展開断面図と、
談磁石の表面磁束密度の分布状態を表わす曲線。第6図
は一般的な電動機で、磁石の動作点のパーミアンス係数
を算出する為の等価゛磁気回路の参考図。第4図と第5
図は、不発明のなだらかな山形の磁極表面形状忙有する
磁石形状の例。第6図に第4図の磁石の平面展開断面図
と該磁石の磁束密度を空隙を隔てて対向するコアー土で
測った場合の磁束’#度の分布状態を表わす曲線。各図
中の矢印は、磁極の磁化方向盆示し、破臆は%m極の想
像上の分割縁を示す。 1 ・・・等・1曲磁石 2・・・等価な空隙を隔てて対向するコアー6・・・バ
ンクヨーク 以   上 〜239− 第4図 第5図 第6図 手続補焦店・(方式) 1 月1件の表示 liR和58年 持y’r願第 1485252 発明
の名称 回転軍機用多極着磁磁石 3 補正をする者 小1こ1:との関係 IU、お2、東京都中央区銀座4丁目6番4号(256
)獣会社諏訪精工舎 代表輌役中村恒也 4代皿人 5 補正命令の]ヨ付 明細書 8、補正の内容 別紙の通り 手続補正書(方式) 1、 明細書 7貞下から2行目〜8負1行目′「第6
図は一般的な電動機で、磁石の動作点のパーミアンス係
数を算出する為の等価磁気回路の参考図。」 とあるを
、 「駆3図は一般的な屯り3機で、磁石の動作点のパーミ
アンス係数全9出する為の等価磁気回路を示す図。」 
に補正する。 以   上 代理人 最 上 ′ 務
Fig. 1 shows a typical shape of a conventional multi-polar layer magnet for electric motors, Fig. 2 shows a flat developed cross-sectional view of the magnet shown in Fig. 1,
A curve representing the distribution state of the surface magnetic flux density of a magnet. Figure 6 is a reference diagram of an equivalent magnetic circuit for calculating the permeance coefficient at the operating point of a magnet in a general electric motor. Figures 4 and 5
The figure shows an example of a magnet shape with an inventive gentle mountain-shaped magnetic pole surface shape. FIG. 6 is a planar developed cross-sectional view of the magnet shown in FIG. 4 and a curve representing the distribution state of the magnetic flux when the magnetic flux density of the magnet is measured with core soil facing across an air gap. The arrows in each figure indicate the magnetization direction of the magnetic poles, and the dents indicate the imaginary dividing edge of the %m pole. 1...etc. 1-curve magnet 2...core facing across an equivalent air gap 6...bank yoke or more ~239- Figure 4 Figure 5 Figure 6 Procedure refocusing shop (method) Displaying 1 item per monthLiRW58 Years of Application No. 1485252 Name of the invention Multipolar magnetized magnet for rotating military aircraft 3 Person making the correction Relationship with IU, O2, Chuo-ku, Tokyo Ginza 4-6-4 (256
) Veterinary company Suwa Seikosha representative officer Tsuneya Nakamura 4th generation chef 5 Specification with [Yo] of the amendment order 8, Contents of the amendment Procedure amendment (method) as shown in the attached sheet 1, Specification 7 Second line from Sada ~8 negative 1st line''6th
The figure is a reference diagram of an equivalent magnetic circuit for calculating the permeance coefficient at the operating point of a magnet in a typical electric motor. ``Diagram 3 is a diagram showing the equivalent magnetic circuit for obtaining all 9 permeance coefficients at the operating point of the magnet for a general 3-way machine.''
Correct to. The above-mentioned agent's duties

Claims (1)

【特許請求の範囲】[Claims] アキシャルギャップ型回転電機に用いる多極着磁された
磁石に於いて、各1a極の表面が、なだら〃・な山形の
形状rなす第七特徴とする回転電機用多極着磁磁石。
A seventh feature of the multi-pole magnetized magnet for use in an axial gap type rotating electrical machine is that the surface of each pole 1a has a sloping chevron shape r.
JP58014852A 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine Pending JPS59144352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014852A JPS59144352A (en) 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014852A JPS59144352A (en) 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS59144352A true JPS59144352A (en) 1984-08-18

