JPS5914372A - Inverter device - Google Patents
Inverter deviceInfo
- Publication number
- JPS5914372A JPS5914372A JP57124002A JP12400282A JPS5914372A JP S5914372 A JPS5914372 A JP S5914372A JP 57124002 A JP57124002 A JP 57124002A JP 12400282 A JP12400282 A JP 12400282A JP S5914372 A JPS5914372 A JP S5914372A
- Authority
- JP
- Japan
- Prior art keywords
- inverter
- impedance
- voltage
- battery
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は太陽電池を入力電源とするインバータ装置に係
り、特に光照射量が小さく太陽電池の電圧が低い場合に
インバータを始動した時の不安定現象(インバータがす
ぐに停止する現象など)を解決する。改良されたインバ
ータ装置を提供しようとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inverter device using a solar cell as an input power source, and particularly relates to an unstable phenomenon when the inverter is started when the amount of light irradiation is small and the voltage of the solar cell is low. (such as stoppage phenomenon). The present invention aims to provide an improved inverter device.
太陽電池を入力電源として動作するインバータ装置は、
ポンプ駆動用の可変周波電源として利用されつつある。An inverter device that operates using solar cells as an input power source is
It is being used as a variable frequency power source for driving pumps.
かかる太陽電池を動作電源として利用する場合、よく知
られているように太陽電池の電圧、パワーは光照射量お
よび電池温度に依存性があるので、太陽電池の有効利用
を図る場合、第2図の電池電圧に対する電流、出力特性
図(横軸に電池電圧を縦軸に出力および電流をそれぞれ
とって、電池温度が一定で光照射量をパラメータとした
場合の電圧−電流、出力特性を示す)で、破線で示す各
特性の最大電力点でインバータが動作するように、電池
電流を調整して所定の速度制御を行なっている。かかる
インバータ制御法であれば、光照射量をパラメータとす
る各特性で破線で示す最大電力点でインバータを運転す
るものであるからして、常に高効率で有効に電池パワー
を利用することができる。しかし乍ら問題となるのは、
インバータの始動時に際して入力電源である太陽電池の
状態である。即ち光照射量がある程度あって電池電圧も
最大電力点に対応する電圧値より低くなっている状態で
インバータを始動した場合、電池の電圧が急激にドロッ
プして遂にはインバータが停止すると云うように不安定
現象がみられる。かかる始動時の不安定現象を解決する
方法として、例えば常時のインバータ負荷で最も小さな
負荷よゆも小さい模擬負荷(一般にはインピーダンスを
示す)を用意して、太陽電池の電圧値が予じめ設定した
基準レベル以下の場合、インバータを切離して電池負荷
として前記模擬負荷を接続し、電池電圧の回復を待って
基準レベルに達した時点でインバータを再投入して、し
かる後に模擬負荷を遮断すると云う方法が提案されてい
る。かかる方法であれば、模擬負荷を新たに設けなけれ
ばならずインバータ装置そのものが大きくなる欠点があ
る。さらに重要なことは、定常時に於けるポンプ負荷の
場合、よく知られているようにポンプ出力は回転数の6
乗に比例して変化する特性であるので、制御時のインバ
ータ制御系のゲインは回転数が高速度領域では高ゲイン
に、これに対して低速度領域では低ゲインと云うように
運転全域に渡ってゲインが大きく変化し、安定した運転
は到底望め得ないものとなる。When using such a solar cell as an operating power source, as is well known, the voltage and power of the solar cell are dependent on the amount of light irradiation and the cell temperature. A diagram of current and output characteristics versus battery voltage (with battery voltage on the horizontal axis and output and current on the vertical axis, showing the voltage-current and output characteristics when the battery temperature is constant and the amount of light irradiation is used as a parameter) Then, the battery current is adjusted to perform predetermined speed control so that the inverter operates at the maximum power point of each characteristic indicated by the broken line. With such an inverter control method, the inverter is operated at the maximum power point shown by the broken line for each characteristic with the amount of light irradiation as a parameter, so battery power can always be used efficiently and effectively. . However, the problem is that
This is the state of the solar cell that is the input power source when starting the inverter. In other words, if you start the inverter when there is a certain amount of light irradiation and the battery voltage is lower than the voltage value corresponding to the maximum power point, the battery voltage will drop suddenly and the inverter will eventually stop. An unstable phenomenon is observed. As a method to solve this unstable phenomenon at startup, for example, a small simulated load (generally indicating impedance) such as the smallest load among the regular inverter loads is prepared, and the voltage value of the solar cell is set in advance. If the voltage is below the reference level, the inverter is disconnected, the simulated load is connected as a battery load, and the inverter is turned on again after waiting for the battery voltage to recover and reaches the reference level, after which the simulated load is cut off. A method is proposed. This method has the disadvantage that a new simulated load must be provided and the inverter itself becomes larger. More importantly, in the case of a pump load under steady state, as is well known, the pump output is
Since it is a characteristic that changes in proportion to the power of the inverter control system, the gain of the inverter control system during control is high in the high rotational speed region, and low gain in the low speed region, so it changes over the entire operating range. The gain changes greatly, making stable operation impossible.
