JPS5914433B2 - Manufacturing equipment for band-shaped silicon crystals - Google Patents
Manufacturing equipment for band-shaped silicon crystalsInfo
- Publication number
- JPS5914433B2 JPS5914433B2 JP17781A JP17781A JPS5914433B2 JP S5914433 B2 JPS5914433 B2 JP S5914433B2 JP 17781 A JP17781 A JP 17781A JP 17781 A JP17781 A JP 17781A JP S5914433 B2 JPS5914433 B2 JP S5914433B2
- Authority
- JP
- Japan
- Prior art keywords
- band
- crystal
- shaped silicon
- die
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】 本発明は帯状シリコン結晶の製造装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for manufacturing band-shaped silicon crystals.
帯状シリコン結晶は、第1図に示すように、シリコン融
液1を収容した石英製ルツボ2にスリットを形成するキ
ャピラリ・ダイ3(30,3□)(以下単にダイと称す
る)を配し、そのスリットを介して上昇する融液1に種
子結晶(図示せず)を接触させ、所定の温度条件、引上
げ速度でこれを引上げることによシ得られる。As shown in FIG. 1, the band-shaped silicon crystal is produced by arranging a capillary die 3 (30, 3□) (hereinafter simply referred to as die) for forming a slit in a quartz crucible 2 containing a silicon melt 1. It is obtained by bringing a seed crystal (not shown) into contact with the melt 1 rising through the slit and pulling it up at a predetermined temperature condition and pulling speed.
4が引上げられた帯状シリコン結晶を示している。4 shows a pulled band-shaped silicon crystal.
この場合、得られる帯状シリコン結晶4の幅は、原理的
にダイ3の先端幅で規制される。In this case, the width of the obtained band-shaped silicon crystal 4 is theoretically regulated by the width of the tip of the die 3.
ところで、従来の方法では、第2図にダイ3の先端部の
長手方向の温度分布を示したとおり、両端A、Bにおい
て温度が低いためにダイ3の温度及び引上速度が一定で
あってもダイ3と帯状シリコン結晶4が固着するという
問題がある。By the way, in the conventional method, as the temperature distribution in the longitudinal direction of the tip of the die 3 is shown in FIG. 2, the temperature and pulling speed of the die 3 are constant because the temperature is low at both ends A and B. Also, there is a problem that the die 3 and the band-shaped silicon crystal 4 are stuck together.
これを防ぐだめの有力な手法としてダイ3の両端A、B
を用いず、それより内側の二点間で一定幅の帯状シリコ
ン結晶を成長させる方法がある。An effective method to prevent this is to
There is a method of growing a band-shaped silicon crystal of a constant width between two points on the inner side of the silicon crystal without using the silicon crystal.
この幅制御を行なう従来技術には(1)引上げ速度及び
システム温度の調整によるもの、(2)熱源とダイ3の
端部間の距離を制御する方法、(3)ダイ3の長手方向
両端にヒータを設けてその温度調整を行なう方法、など
がある。Conventional techniques for controlling the width include (1) adjusting the pulling speed and system temperature, (2) controlling the distance between the heat source and the ends of the die 3, and (3) controlling the distance between the ends of the die 3 in the longitudinal direction. There is a method of installing a heater and adjusting the temperature.
(1)の方法は、帯状シリコン結晶が規定幅よシ太くな
る場合は引上げ速度またはシステム温度を上げ、細くな
る場合はその逆の制御を行なう。In method (1), when the band-shaped silicon crystal becomes thicker than a specified width, the pulling speed or system temperature is increased, and when it becomes thinner, the opposite control is performed.
(2)の方法は、帯状シリコン結晶が規定幅より太くな
る場合は、熱源とダイ端部の距離を近づけ、細くなる場
合はその逆の制御を行なう。In the method (2), when the band-shaped silicon crystal becomes thicker than a specified width, the distance between the heat source and the end of the die is brought closer, and when it becomes thinner, the opposite control is performed.
