JPS5914410B2 - Manufacturing method of quartz glass tube - Google Patents

Manufacturing method of quartz glass tube

Info

Publication number
JPS5914410B2
JPS5914410B2 JP6423880A JP6423880A JPS5914410B2 JP S5914410 B2 JPS5914410 B2 JP S5914410B2 JP 6423880 A JP6423880 A JP 6423880A JP 6423880 A JP6423880 A JP 6423880A JP S5914410 B2 JPS5914410 B2 JP S5914410B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
base material
purity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6423880A
Other languages
Japanese (ja)
Other versions
JPS56160337A (en
Inventor
隆夫 枝広
孝夫 塩田
和夫 真田
長 福田
浩一 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6423880A priority Critical patent/JPS5914410B2/en
Publication of JPS56160337A publication Critical patent/JPS56160337A/en
Publication of JPS5914410B2 publication Critical patent/JPS5914410B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube

Description

【発明の詳細な説明】 この発明は、パイプ状の構造を有する石英ガラス管の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a quartz glass tube having a pipe-like structure.

5 光ファイバはコア層の周囲をコア層より屈折率の小
さいクラッド層で覆つた構造を持つが、より低損失化を
進め使用波長帯を1.3μm、1.5μmの長波長帯へ
と移行させるのに伴い、クラッド層をなす石英ガラス層
をより厚く、且つより高純度10(OH基、泡やその他
の夾雑物の少ない)のものとする必要が生じてきている
5 Optical fiber has a structure in which the core layer is surrounded by a cladding layer with a lower refractive index than the core layer, but the loss has been further reduced and the wavelength band used has shifted to longer wavelength bands of 1.3 μm and 1.5 μm. With this trend, it has become necessary to make the quartz glass layer forming the cladding layer thicker and with a higher purity of 10 (less OH groups, bubbles and other impurities).

ところで、CVD(ChemicalVaporDe−
position)法によれば、出発石英ガラス管の内
壁にコア層を内付けし、またVAD(Vapor15P
haseAxialDeposition)法によれば
長さ方向に成長させられた充実した円柱状のコア層とな
るべき母材の周囲にジャケット管を覆せて、それぞれ単
一モードの光ファイバを作るようにしている。
By the way, CVD (Chemical VaporDe-
According to the quartz glass tube position method, a core layer is attached to the inner wall of the starting quartz glass tube, and a VAD (Vapor 15P
According to the haseAxialDeposition method, a jacket tube is wrapped around a base material that is to become a solid cylindrical core layer grown in the length direction, thereby producing a single mode optical fiber.

したがつてクラッド層は、前者では出発石20英ガラス
管、後者ではジャケット管ということになる。そのため
、これらのパイプ状の石英ガラス管として高純度で、よ
り肉厚のものを使用する必要がある。ここで高純度の石
英ガラス管としては、OH基25が少なくともO、OI
PPM以下で、強力な光源(レーザなど)においても泡
による散乱点が生じない程の泡しか含有せず、しかもそ
の他の夾雑物はほとんどの金属において、O、lppb
以下であることが望まれる。
Therefore, the cladding layer is the starting stone 20-English glass tube in the former case, and the jacket tube in the latter case. Therefore, it is necessary to use high-purity and thicker quartz glass tubes. Here, as a high-purity quartz glass tube, the OH group 25 is at least O, OI
PPM or less, it contains only enough bubbles that even a strong light source (such as a laser) will not cause scattering points due to bubbles, and other impurities are O, lppb for most metals.
The following is desirable.

このような高純度の石英ガラス管は、30本出願入が既
に出願したVAD法を応用した方法(特願昭54−12
4426号一特開昭56一50139号)により得るこ
とができるが、この方法によると大型の母材を作ること
が難しいため多量生産に向かない。35また従来、無水
石英ガラス管は、プラズマ炎等の無水炎によつてガラス
管を作成し、これを線引きすることによつて多量に製造
するようにしている。
Such high-purity quartz glass tubes can be produced using a method applying the VAD method (Japanese Patent Application No. 54-12), for which 30 applications have already been filed.
No. 4426-Japanese Patent Application Laid-Open No. 56-50139), but this method is not suitable for mass production because it is difficult to make a large base material. 35 Conventionally, anhydrous silica glass tubes have been produced in large quantities by creating glass tubes using anhydrous flame such as plasma flame and drawing the tubes.