本発明はこの点に鑑みて発明されたものであって、特に
本発明はインバータ主回路に模擬負荷としてのインピー
ダンスを設け、且つインピーダンスの挿入時はインバー
タの一アームのみは通電状態として小型化さらには動作
上の安定化を図ったことを一大特徴とし、以下第1図に
示す実施例に基づき詳述する。The present invention was invented in view of this point, and in particular, the present invention provides an impedance as a simulated load in the inverter main circuit, and when the impedance is inserted, only one arm of the inverter is in a energized state, which further reduces the size of the inverter. The major feature of this system is that it achieves operational stability, and will be described in detail below based on the embodiment shown in FIG.
同実施例で1はセルを任意数置−並列接続してなる太陽
電池で、2は直流中間回路の直流リアクトルで、6は太
陽電池出力が基準レベル以下の場合のみインバータ主回
路に挿入されるインピーダンスとしての模擬負荷で、こ
の模擬負荷の容量は、例えばインバータのポンプ負荷の
最小値よりも低い値となるように予じめ前以って選択し
である。In the same embodiment, 1 is a solar cell formed by connecting an arbitrary number of cells in parallel, 2 is a DC reactor of the DC intermediate circuit, and 6 is inserted into the inverter main circuit only when the solar cell output is below a reference level. A simulated load as an impedance, the capacity of which is preselected in advance to be, for example, a value lower than the minimum value of the pump load of the inverter.
4は逆変換部で、この逆変換部はサイリスタ6、〜61
+と電流抑制用リアクトル5□〜56門瞥−捧桐禰峙−
≠≠十希七−街とで構成され、各アームに挿入したりア
クドルは順電流の”/dtを抑制する為のもので、7は
ポンプ駆動用の銹導電動機で、8はポンプで、9は電圧
設定器で、10は太陽電池の端子間電圧を検出する電圧
検出回路で、11は電圧設定指令信号と電圧検出信号と
を比較する比較器で、12はコンパレータでインバータ
のON電圧とOFF!圧とは図示するようなヒステリシ
ス特性を持たせである。13はコンパレータの出力を以
って動作するリレーでその常開接点13.け前記インピ
ーダンスに並列接続しである。14は電圧制御用増幅器
で、15は電圧指令値の上限値と下限値とを規定の範囲
内で+7 ミツトする上−下限りミツター用アンプで、
16は制御系のループゲインを一定にする為の関数発生
器で、この関数発生器の特性はポンプ出力が回転数の3
乗に比例する特性であるので、入−出力特性は図示する
ようなYの関数を持たせである。17は逆変換部のスイ
ッチング素子群をパルス幅利−する為のパルス幅変調用
制御部で、この制御部はよく知られているように関数発
生器より導ひかれる周波数指令信号を基に発生する信号
波の正弦波信号と、搬送波の三角波信号とを付き合わせ
、この比較結果で得られる信号で逆変換部の素子群をゲ
ートドライブする為のものである。4 is an inverse conversion section, and this inverse conversion section includes thyristors 6, to 61.
+ and current suppression reactor 5□ ~ 56 Monbetsu - Sato Kirine confrontation -
≠≠ It consists of Toki 7-Machi, and the accelerator inserted in each arm is for suppressing the forward current "/dt", 7 is a rust conduction motor for driving the pump, 8 is the pump, 9 is a voltage setting device, 10 is a voltage detection circuit that detects the voltage between the terminals of the solar cell, 11 is a comparator that compares the voltage setting command signal and the voltage detection signal, and 12 is a comparator that compares the ON voltage of the inverter. The OFF! pressure has a hysteresis characteristic as shown in the figure. 13 is a relay that operates using the output of the comparator, and its normally open contact 13 is connected in parallel with the impedance. 14 is a voltage control 15 is an amplifier for upper-lower limits that limits the upper and lower limits of the voltage command value by +7 within the specified range.
16 is a function generator to keep the loop gain of the control system constant, and the characteristic of this function generator is that the pump output is 3 times the rotation speed.