(3)の方法は、帯状シリコン結晶が規定幅より太る場
合にヒータ温度を上げ、細った場合にはその逆の制御を
行なうものである。In method (3), the heater temperature is increased when the band-shaped silicon crystal becomes thicker than a specified width, and vice versa when the band-shaped silicon crystal becomes thinner.
ところが、これら従来の方法は操作が複雑で一定幅の帯
状シリコン結晶を得る事が困難である。However, these conventional methods require complicated operations and it is difficult to obtain band-shaped silicon crystals with a constant width.
その対策として赤外ITVカメラを用いた自動制御機構
も考えられるが監視部の決定やフィードバック機構にお
けるPID値の調整に問題があり、また装置が高価であ
る。As a countermeasure, an automatic control mechanism using an infrared ITV camera may be considered, but there are problems in determining the monitoring unit and adjusting the PID value in the feedback mechanism, and the device is expensive.
しかも補助熱源の移動機構や補助ヒータの構成などで高
温部の構成が複雑になり、同時にチェンバーも大きくな
るので装置の単価が非常に高くなり工業用としては不向
きである。Furthermore, the structure of the high-temperature section becomes complicated due to the movement mechanism of the auxiliary heat source and the structure of the auxiliary heater, and at the same time, the chamber becomes large, so the unit cost of the device becomes extremely high, making it unsuitable for industrial use.
本発明は上記事情を考慮してなされたもので、その目的
とするところは、大掛りな装置を必要とせず、しかも安
定にかつ高精度に帯状シリコン結晶の幅を制御し得るよ
うにした装置を提供する事にある。The present invention has been made in consideration of the above circumstances, and its purpose is to provide a device that can stably and precisely control the width of a band-shaped silicon crystal without requiring a large-scale device. The goal is to provide the following.
すなわち本発明は、ダイとして、その先端の長手方向両
端部からそれぞれ所定距離の位置に切込みを設ける事に
より、その部分の温度を強制的に上昇させた温度分布を
作成し、その切込み部分より帯状結晶の幅が広がらない
ようにして前記目的を達するものである。In other words, the present invention creates a temperature distribution in which the temperature of the die is forcibly increased by making cuts at predetermined distances from both ends of the die in the longitudinal direction. The above objective is achieved by preventing the width of the crystal from expanding.
以下この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
第3図は一実施例の要部を第1図と対応させて示したも
ので、第1図と異なるのは、ダイ3の先端にその長手方
向両端から所定距離の位置に切込み5(51,5□)を
設け、得られる帯状シリコン結晶40幅がこの切込み5
で規制されるようにしたことである。FIG. 3 shows the main parts of one embodiment in correspondence with FIG. 1. What differs from FIG. 1 is that a notch 5 (51 , 5□), and the width of the obtained band-shaped silicon crystal 40 is
This is to make it regulated by
第4図はこのように切込み5を設けたときのダイ3の先
端部の長手方向(幅方向)の温度分布を示したもので、
両端A、Bより内側の切込み5に対応するC、D点で温
度が高くなっておシ、この結果、帯状シリコン結晶4は
C,D点より外側には広がらなくなる。FIG. 4 shows the temperature distribution in the longitudinal direction (width direction) at the tip of the die 3 when the notch 5 is provided in this way.
The temperature becomes higher at points C and D, which correspond to the cuts 5 on the inside of both ends A and B, and as a result, the band-shaped silicon crystal 4 does not spread beyond points C and D.
この実施例で得られる帯状結晶の幅が良好に制御される
ことをよシ詳しく説明する。The fact that the width of the band-shaped crystal obtained in this example is well controlled will be explained in detail.
第5図は結晶引上げ時の得られるシリコン結晶4端部の
融液1との接触状態の例を示している。FIG. 5 shows an example of the contact state of the four ends of the silicon crystal obtained during crystal pulling with the melt 1.
aは結晶が幅方向に太る場合、bは変らない場合、Cは
幅方向に細る場合の状態である。A is the state when the crystal becomes thicker in the width direction, b is the state when it remains unchanged, and C is the state when the crystal becomes thinner in the width direction.