しかしながらこうして得られる無水石英ガラス管は高純
度のものを期待し得ない。本発明は、従来の多量生産さ
れる石英ガラス管では純度が低く、また高純度の石英ガ
ラス管は多量生産できないことに鑑み、これら両者をい
わば折衷して高純度の内層と低純度の外層とを溶着して
2層構造とした石英ガラス管の製造方法を提供し、もつ
てこの石英ガラス管を多量に生産することを容易にし、
その結果厚い高純度のクラツド層を有する光フアイバを
多量に生産することに奇与することを目的とする。
However, the anhydrous silica glass tube obtained in this way cannot be expected to be of high purity. In view of the fact that conventional quartz glass tubes that are mass-produced have low purity, and that high-purity quartz glass tubes cannot be mass-produced, the present invention is a compromise between the two, with a high-purity inner layer and a low-purity outer layer. Provides a method for manufacturing a quartz glass tube with a two-layer structure by welding, and facilitates mass production of the quartz glass tube.
As a result, the object is to contribute to the mass production of optical fibers having a thick and highly pure cladding layer.

以下本発明の一実施例について図面を参照しながら説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

図において、高純度石英ガラス管母材1を低純度石英ガ
ラス管母材2の中空部に配置し、これらを高周波コイル
8の内部に納められたカーボンヒータ3中に配置する。
母材1は降下装置9によシ上方から下方へ押圧されると
ともに、母材1の中空部にガス入口5から不活性ガスを
送り込むようにする。この高純度石英ガラス管母材1は
VAD法を変形してパイプ状の母材を得る方法(特願昭
54−124426号)などによつてつくられ、また低
純度石英ガラス管母材2は従来の通常の方法で多量生産
されたものである。この母材1,2はカーボンヒータ3
によつて加熱され、カーボンダイス4の部分で溶融し、
溶着する。そして引取機7によつて下方に引かれること
により、高純度石英ガラスの内層と低純度石英ガラスの
外層とが溶着されてなる2層構造の石英ガラス管6がつ
くられる。なお上記のように母材1の中空部に不活性ガ
スを送り込むことにより、でき上つた石英ガラス管6の
内面に不純物が混入するのを防ぐとともに、管内圧を調
整して管の肉厚を制御することができる。このようにし
てつくられた石英ガラス管6は、一旦溶融するためにそ
の内面は滑らかであるので荒けずね(Gr!Nding
)によるだけで自由表面が得られ、研摩(POlish
ing)の工程は不要である。次に2つの具体的な実施
例について説明する。
In the figure, a high-purity quartz glass tube base material 1 is placed in a hollow portion of a low-purity quartz glass tube base material 2, and these are placed in a carbon heater 3 housed inside a high-frequency coil 8.
The base material 1 is pressed downward from above by the lowering device 9, and inert gas is fed into the hollow portion of the base material 1 from the gas inlet 5. This high-purity quartz glass tube base material 1 is made by a method of obtaining a pipe-shaped base material by modifying the VAD method (Japanese Patent Application No. 124426/1982), and the low-purity quartz glass tube base material 2 is It is mass-produced using conventional methods. These base materials 1 and 2 are the carbon heater 3
heated by and melted at the carbon die 4,
Weld. Then, by being pulled downward by the pulling machine 7, a two-layered quartz glass tube 6 is produced in which an inner layer of high-purity quartz glass and an outer layer of low-purity quartz glass are welded together. In addition, by feeding an inert gas into the hollow part of the base material 1 as described above, it is possible to prevent impurities from entering the inner surface of the finished quartz glass tube 6, and also to adjust the tube internal pressure and reduce the wall thickness of the tube. can be controlled. The quartz glass tube 6 made in this way has a smooth inner surface because it is once melted, so it has rough edges (Gr!Nding).
), a free surface can be obtained only by polishing (POlish
ing) step is not necessary. Next, two specific examples will be described.

〈実施例 1〉母材1として、VAD法を変形して得た
高純度のパイプ状の石英ガラス管で、内径18111外
径441211長さ12511の大きさで約3509の
重量のものを用い、この母材1の上端にダミーのための
普通の石英ガラス管を溶着したのち降下装置9とガス入
口5とを接続する。
<Example 1> As the base material 1, a high-purity pipe-shaped quartz glass tube obtained by modifying the VAD method, with an inner diameter of 18111, an outer diameter of 441,211, a length of 12511, and a weight of about 3509 was used. After welding an ordinary quartz glass tube as a dummy to the upper end of this base material 1, the lowering device 9 and the gas inlet 5 are connected.