Since the characteristic is proportional to the power, the input-output characteristic should have a function of Y as shown in the figure. Reference numeral 17 denotes a pulse width modulation control unit for controlling the switching element group of the inverse conversion unit in pulse width.As is well known, this control unit generates a signal based on a frequency command signal derived from a function generator. The sine wave signal of the signal wave and the triangular wave signal of the carrier wave are matched, and the signal obtained as a result of this comparison is used to gate drive the element group of the inverse conversion section.
以上のように構成される本実施例の動作を述べると、電
圧検出回路10より導びがれる太陽電池の検出信号レベ
ルが電圧設定器90基準レベル以上であれば、コンパレ
ータ12の出力を以ってリレー16が付勢さiその常開
接点13+、13xが閉路して、太陽電池の電池出力が
直流リアクトル2→常開接点13.→逆変換部4の経路
で与えられると共に、電圧指令値と電圧検出信号との誤
差電圧を増幅′した電圧制御用増幅器14の出方を以っ
て、上−下限IJ ミッタ用アンプ15−関数発生器1
6−パルス幅変調用制御部17の経路で所−のゲート信
号を発生させ、逆変換部4の素子群6.〜66をパルス
幅制御するものであるが、例えば電池出力が高くポンプ
8を高速度領域で駆動する場合、関数発生器16の特性
が図示する3乗根特性(Y)であるので、上−下限リミ
ッタ用アンプ15よシリミツトされた最高レベルの信号
が入力されてる期間、ゲイン変化を低速−中速度領域と
略々相等しくすべく関数発生器16の出力信号レベルを
制限して、この信号を以ってインバータ周波数を規制し
ポンプ速度が急激に上昇しないような所定の速度制御が
行なわれる。かかる状態で光照射量が少なくなって電池
出力がドロップしてくると、誤差電圧を増幅する電圧制
御用増幅器14の出力信号レベルも小さくなって、関数
発生器16より出力される周波数指令は徐々に低下しポ
ンプ速度は減速方向に制御される。なお太陽電池の電池
出力が基準レベルと同レベルにあれば、上−下限IJ
ミッタ用アンプ15より出力される信号は下限のレベル
に保持され、この信号を以って関数発生器16より所要
の周波数指令が出力されポンプ速度は低速度領域で駆動
されることになる。このように本実施例によれば、太陽
電池の出力レベルに応じてポンプ回転数を制御し、かか
る制御時に於ては、第2図の特性図で示すように光照射
量をパラメータとする各特性で、破線と交叉する最大出
力点でインバータが動作するようにインバータに取込ま
れる電池電流を調整して、常に運転時の効率を高め電池
の有効利用を図ることは申す迄もない。To describe the operation of this embodiment configured as described above, if the level of the solar cell detection signal derived from the voltage detection circuit 10 is equal to or higher than the reference level of the voltage setting device 90, the output of the comparator 12 is The relay 16 is energized and its normally open contacts 13+ and 13x are closed, and the battery output of the solar cell is transferred from the DC reactor 2 to the normally open contacts 13. →The upper-lower limit IJ transmitter amplifier 15-function Generator 1
A predetermined gate signal is generated in the path of the 6-pulse width modulation control section 17, and the element group 6.6 of the inverse conversion section 4 is generated. For example, when the battery output is high and the pump 8 is driven in a high speed region, the characteristic of the function generator 16 is the cube root characteristic (Y) shown in the figure, so the pulse width of the function generator 16 is controlled by pulse width. During the period when the highest level signal limited by the lower limiter amplifier 15 is input, the output signal level of the function generator 16 is limited so that the gain change is approximately equal to the low speed to medium speed region, and this signal is Accordingly, a predetermined speed control is performed to regulate the inverter frequency and prevent the pump speed from increasing rapidly. In such a state, when the amount of light irradiation decreases and the battery output drops, the output signal level of the voltage control amplifier 14 that amplifies the error voltage also decreases, and the frequency command output from the function generator 16 gradually decreases. The pump speed is controlled in the direction of deceleration. If the battery output of the solar cell is at the same level as the reference level, the upper-lower limit IJ
The signal output from the transmitter amplifier 15 is held at the lower limit level, and using this signal, the function generator 16 outputs a required frequency command and the pump speed is driven in a low speed region. As described above, according to this embodiment, the pump rotation speed is controlled according to the output level of the solar cell, and during such control, as shown in the characteristic diagram of FIG. It goes without saying that the battery current taken into the inverter is adjusted so that the inverter operates at the maximum output point that intersects with the broken line in order to constantly improve efficiency during operation and effectively utilize the battery.