今従来の構成でシステム温度及び引上速度を調整し結晶
端部の液形状を(a)として定常状態に入ったとすると
、結晶は徐々に幅方向に広がシそのままダイ3の両端A
、Hに達するとダイ端部の温度が低いため結晶4とダイ
3の間隔が小さくなり、接触角ψが大きくなって結晶が
ダイに固着する。Now, if we adjust the system temperature and pulling speed with the conventional configuration and enter a steady state with the liquid shape at the end of the crystal as shown in (a), the crystal will gradually spread in the width direction and remain as it is at both ends of the die 3.
, H, the temperature at the end of the die is low, so the distance between the crystal 4 and the die 3 becomes smaller, the contact angle ψ increases, and the crystal sticks to the die.
これに対し、第3図の実施例では、ダイ3の切込み5の
位置C点、D点に結晶が達するまでは上記と同様に結晶
幅が広がるが、C点、D点に達すると結晶幅端部の液と
の接触状態は第5図aから更にbの形状となり、結晶は
C点、D点より太らない。On the other hand, in the embodiment shown in FIG. 3, the crystal width increases in the same manner as above until the crystal reaches the positions C and D of the notch 5 of the die 3, but when it reaches the C and D points, the crystal width increases. The state of contact with the liquid at the end becomes further from the shape shown in FIG. 5a to that shown in FIG.
またむりに太らそうとして引上速度を下げた9、システ
ム温度をおろすと結晶は太らずにダイに固着する。Also, in an attempt to make the crystal thicker, the pulling speed was lowered9.If the system temperature was lowered, the crystal would not thicken and would stick to the die.
実際に、第3図の実施例において結晶幅がC点及びD点
に達した時に引上速度を3%程度下げることにより、引
上げだ帯状シリコン結晶40幅はC点、D点で規制され
、引上結晶の幅変化は1mあたり±100μ程度であっ
た。In fact, in the embodiment shown in FIG. 3, by reducing the pulling speed by about 3% when the crystal width reaches points C and D, the width of the pulled band-shaped silicon crystal 40 is regulated at points C and D. The width change of the pulled crystal was about ±100μ per meter.
この値はITVカメラを使用して外部的な温度制御によ
り帯状結晶の幅の自動コントロールを行なった場合でも
得る事が困難な精度である。This value is a precision that is difficult to obtain even when automatic control of the band width is performed by external temperature control using an ITV camera.
以上のように、本発明によれば帯状シリコン結晶の幅を
自動的に高精度に制御することができる。As described above, according to the present invention, the width of the band-shaped silicon crystal can be automatically controlled with high precision.
また従来技術は構造が複雑で、装置が高価であり、操作
がむずかしいという問題があったが、本発明はこれら従
来技術の欠点すべてを解消したものであって構造が簡単
で装置が安価・であシ、格別な幅制御の操作を必要とし
ない点に大きな特徴がある。In addition, the conventional technology had the problems of a complicated structure, an expensive device, and a difficult operation, but the present invention solves all of these drawbacks of the conventional technology, and has a simple structure and a low-cost device. A major feature is that no special width control operation is required.
第1図は従来の帯状シリコン結晶引上げの様子を示す図
、第2図はそのダイ先端部の温度分布を示す図、第3図
はこの発明の一実施例での結晶引上げの様子を示す図、
第4図はそのダイ先端部の温度分布を示す図、第5図は
引上げる結晶端部の融液との接触状態の例を示す図であ
る。
1・・・・・・シリコン融液、2・・・・・・石英製ル
ツボ、31゜32・・・・・・キャピラリ・ダイ、4・
・・・・・帯状シリコン結晶、51,5□・・・・・・
切込み。FIG. 1 is a diagram showing the state of pulling a conventional band-shaped silicon crystal, FIG. 2 is a diagram showing the temperature distribution at the tip of the die, and FIG. 3 is a diagram showing the state of crystal pulling in an embodiment of the present invention. ,
FIG. 4 is a diagram showing the temperature distribution at the tip of the die, and FIG. 5 is a diagram showing an example of the state of contact with the melt at the end of the crystal to be pulled. 1...Silicon melt, 2...Quartz crucible, 31°32...Capillary die, 4.