この外側に配置される母材2は、通常の水晶を粉砕し酸
水素炎により溶融してパイプ状とした低純度の石英ガラ
ス管で、内径56111外径127111長さ1251
11重さ2.85kf!のものを用いた。そしてガス入
口5から乾燥N2を4.5Nイ/hで送り込む。高周波
コイル8に電力を印加し、カーボンヒータ3を2200
℃に加熱して、引取機7により引き下した。こうして外
径24111内径2011の2層構造の石英ガラス管6
を得たが、高純度の内層部分の肉厚は0.511であつ
た。この石英ガラス管6を出発母材管として用いてCV
D法によりコア層を内付けして単一モードの光フアイバ
を製造したところ、クラツド層は出発母材管として用い
られた前記の石英ガラス管6の内層によう構成されるた
め、クラツド層の部分の内付けを行なう必要がないので
、製造時間は約1/4になb1しかもデポジシヨンの回
数が少なくてよいので管径の変動が少なく長さ方向に変
化のない均質な光フアイバを得ることができた。
The base material 2 placed on the outside is a low-purity quartz glass tube made into a pipe by crushing ordinary crystal and melting it with an oxyhydrogen flame.
11 Weight 2.85kf! I used the one from Then, dry N2 is fed in from the gas inlet 5 at a rate of 4.5 N/h. Apply electric power to the high frequency coil 8 and turn the carbon heater 3 to 2200
It was heated to .degree. C. and pulled down by a pulling machine 7. In this way, the quartz glass tube 6 has a two-layer structure with an outer diameter of 24111 and an inner diameter of 2011.
However, the thickness of the high purity inner layer portion was 0.511. Using this quartz glass tube 6 as a starting base material tube, CV
When a single-mode optical fiber was manufactured by internally attaching a core layer by method D, the cladding layer was formed as the inner layer of the quartz glass tube 6 used as the starting base material tube, so the cladding layer was Since there is no need to internally attach the parts, the manufacturing time is reduced to about 1/4, and the number of depositions can be reduced, making it possible to obtain a homogeneous optical fiber with little variation in tube diameter and no change in the length direction. was completed.

く実施例 2〉この実施例では実施例1と同じ母材1,
2を使い、外径41111内径13mmの2層構造の石
英ガラス管6を引き出すようにした。
Example 2> In this example, the same base material 1 as in Example 1,
2 was used to pull out a two-layered quartz glass tube 6 with an outer diameter of 41111 and an inner diameter of 13 mm.

この石英ガラス管6では高純度の内層は2.711の厚
さを持つていた。この石英ガラス管6の中空部に、VA
D法によつてつくつた母材を引延ばして得たコア径3.
2111クラツド径10關の母材を挿入して、両者を溶
着したところ、外径40mm1コア径3.2mmの単一
モードの光フアイバ用母材を得ることができた。
In this quartz glass tube 6, the high purity inner layer had a thickness of 2.711 mm. In the hollow part of this quartz glass tube 6, VA
Core diameter obtained by stretching the base material made by the D method 3.
When a 2111 clad base material with a diameter of 10 mm was inserted and both were welded, a single mode optical fiber base material with an outer diameter of 40 mm and a core diameter of 3.2 mm was obtained.

ここでは2構造の石英ガラス管6はジヤケツト管として
使われているのであるが、その内層の高純度石英ガラス
の層が、クラツド層をなすため、石英ガラス管6のなか
に挿入される母材の外層として形成されていたクラツド
層と合わせて、厚いクラツド層が形成されることになジ
、結局クラツド層の部分とコア層の部分の直径の比は1
:5.1となる。したがつてクラツド層が高純度でしか
も厚い石英ガラスによね構成されることになるので十分
な低損失化が図れ、また最外層の低純度石英ガラスの層
からの0H基による影響を受けない。以上実施例につい
て説明したように、本発明による石英ガラス管の製造方
法によれば、高純度石英ガラス内層と低純度石英ガラス
外層とからなる石英ガラス管を多量に生産することが可
能であり1低損失の光フアイバを多量生産することに寄
与できる。
Here, the two-structure quartz glass tube 6 is used as a jacket tube, and since the inner layer of high-purity quartz glass forms a cladding layer, the base material inserted into the quartz glass tube 6 is Together with the cladding layer that had been formed as the outer layer, a thick cladding layer was formed, and the ratio of the diameters of the cladding layer and the core layer was 1.
:5.1. Therefore, since the cladding layer is made of high-purity and thick silica glass, loss can be sufficiently reduced, and it is not affected by OH groups from the outermost layer of low-purity silica glass. As described above with respect to the embodiments, according to the method for manufacturing a quartz glass tube according to the present invention, it is possible to produce a large amount of quartz glass tubes consisting of a high-purity quartz glass inner layer and a low-purity quartz glass outer layer. This can contribute to the mass production of low-loss optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す断面図である。 1・・・・・・高純度石英ガラス管母材、2・・・・・
・低純度石英ガラス管母材、3・・・・・・カーボンヒ
ータ、4・・・・・・カーボンダイス、5・・・・・・
ガス入口、6・・・・・・2層構造の石英ガラス管、7
・・・・・・引取機、8・・・・・・高周波コイル、9
・・・・・・降下装置。
The figure is a sectional view showing one embodiment of the present invention. 1... High purity quartz glass tube base material, 2...
・Low-purity quartz glass tube base material, 3... Carbon heater, 4... Carbon die, 5...
Gas inlet, 6...Two-layered quartz glass tube, 7
・・・・・・Collection machine, 8・・・High frequency coil, 9
・・・・・・Descent device.