かかる定常時のポンプ駆動時に於て、光照射量が急激に
少なくなって電池電圧がコンパレータ12の基準レベル
以下になると、リレー16はOFFし13.− i 3
.の各常開接点はそれぞれ開路され、インバータの直流
中間回路にインピーダンス6が挿入されると共に、電圧
制御用増幅器14を含めた電圧制御系は直ちに開路され
る。この動作と並行してパルス幅変調用制御部17では
リレー16がOFFした旨を条件にして、逆変換部4の
特定のアームのみを通電状態とすべく、例えば通電アー
ムがUアームとXアームであればUアームの素子6.と
Xアームの素子64とにONゲート信号を与え、他の素
子群に対するゲート信号は直ちにブロックする。このよ
うな所定の動作を行なうことによジインピーダンス3が
太陽電池1の負荷として接続され、太陽電池1→直流リ
アクトル2→インピーダンス3→リアクトル51→素子
6.→素子64→リアクトル54の経路で矢印に示す電
流が流れ、電池よりのパワーはインピーダンス6及び介
リアクトル2−5.−5.で制限されることになる。な
おかかる動作時に於ても、電池電圧に見合って尚該特性
の最大電力点に対応する電池電流が上記経路に取込まれ
るように、インピーダンス6と各リアクトルとの総イン
ピーダンスは予じめ前以って規定されており、電池出力
が急激にドロップして電池回復時にインバータが動作不
能に陥入ることはない。When the light irradiation amount suddenly decreases and the battery voltage falls below the reference level of the comparator 12 during pump driving in such a steady state, the relay 16 is turned off and 13. - i 3
.. Each normally open contact is opened, an impedance 6 is inserted into the DC intermediate circuit of the inverter, and the voltage control system including the voltage control amplifier 14 is immediately opened. In parallel with this operation, the pulse width modulation control unit 17 is configured to energize only specific arms of the inverse conversion unit 4 on the condition that the relay 16 is turned off. If so, the U-arm element 6. An ON gate signal is applied to the element 64 of the X arm, and gate signals to other element groups are immediately blocked. By performing such a predetermined operation, diimpedance 3 is connected as a load to solar cell 1, and solar cell 1→DC reactor 2→impedance 3→reactor 51→element 6. A current shown by the arrow flows through the path → element 64 → reactor 54, and the power from the battery is transferred to the impedance 6 and the reactor 2-5. -5. will be limited by. In addition, even during such operation, the total impedance of the impedance 6 and each reactor is set in advance so that the battery current corresponding to the maximum power point of the characteristic is taken into the above path in accordance with the battery voltage. It is specified that the inverter will not become inoperable when the battery is recovered due to a sudden drop in battery output.
以上のように本発明に於ては、インバータ主回路にイン
ピーダンスを設けてインバータの1ア一ム通電時のみイ
ンピーダンスを主回路に挿入して、電池電圧の回復を待
つようにしたものであるから以下に示すように種々の効
果を奏するものである。As described above, in the present invention, an impedance is provided in the inverter main circuit, and the impedance is inserted into the main circuit only when the inverter is energized at one time, and waits for the battery voltage to recover. This provides various effects as shown below.
■インバータの主回路に挿入するインピーダンスは抵抗
で、この抵抗と主回路リアクトルとで模擬負荷を構成す
るものであるから、インバータ装置そのものを小型化で
きる。■The impedance inserted into the main circuit of the inverter is a resistor, and this resistor and the main circuit reactor constitute a simulated load, so the inverter itself can be miniaturized.
■電池電圧が基準レベル以下の場合、模擬負荷を電池負
荷として接続し電池の回復を待ってインバータを再始動
するものであるから、従来装置にみられるような電池電
圧の回復時に於けるインバータの動作停止と云うような
不安定現象は一挙に解決することができる。■If the battery voltage is below the reference level, the simulated load is connected as a battery load and the inverter is restarted after waiting for the battery to recover. Unstable phenomena such as operation stoppage can be resolved all at once.
■インバータのON動作電圧とOFF動作電圧とにレベ
ル差を持たせヒステリシス特性にしであるので、電池電
圧が動作点近傍にある時にインバータがONしたりOF
Fしたりすると云うような動作上のハンチングを完全に
防止でき、安定性の高いインバータ装置を実現すること
ができる。■Since there is a level difference between the ON operating voltage and OFF operating voltage of the inverter to create a hysteresis characteristic, the inverter will turn ON and OFF when the battery voltage is near the operating point.
It is possible to completely prevent operational hunting such as that caused by F, and to realize a highly stable inverter device.
■制御系のループゲインを運転全域に渡って一定とする
ものであるから、上記■項の利点を踏まえて動作面では
より一層安定性の高い装置を実現することができる。(2) Since the loop gain of the control system is kept constant over the entire operating range, it is possible to realize a device with even higher operational stability based on the advantage of item (2) above.