・・・・・・Striped silicon crystal, 51,5□・・・・・・
Notch.
Claims (1)
キャピラリ・ダイを配し、前記スリットを介して上昇し
た融液に種子結晶を接触させ、この種子結晶を引上げる
ことによシ帯状シリコン結晶を引上げる装置において、
前記キャピラリ・ダイの先端に、その長手方向両端から
それぞれ所定距離の位置に切込みを設けたことを特徴と
する帯状シリコン結晶の製造装置。1. A capillary die having a slit is arranged in a crucible containing a silicon melt, a seed crystal is brought into contact with the melt rising through the slit, and the band-shaped silicon crystal is pulled up by pulling up the seed crystal. In the device,
An apparatus for producing a band-shaped silicon crystal, characterized in that cuts are provided at the tip of the capillary die at predetermined distances from both longitudinal ends thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17781A JPS5914433B2 (en) | 1981-01-06 | 1981-01-06 | Manufacturing equipment for band-shaped silicon crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17781A JPS5914433B2 (en) | 1981-01-06 | 1981-01-06 | Manufacturing equipment for band-shaped silicon crystals |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57118095A JPS57118095A (en) | 1982-07-22 |
JPS5914433B2 true JPS5914433B2 (en) | 1984-04-04 |
Family
ID=11466719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17781A Expired JPS5914433B2 (en) | 1981-01-06 | 1981-01-06 | Manufacturing equipment for band-shaped silicon crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914433B2 (en) |
-
1981
- 1981-01-06 JP JP17781A patent/JPS5914433B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57118095A (en) | 1982-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3872290T2 (en) | METHOD FOR REGULATING THE CRYSTAL DIAMETER. | |
DE1544320B1 (en) | Device for the continuous production of a monocrystalline strip of semiconductor material | |
JPS5914433B2 (en) | Manufacturing equipment for band-shaped silicon crystals | |
EP0456370A2 (en) | Method and apparatus for controlling the diameter of a silicon single crystal | |
JPS5914435B2 (en) | Manufacturing equipment for band-shaped silicon crystals | |
US5246535A (en) | Method and apparatus for controlling the diameter of a silicon single crystal | |
JPS6283395A (en) | Method for controlling diameter of single crystal pulling-up device | |
JPS6046996A (en) | Production unit for beltlike silicon crystal | |
JPS60108399A (en) | Production unit for beltlike silicon crystal | |
JP3142893B2 (en) | Thin film semiconductor device | |
JPS6154760B2 (en) | ||
JPS63159288A (en) | Production of single crystal | |
JP2535773B2 (en) | Method and apparatus for producing oxide single crystal | |
JP3769807B2 (en) | Single crystal diameter control method | |
JPH01126294A (en) | Production of single crystal | |
JPS6287482A (en) | Single crystal manufacturing equipment | |
RU1157889C (en) | Method of growing crystals of zinc selenide | |
JPS562602A (en) | Heat treatment of amorphous magnetic element | |
EP0490071A1 (en) | Apparatus to produce low dislocation crystals by the float zone melting process | |
JPS6229394B2 (en) | ||
JPH0729870B2 (en) | Method and apparatus for crystal growth of compound semiconductor | |
JP2005008493A (en) | Method and apparatus for manufacturing single crystal | |
JPH05107571A (en) | Production of capillary | |
JPH0566313A (en) | Production of crystal of micropart | |
JPH0459694A (en) | Production of compound semiconductor single crystal |