Family

ID=11872560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014852A Pending JPS59144352A (en) 1983-02-01 1983-02-01 Multipolarly magnetized magnet for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS59144352A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158030A (en) * 2004-11-26 2006-06-15 Fujitsu General Ltd Axial gap electric motor
WO2008068977A1 (en) * 2006-12-06 2008-06-12 Honda Motor Co., Ltd. Axial gap motor
JP2008148384A (en) * 2006-12-06 2008-06-26 Honda Motor Co Ltd Axial gap motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8035266B2 (en) 2007-04-17 2011-10-11 Honda Motor Co., Ltd. Axial gap motor
US8040008B2 (en) 2007-10-04 2011-10-18 Honda Motor Co., Ltd. Axial gap motor
US8053942B2 (en) 2007-08-29 2011-11-08 Honda Motor Co., Ltd. Axial gap motor
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor
CN107733200A (en) * 2016-08-10 2018-02-23 广东德昌电机有限公司 A kind of electric bicycle of permanent magnetic brushless and the application permanent magnetic brushless

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158030A (en) * 2004-11-26 2006-06-15 Fujitsu General Ltd Axial gap electric motor
JP4687871B2 (en) * 2004-11-26 2011-05-25 株式会社富士通ゼネラル Axial gap type electric motor
KR101127196B1 (en) 2004-11-26 2012-03-29 가부시키가이샤 후지쯔 제네랄 Axil air-gap electronic motor
WO2008068977A1 (en) * 2006-12-06 2008-06-12 Honda Motor Co., Ltd. Axial gap motor
JP2008148384A (en) * 2006-12-06 2008-06-26 Honda Motor Co Ltd Axial gap motor
US8035266B2 (en) 2007-04-17 2011-10-11 Honda Motor Co., Ltd. Axial gap motor
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor
US8053942B2 (en) 2007-08-29 2011-11-08 Honda Motor Co., Ltd. Axial gap motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8040008B2 (en) 2007-10-04 2011-10-18 Honda Motor Co., Ltd. Axial gap motor
CN107733200A (en) * 2016-08-10 2018-02-23 广东德昌电机有限公司 A kind of electric bicycle of permanent magnetic brushless and the application permanent magnetic brushless

Similar Documents

Publication Publication Date Title
Faiz et al. Aspects of design optimisation for switched reluctance motors
Bonthu et al. Optimal torque ripple reduction technique for outer rotor permanent magnet synchronous reluctance motors
CN104882981B (en) A kind of rotor punching structure of permanent-magnet servo motor
JPS61280744A (en) Rotor with permanent magnet
US3062979A (en) Variable-reluctance electric machines
Shi et al. Design and analysis of an interior permanent magnet linear vernier machine
CN107070031A (en) A kind of rotor, stator and many work harmonic wave magnetoes
Brahim et al. Cogging torque minimization of surface-mounted permanent magnet synchronous machines using hybrid magnet shapes
JPS59144352A (en) Multipolarly magnetized magnet for rotary electric machine
CN110022043B (en) Integer slot distributed winding virtual pole spoke type permanent magnet synchronous motor and low-pulse design method thereof
Chen et al. A V-shaped PM vernier motor with enhanced flux-modulated effect and low torque ripple
Lee et al. A study on the maximum flux linkage and the goodness factor for the spoke-type PMSM
Gao et al. Application of grain-oriented electrical steel used in super-high speed electric machines
JP2004015978A (en) Linear motor
Kim et al. Characteristics analysis method of axial flux permanent magnet motor based on 2-D finite element analysis
Jiang et al. Modeling and analysis of spoke-type permanent magnet vernier machine based on equivalent magnetic network method
JP2001500354A (en) Method and apparatus for improvement of dc motor and magnetic clutch
CN110247526B (en) Design method for rotor core of low-harmonic synchronous reluctance motor
Wang et al. Cogging torque optimization of flux memory pole-changing permanent magnet machine
Mousavi-Aghdam et al. A new switched reluctance motor design to reduce torque ripple using finite element fuzzy optimization
JPS59139842A (en) Multipolarized magnet for rotary electric machine
Huang et al. Analysis and reduction of cogging torque in dual PM Vernier machine with irregular split teeth
Xu Rotor structure selections of nonsine five-phase synchronous reluctance machines for improved torque capability
Wu et al. Power transferring of magnetic-geared permanent magnet machines
JPS59144348A (en) Multipolarly magnetized magnet for rotary electric machine