第1図は本発明による一実施例を示すインバータ装置の
具体的な回路構成図、第2図は太陽電池の一般的な電圧
−電流、出力の対応関係を示す特性図。。
1は太陽電池、2は直流リアクトル、6はインピーダン
ス、4は逆変換部、51〜56はdi/at抑制用リア
クトル、61〜66はサイリスタ、9け電圧設定器、1
0は電池電圧検出回路、12はコンパレータ、16はリ
レー、14は電圧制御用増幅器、15は土−下限IJ
ミッタ用アンプ、16は関数発生回路、17はパルス幅
変調用制御部。
%¥[出願人FIG. 1 is a specific circuit configuration diagram of an inverter device showing one embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the general voltage-current and output correspondence of a solar cell. . 1 is a solar cell, 2 is a DC reactor, 6 is an impedance, 4 is an inverse conversion unit, 51 to 56 are di/at suppression reactors, 61 to 66 are thyristors, 9 are voltage setting devices, 1
0 is a battery voltage detection circuit, 12 is a comparator, 16 is a relay, 14 is a voltage control amplifier, 15 is a lower limit IJ
16 is a function generation circuit, and 17 is a pulse width modulation control section. %¥ [Applicant
Claims (3)
変速駆動するようにしだものに於て、太陽電池の出力電
圧レベルがインバータ動作レベル以下の場合のみインバ
ータ主回路に挿入するインピーダンスを設け、このイン
ピーダンス挿入時は、インバータの1アームのみ通電状
態として他方のアームは非通電にしたことを特徴とする
インバータ装置。(1) In a device that uses the output of a solar cell as a DC power source to drive a load at variable speed, an impedance is provided that is inserted into the inverter main circuit only when the output voltage level of the solar cell is below the inverter operating level. An inverter device characterized in that when this impedance is inserted, only one arm of the inverter is energized and the other arm is de-energized.
第1項記載のインバータ装置。(2) The inverter device according to claim 1, wherein the impedance is a resistance.
ドルとの総インピーダンスを1.インバータ負荷の最小
負荷よりも低い値に選定した特許請求の範囲第1項又は
第2項記載のインバータ装置。(3) The total impedance of the impedance and the inverter main circuit is 1. The inverter device according to claim 1 or 2, wherein the inverter load is set to a value lower than the minimum load of the inverter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57124002A JPS5914372A (en) | 1982-07-16 | 1982-07-16 | Inverter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57124002A JPS5914372A (en) | 1982-07-16 | 1982-07-16 | Inverter device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5914372A true JPS5914372A (en) | 1984-01-25 |
Family
ID=14874604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57124002A Pending JPS5914372A (en) | 1982-07-16 | 1982-07-16 | Inverter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914372A (en) |
-
1982
- 1982-07-16 JP JP57124002A patent/JPS5914372A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003238599B9 (en) | Method and device for controlling photovoltaic inverter, and feed water device | |
CA1226895A (en) | Photovoltaic power regulation system | |
CN101582515A (en) | Power management method using feedback current bias for simultaneously controlling low cells and overall stack | |
JPS5914372A (en) | Inverter device | |
CN2916385Y (en) | One-stage whole-course feed water control system | |
JPS6398710A (en) | Voltage control circuit for fuel cell | |
CN111371368B (en) | Method for preventing power supply voltage drop of cascade four-quadrant frequency converter | |
JPS644415B2 (en) | ||
JPS5932020A (en) | Controller for solar battery driving power converter | |
US4292533A (en) | Motoring control for hydraulic pump-turbine | |
JPH02156313A (en) | Start and stop device for photovoltaic power generating system | |
JPS6230303B2 (en) | ||
JPH0638719B2 (en) | Generator disconnection preparation control method | |
JPS6323387B2 (en) | ||
JPS62103498A (en) | Idle run preventing system of pump operated by generator powdered by solar ray | |
JPS61109120A (en) | Power supply device | |
US2302659A (en) | Power generating system | |
SU1280158A1 (en) | Multidimensional control system of power plant | |
SU363381A1 (en) | Hydraulic turbine electrohydraulic regulator | |
JPS6232357B2 (en) | ||
SU1117608A1 (en) | Pulse voltage converter | |
JP2019169250A (en) | Fuel cell system | |
CN116131343A (en) | Time sequence control protection method, storage medium and equipment for doubly-fed fan set | |
JPS59134451A (en) | Controller for heat-collecting pump in solar heat collector | |
JPH0320995B2 (en) |