Claims (1)

【特許請求の範囲】[Claims] 1 細径の高純度石英ガラス管母材を太径の低純度石英
ガラス管母材の中空部に配置し、これらを加熱炉中で加
熱して両者を溶融・密着し、上記細径の高純度石英ガラ
ス管母材の未溶融側の一端より不活性ガスを送り込みな
がら溶融側に配置したダイスを介して溶融側より線引き
し、高純度石英ガラス内層と低純度石英ガラス外層とを
有する2層構造の石英ガラス管を製造する方法。
1 Place a small-diameter high-purity quartz glass tube base material in the hollow part of a large-diameter low-purity quartz glass tube base material, heat them in a heating furnace to melt and stick them together, and While feeding an inert gas from one end of the unmelted side of the pure quartz glass tube base material, a wire is drawn from the molten side through a die placed on the molten side to form a two-layered quartz glass tube having an inner layer of high purity quartz glass and an outer layer of low purity quartz glass. Method of manufacturing structural quartz glass tubes.
JP6423880A 1980-05-14 1980-05-14 Manufacturing method of quartz glass tube Expired JPS5914410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6423880A JPS5914410B2 (en) 1980-05-14 1980-05-14 Manufacturing method of quartz glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6423880A JPS5914410B2 (en) 1980-05-14 1980-05-14 Manufacturing method of quartz glass tube

Publications (2)

Publication Number Publication Date
JPS56160337A JPS56160337A (en) 1981-12-10
JPS5914410B2 true JPS5914410B2 (en) 1984-04-04

Family

ID=13252348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6423880A Expired JPS5914410B2 (en) 1980-05-14 1980-05-14 Manufacturing method of quartz glass tube

Country Status (1)

Country Link
JP (1) JPS5914410B2 (en)

Also Published As

Publication number Publication date
JPS56160337A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
US4486212A (en) Devitrification resistant flame hydrolysis process
FI77217B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN POLARISATIONSBEVARANDE OPTISK FIBER.
US4453961A (en) Method of making glass optical fiber
FI68391B (en) CONTAINER CONTAINER FOIL FRAMEWORK FOR FRAMSTAELLNING AV ETT AEMNE FOER EN OPTISK VAOGLEDARE
US4578097A (en) Method of forming a polarization preserving optical waveguide
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
US4749396A (en) Method of forming an optical fiber preform
CA1121160A (en) Method of manufacturing optical fibers
EP0100174B1 (en) Method of making glass optical fiber
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
US4784465A (en) Method of making glass optical fiber
JP2005092211A (en) Low loss optical fiber and manufacturing method of optical fiber preform
JPS5914410B2 (en) Manufacturing method of quartz glass tube
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JP3576873B2 (en) Manufacturing method of optical fiber preform
JP3823341B2 (en) Optical fiber preform, optical fiber and manufacturing method thereof
JPH0310204A (en) Nonlinear optical fiber and its manufacture
JP2004175663A (en) Optical fiber and its fabrication method
JPS60122744A (en) Manufacture of simple-mode fiber
JP2004043201A (en) Method of working tip of optical fiber preform
JPH0460930B2 (en)
JPH0818842B2 (en) Method for manufacturing base material for optical fiber
JP2003054973A (en) Method for manufacturing optical fiber preform
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform