JPS5914290B2 - Casting defect treatment method - Google Patents

Casting defect treatment method

Info

Publication number
JPS5914290B2
JPS5914290B2 JP13152680A JP13152680A JPS5914290B2 JP S5914290 B2 JPS5914290 B2 JP S5914290B2 JP 13152680 A JP13152680 A JP 13152680A JP 13152680 A JP13152680 A JP 13152680A JP S5914290 B2 JPS5914290 B2 JP S5914290B2
Authority
JP
Japan
Prior art keywords
hip
casting
powder
treatment
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13152680A
Other languages
Japanese (ja)
Other versions
JPS5756152A (en
Inventor
寿 高田
伸泰 河合
博 滝川
勝 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13152680A priority Critical patent/JPS5914290B2/en
Publication of JPS5756152A publication Critical patent/JPS5756152A/en
Publication of JPS5914290B2 publication Critical patent/JPS5914290B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D31/00Cutting-off surplus material, e.g. gates; Cleaning and working on castings
    • B22D31/002Cleaning, working on castings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 本発明は鋳造材、特にガスタービンブレード、ベーンな
どに使用される超合金鋳造材の鋳造欠陥を除去するに好
適な処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method suitable for removing casting defects in cast materials, particularly superalloy cast materials used for gas turbine blades, vanes, etc.

従来より金属の成形技術として鋳造は最も一般的な技術
であり、多くの分野において使用されているが、鋳造時
に不可避的に発生するガスにより鋳造品内に大小の気孔
が発生し易(、またかかる気孔発生を完全に防止するこ
とは極めて困難であったため、従来一般の鋳造品におい
ては、多少の気孔が存在することは避けられない有様で
あったが、このような気孔が存在していても事実上、製
品としてその鋳造品に要求される性能を満足し得ること
から、その気孔の存在は、さ程、問題にはならなかった
Casting has traditionally been the most common metal forming technology and is used in many fields, but the gas that is inevitably generated during casting tends to cause small and large pores to form within the cast product. It has been extremely difficult to completely prevent the occurrence of such pores, so it has been unavoidable that some pores exist in conventional cast products. However, the presence of the pores did not pose much of a problem since the cast product could actually satisfy the performance required for the cast product.

ところが、近年の省エネルギー思想の浸透に伴ない、ガ
スタービンの効率向上のため、入口ガス温度を相当な高
温領域にまで上げることが要求され、Ni基合金、CO
基合金等の超合金の鋳造による部品製造が要求されるに
至った。
However, with the spread of energy saving ideas in recent years, it has become necessary to raise the inlet gas temperature to a considerably high temperature range in order to improve the efficiency of gas turbines.
It has become necessary to manufacture parts by casting superalloys such as base alloys.

かかる部品はその使用態様から苛酷な条件下で使用され
ることが必至であり、鋳造工程で発生した気孔は機械的
性質を低下させる致命的な欠陥としてその解消法は重要
な課題である。
Due to the manner in which such parts are used, it is inevitable that they are used under harsh conditions, and the pores generated during the casting process are fatal defects that degrade mechanical properties, and how to eliminate them is an important issue.

かかる時代的要請により最近熱間静水圧プレス(HIP
)法により高温高圧の圧媒ガス例えばArガスを、内部
欠陥を有する鋳造品あるいは焼結体に作用させてその封
孔を行なう技術が提案され、前述の問題解決の手段とし
て多くの関心を集めている。
Due to the demands of the times, hot isostatic pressing (HIP) has recently been introduced.
) method has been proposed in which a high-temperature, high-pressure pressurized gas such as Ar gas is applied to a cast or sintered body with internal defects to seal the pores, and this method has attracted much attention as a means of solving the above-mentioned problem. ing.

このHIP法によると、加熱装置を内蔵した高圧容器内
に鋳造品あるいは焼結体等の成形体を装入し、これに1
000気圧程度の圧力と900〜1200℃の温度のA
rガスを作用させ、この温度と圧力の作用により気孔を
圧壊させ、且つ気孔部の金属を拡散接合させて、気孔の
痕跡を留めないまでに完全な封孔を行なうことが可能で
あり、気孔解消による成形体の改質という迄ではその目
的は充分に達せられる。
According to this HIP method, a molded product such as a cast product or a sintered product is charged into a high-pressure container equipped with a built-in heating device.
A at a pressure of about 1,000 atmospheres and a temperature of 900 to 1,200 degrees Celsius
It is possible to completely seal the pores without leaving any traces of the pores by applying r gas, crushing the pores by the action of temperature and pressure, and diffusion bonding the metal in the pores. The purpose can be fully achieved as far as the molded body is modified by the decomposition.

しかしながら、このHIP法は圧媒及び熱媒として使用
するArガスが高価であることがらHIP処理後、高圧
容器内のArガスは必らずガスホルダーに回収されてお
り、従って高圧容器への成形体の装入、取出しのための
容器の開閉に伴なう空気の混入、及び成形体に付着した
油分等の分解により生成する各種不純ガスの混入は避け
られず、このため回収Arガスの純度が次第に低下して
Arガス中に含有された酸素、窒素等の不純物ガスによ
る成形体の汚染という問題を残している。
However, in this HIP method, the Ar gas used as a pressure medium and a heating medium is expensive, so after the HIP process, the Ar gas inside the high-pressure container is always collected in a gas holder, and therefore it is difficult to form the high-pressure container. It is unavoidable that air is mixed in when the container is opened and closed for loading and unloading the molded body, and various impurity gases generated by the decomposition of oil etc. adhering to the molded body are mixed in. Therefore, the purity of the recovered Ar gas cannot be avoided. As a result, the problem of contamination of the compact by impurity gases such as oxygen and nitrogen contained in the Ar gas remains.

このArガス様の不純物は高々200 ppm程度であ
るが、1000気圧の高圧下では、単純計算によっても
その不純物絶対量は、20%の不純物を含む常圧Arガ
スのそれに相当し、しかも9.00〜1200℃の高温
下では成形体の金属表面は極めて活性化しているため、
微量不純物と言えども成形体表面の金属と反応し易い状
況となっている。
This Ar gas-like impurity is about 200 ppm at most, but under a high pressure of 1000 atm, even by simple calculation, the absolute amount of the impurity is equivalent to that of normal pressure Ar gas containing 20% impurities. Since the metal surface of the molded body is extremely activated at high temperatures of 00 to 1200°C,
Even if it is a trace amount of impurity, it is likely to react with the metal on the surface of the molded product.

特に不純物としての酸素は最も問題であり、数十ppm
程度の酸素が存在しても、成形体表面には数十μの汚染
層、例えば酸化物層が形成され、その成形体の特性は著
しく低下することになる。
In particular, oxygen as an impurity is the most problematic, with concentrations of several tens of ppm
Even if a certain amount of oxygen is present, a contamination layer of several tens of micrometers, such as an oxide layer, will be formed on the surface of the molded product, and the properties of the molded product will be significantly deteriorated.

従って、この不純物による成形体の汚染の問題を解決し
なげれば前述したHIP法による成形体の改質技術の実
用化は困難と云える。
Therefore, unless the problem of contamination of molded bodies due to impurities is solved, it will be difficult to put into practical use the above-mentioned HIP method for modifying molded bodies.

一方、かかるHIP法の問題解決の一方法として二次圧
媒粒子を充填したコンテナ内に予め作成した型内に金属
粉末を充填したものを埋設し、該コンテナをHIP炉に
装入して高温高圧の一次圧媒ガス雰囲気下でHIP処理
を施す方法がある。
On the other hand, one way to solve the problems of the HIP method is to bury a mold filled with metal powder in a pre-prepared mold inside a container filled with secondary pressure medium particles, and then insert the container into a HIP furnace and heat it to a high temperature. There is a method of performing HIP treatment under a high-pressure primary pressure medium gas atmosphere.

この二次圧媒により圧密化する方法は、二次圧媒を用い
ない通常のHIP法に比較し金属粉末を充填した型自体
が二次圧媒粒子を充填したコンテナ内に埋設されている
ため、前記HIP炉内の不純物と成形体表面との接触機
会がなくなり、不純物による成形体汚染の問題は一応防
止されるが、しかしながらコンテナ内に鋳造材を封入し
、HIP処理を行なうときは、欠陥除去のためのHIP
条件(温度、圧力)により二次圧媒をも圧密化すること
になり、処理後、内部の被処理体を取出すのが著しく困
難となるのみならず、圧媒の再使用を図るときは再粉砕
しなければならないという煩雑さを免れない。
This method of consolidation using a secondary pressure medium differs from the normal HIP method that does not use a secondary pressure medium, because the mold itself filled with metal powder is buried in a container filled with secondary pressure medium particles. , there is no opportunity for impurities in the HIP furnace to come into contact with the surface of the molded product, and the problem of contamination of the molded product due to impurities is temporarily prevented. However, when the casting material is enclosed in a container and subjected to HIP treatment, HIP for removal
Depending on the conditions (temperature, pressure), the secondary pressure medium is also consolidated, which not only makes it extremely difficult to remove the internal object to be processed after processing, but also makes it difficult to reuse the pressure medium. There is no escape from the complication of having to crush it.

そのため、二次圧媒として難焼結性のセラミックス系統
の材料を用いるのが望ましいが、これらの材料は通常、
その製造工程から数μの超微粉末が一般的であり、これ
をHIP処理に使用すれば充填率が悪(、HIP時に極
端な収縮を起して遂にはコンテナを破損に至らしめるこ
とも屡々である。
Therefore, it is desirable to use ceramic-based materials that are difficult to sinter as the secondary pressure medium, but these materials usually
Due to the manufacturing process, ultrafine powder of several micrometers in size is common, and if this is used for HIP processing, the filling rate is poor (and it often causes extreme shrinkage during HIP, eventually leading to container damage). It is.

本発明は叙上の如き事実に鑑み、従来のHIPによる鋳
造材欠陥処理方法の改善を企図し、就中、二次圧媒に使
用する耐火材粉末の効用に着目し、HIP炉内の不純物
に影響を受けない鋳造欠陥処理方法を提供することを目
的とするものである。
In view of the above-mentioned facts, the present invention aims to improve the conventional method for treating defects in cast materials by HIP, and focuses particularly on the effectiveness of refractory material powder used as a secondary pressure medium. The purpose of this invention is to provide a casting defect treatment method that is not affected by

しかして、かかる目的に適合する本発明方法は、鋳造欠
陥を有する鋳造材にHIP処理を施すことによりその欠
陥を除去する方法において、鋳造材を耐火性粉末中に埋
設し、これを常温下で一旦加圧成形してブロック化し、
該ブロックをHIP処理用カプセル内に装入して所定の
HIP処理を施すことにその特徴を有するものである。
Therefore, the method of the present invention, which is suitable for such purpose, involves embedding the casting material in a refractory powder, and burying the casting material in a refractory powder at room temperature. Once pressure molded into blocks,
The feature is that the block is inserted into a HIP processing capsule and subjected to a predetermined HIP processing.

以下、本発明処理方法の具体的態様を更に順を追って説
明する。
Hereinafter, specific aspects of the treatment method of the present invention will be explained in further order.

先ず、本発明方法の基本的構成は、第一に鋳造欠陥を有
する鋳造材を耐火材粉末中に埋設し、これを常温下にお
いて冷間静水圧処理(CIP)などによる加圧成形を行
なってブロック化することであり、第二に前記ブロック
を通常のHIP成形用カプセル内に装入してHIP処理
を施すことである。
First, the basic structure of the method of the present invention is to first embed a cast material having casting defects in refractory material powder, and then press-form it by cold isostatic pressure treatment (CIP) or the like at room temperature. The second step is to put the block into a normal HIP molding capsule and perform HIP treatment.

前記本発明第一工程において用いられる耐火材粉末とし
ては、BN、Si3N4.Al2O3、zrO2、T
i02、バイコールガラスであり、これら材料群からな
る耐火材粉末より鋳造材の種類に応じ特に鋳造材との界
面反応性をもって適宜選択される。
The refractory material powder used in the first step of the present invention includes BN, Si3N4. Al2O3, zrO2, T
i02 is Vycor glass, which is appropriately selected from the refractory material powders made of these material groups depending on the type of casting material, especially in terms of its interfacial reactivity with the casting material.

そして、これら耐火材粉末中に鋳造材を埋設してCIP
処理を行なうには、耐火材粉末の形態保持を図る上から
通常、例えばゴム型の如き柔軟性シート材からなる型な
どを使用し、該型内に耐火材粉末を充填しその中に被処
理鋳造材を埋設する。
Then, the cast material is buried in these refractory material powders and CIP is performed.
To carry out the treatment, in order to maintain the shape of the refractory material powder, a mold made of a flexible sheet material such as a rubber mold is usually used, the refractory material powder is filled into the mold, and the material to be treated is placed inside the mold. Bury the casting material.

CIP処理などによる前記耐火材粉末に封入された鋳造
材の加圧成形は、該耐火材粉末と鋳造材とをブロック化
するに適した圧力をもってプレスすれば足り、必ずしも
温度、圧力にきびしい条件はないが、作業工程の容易さ
から常温下において約4000 kg/ca程度で2〜
3分圧密し、耐火材粉末を少くとも60〜80%の密度
においてブロツク化することが望ましく、前記CIP処
理は最も有効な加圧処理である。
Pressure molding of the cast material encapsulated in the refractory material powder by CIP treatment etc. only requires pressing with a pressure suitable for forming the refractory material powder and the cast material into a block, and severe conditions such as temperature and pressure are not necessarily required. However, due to the ease of the work process, it can be applied at about 4000 kg/ca at room temperature.
It is desirable to consolidate the refractory material powder for 3 minutes to form a block with a density of at least 60 to 80%, and the CIP treatment is the most effective pressure treatment.

以下に本発明方法に使用する二次圧媒粉末の種類並びに
その特性を例示する。
The types and characteristics of the secondary pressure medium powder used in the method of the present invention are illustrated below.

上表からも明らかな通り、単に圧媒を充填しただけでは
、見掛密度が極めて低く、例えばNBの場合の見掛密度
は相対密度換算で17.7%にしか過ぎず、これをその
ままHIP処理したのではカプセルの変形量が極めて犬
となることが窺知できる。
As is clear from the table above, simply filling the pressure medium results in an extremely low apparent density. For example, in the case of NB, the apparent density is only 17.7% in terms of relative density, and this can be directly applied to HIP. It can be seen that the amount of deformation of the capsule after treatment is extremely large.

次に前述の如くブロック化された鋳造材を含む耐火性粉
末材料は、これを通常のHIP成形用カプセル内に装入
して第2のHIP処理に移行する。
Next, the refractory powder material containing the cast material that has been made into blocks as described above is charged into a normal HIP molding capsule and transferred to the second HIP treatment.

この場合のカプセルは従来の成形用カプセルと同様軟鋼
の如き金属又はガラス或いは金属とガラスとの複合材料
の如きガス不透過性材料が好ましくその大きさは前記ブ
ロックを装入するに足る大きさが要求される。
The capsule in this case is preferably made of a metal such as mild steel, or a gas-impermeable material such as glass or a composite material of metal and glass, as is the case with conventional molded capsules, and its size is large enough to accommodate the above-mentioned blocks. required.

ブロックが装入されたカプセルは次に通常の手法に従っ
てHIP処理に付されるが、該処理に先立ち、カプセル
内に残留する空気を脱気除去し、カプセルを密封する作
業を行なう。
The capsule loaded with the block is then subjected to HIP treatment according to a conventional method, but prior to this treatment, the air remaining in the capsule is removed by degassing and the capsule is sealed.

HIP処理は通常一般に行なわれているHIP条件に従
ってArガス雰囲気下で1200℃、1000 kg/
cyrL、 1時間程度で行なわれるが、被処理体の材
質、大きさ等により適宜選定すべきことはいうまでもな
い。
The HIP treatment is carried out at 1200°C and 1000 kg/kg in an Ar gas atmosphere according to the commonly used HIP conditions.
cyrL, which takes approximately one hour, but it goes without saying that the time should be selected appropriately depending on the material, size, etc. of the object to be processed.

なお、前記HIP処理におげろ脱気に際しては二次圧媒
である耐火材粉末ではすでにCIPによりある程度、緻
密化しているので側段圧媒飛散の心配はない。
It should be noted that during deaeration during the HIP process, the refractory material powder that is the secondary pressure medium has already been densified to some extent by CIP, so there is no fear of side-stage pressure medium scattering.

なお、二次圧媒である耐火材粉末は処理後、適宜の手段
によって剥離する。
Incidentally, after the treatment, the refractory material powder, which is the secondary pressure medium, is peeled off by appropriate means.

上記の各工程を経てHIP処理が施された鋳造材は、そ
の内部に欠陥を有していた場合でもその欠陥は完全に消
失し、健全な鋳造材へとその改質が行なわれる。
Even if the cast material that has been subjected to HIP treatment through the above-mentioned steps has internal defects, the defects will completely disappear and the cast material will be modified into a sound cast material.

次に本発明方法の実施例を掲げる。Next, examples of the method of the present invention are listed.

実施例 I ALLOY 713 C(Ni基超超合金からなる
精密鋳造材をBN粉末からなる二次圧媒中に埋設し、常
温下において4000 kg/c4で3分保持してCI
P処理を施し、これをブロックに形成した。
Example I ALLOY 713 C (a precision cast material made of Ni-based superalloy was buried in a secondary pressure medium made of BN powder, and held at room temperature for 3 minutes at 4000 kg/c4 to give a CI
This was subjected to P treatment and formed into a block.

次にこのブロックをHIP装置中に装入し、■200℃
X 1000 kg/crti×1 hr の条件で、
Arガス中でHIP処理を行ない、鋳造欠陥の消滅状況
を調べたところ、第1図に示す拡大写真の如き結果を得
た。
Next, put this block into a HIP device and heat it to ■200°C.
Under the conditions of x 1000 kg/crti x 1 hr,
When the HIP treatment was carried out in Ar gas and the state of disappearance of casting defects was investigated, results as shown in the enlarged photograph shown in FIG. 1 were obtained.

一方、同じ材料を二次圧媒による加圧成形を行なうこと
なく、同一条件でHIP処理を行なった結果は第2図の
如く表面に酸化汚染層が認められた。
On the other hand, when the same material was subjected to HIP treatment under the same conditions without being subjected to pressure molding using a secondary pressure medium, an oxidized contamination layer was observed on the surface as shown in FIG.

両図より明らかな如く本発明によるものは、内部の気孔
が完全に消滅し、鋳造欠陥を解消しているが、単にHI
P処理によるものは未だ充分に消滅していないことが判
る。
As is clear from both figures, in the product according to the present invention, internal pores are completely eliminated and casting defects are eliminated, but only HI
It can be seen that the particles caused by the P treatment have not yet disappeared sufficiently.

実施例 2 次にカプセルの破損状況を調べるため、軟鋼製カプセル
を使用し、同じく二次圧媒としてBN粉末を用い400
0 kg/cwt、で2.5分保持した後、■200℃
X 1000 kg/crA X 1 hr の条件で
HIP処理を行なった。
Example 2 Next, in order to investigate the damage state of the capsule, a mild steel capsule was used, and BN powder was used as the secondary pressure medium, and 400
After holding at 0 kg/cwt for 2.5 minutes, ■ 200℃
HIP treatment was performed under the conditions of X 1000 kg/crA X 1 hr.

この場合のHIP処理後のカプセル外観及び切断面は参
考写真(IX2)に示す如くであった。
In this case, the appearance and cut surface of the capsule after HIP treatment were as shown in the reference photograph (IX2).

一方、二次圧媒としてBN粉末を用い、これをCIP処
理することなく二次圧媒中に被処理体を埋設したまま軟
鋼製カプセル内に封入し、前記同様1200℃X 10
00 kg/ciX 1 hr のHIP処理を行なっ
たところその軟鋼製カプセルは参考写真(3)に示す如
く極めて大きい変形量を示した。
On the other hand, BN powder was used as the secondary pressure medium, and the object to be treated was buried in the secondary pressure medium and sealed in a mild steel capsule without being subjected to CIP treatment, and heated at 1200° C.
When subjected to HIP treatment at a rate of 0.00 kg/ciX 1 hr, the mild steel capsule exhibited an extremely large amount of deformation as shown in reference photograph (3).

これらの写真より明らかな如<CIP処理を行なった本
発明方法によるものは、HIP処理後においても上中下
各部において処理前と殆んど変わない円形断面を有して
いるが、加圧成形を行なわない従来法によるものはカプ
セルに亀裂が入り、しかもArが侵入したため表面汚染
が発生し、極端な変形を起している。
As is clear from these photographs, even after HIP treatment, the CIP treatment according to the method of the present invention has a circular cross section that is almost the same as before treatment in the upper, middle, and lower parts, but the pressure molding In the case of the conventional method which does not carry out this process, the capsule cracks and Ar enters the capsule, causing surface contamination and extreme deformation.

以上の如(本発明方法によれば、気孔など内部鋳造欠陥
を有する各種鋳造材は、その表面が何ら汚染されること
なくその改質が行なわれることになり、Ni基合金、C
O基合金の如き超合金による鋳造材のHIP法による改
質効果を向上させ、またマクロな鋳造欠陥の消滅も可能
で製品歩留りも大幅に向上すると共に、成形体製品の機
械的性質を大幅に改善し、成形体の信頼性を飛躍的に向
上させる効果が期待される。
As described above (according to the method of the present invention), various cast materials having internal casting defects such as pores can be modified without any contamination of their surfaces, and Ni-based alloys, carbon
It improves the modification effect of superalloy cast materials such as O-based alloys by HIP method, eliminates macroscopic casting defects, greatly improves product yield, and significantly improves the mechanical properties of molded products. This is expected to have the effect of dramatically improving the reliability of molded products.

しかも、本発明方法にあっては予め加圧成形によりブロ
ック化し、これをHIP処理に付するものであるから、
HIP処理時における脱気・密封が容易であり、かつ、
充填度合いを粉末から直ちに成形するのに比較して多く
することができるので、処理効果が円滑で、カプセルの
破損を起すことがない。
Moreover, in the method of the present invention, blocks are formed in advance by pressure molding and then subjected to HIP treatment.
Easy to degas and seal during HIP treatment, and
Since the degree of filling can be increased compared to molding directly from powder, the processing effect is smooth and the capsule does not break.

また、被処理鋳造材を耐火材粉末中に直接埋設するから
処理後における被処理体の取出しを容易ならしめる利点
もあり、鋳造材の欠陥処理方法としてその実効性は頗る
犬である。
Furthermore, since the cast material to be treated is directly buried in the refractory material powder, there is the advantage that the object to be treated can be easily taken out after treatment, making it extremely effective as a method for treating defects in cast materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法と従来法による鋳造欠陥
処理方法の該欠陥消滅状況を示す拡大顕微鏡写真で第1
図は本発明方法、第2図は従来法による場合である。
Figures 1 and 2 are enlarged micrographs showing the disappearance of casting defects in the method of the present invention and the conventional method.
The figure shows the method according to the present invention, and FIG. 2 shows the case according to the conventional method.

Claims (1)

【特許請求の範囲】 1 鋳造欠陥を有する鋳造材に高温高圧ガス雰囲気下で
熱間静水圧プレス処理を施すことにより、該鋳造材の欠
陥を除去する方法において、該鋳造材を耐火材粉末中に
埋設し、これを常温下で加圧成形してブロック化し、続
いて該ブロックを熱間静水圧プレス成形用カプセル内に
装入してこれを脱気密封し、しかる後、該カプセルに熱
間静水圧プレス処理を施すことを特徴とする鋳造欠陥処
理方法。 2 耐火材粉末がNB、Si3N4、A1□03、Z
r02、TiO2、バイコールガラスからなる群より選
ばれた粉末である特許請求の範囲第1項記載の鋳造欠陥
処理方法。 3 鋳造材を埋設してブロック化された耐火材粉末の圧
粉相対密度が60〜80%である特許請求の範囲第1項
又は第2項記載の鋳造欠陥処理方法。
[Scope of Claims] 1. A method for removing defects in a cast material by subjecting the cast material having casting defects to hot isostatic pressing in a high-temperature, high-pressure gas atmosphere. This is pressure-molded at room temperature to form a block, and then the block is placed in a capsule for hot isostatic press molding, which is degassed and sealed. A casting defect treatment method characterized by performing isostatic press treatment. 2 Refractory material powder is NB, Si3N4, A1□03, Z
The casting defect treatment method according to claim 1, wherein the powder is selected from the group consisting of r02, TiO2, and Vycor glass. 3. The casting defect treatment method according to claim 1 or 2, wherein the powder relative density of the refractory material powder formed into blocks by embedding the casting material is 60 to 80%.
JP13152680A 1980-09-24 1980-09-24 Casting defect treatment method Expired JPS5914290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13152680A JPS5914290B2 (en) 1980-09-24 1980-09-24 Casting defect treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13152680A JPS5914290B2 (en) 1980-09-24 1980-09-24 Casting defect treatment method

Publications (2)

Publication Number Publication Date
JPS5756152A JPS5756152A (en) 1982-04-03
JPS5914290B2 true JPS5914290B2 (en) 1984-04-04

Family

ID=15060119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13152680A Expired JPS5914290B2 (en) 1980-09-24 1980-09-24 Casting defect treatment method

Country Status (1)

Country Link
JP (1) JPS5914290B2 (en)

Also Published As

Publication number Publication date
JPS5756152A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US4568516A (en) Method of manufacturing an object of a powdered material by isostatic pressing
US4851055A (en) Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
US4023966A (en) Method of hot isostatic compaction
US4808249A (en) Method for making an integral titanium alloy article having at least two distinct microstructural regions
US4996022A (en) Process for producing a sintered body
JPS6245195B2 (en)
JPH01201082A (en) Production of powder molded article by isostactic press
EP0741194B1 (en) Pneumatic isostatic compaction of sintered compacts
CN108070709A (en) Method by mixing the defects of hot isostatic pressing (HIP) process is come on the thermal part of restoring portion of turbine
US4431605A (en) Metallurgical process
WO2019205830A1 (en) Method for promoting densification of metal body by utilizing metal hydrogen absorption expansion
US3953205A (en) Production of homogeneous alloy articles from superplastic alloy particles
JPS5914290B2 (en) Casting defect treatment method
US4505871A (en) Method for manufacturing an object of silicon nitride
JPS6232241B2 (en)
EP3530383B1 (en) A method of manufacturing an austenitic iron alloy
US4828793A (en) Method to produce titanium alloy articles with high fatigue and fracture resistance
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
CN111283203A (en) Method for promoting blank densification by utilizing hydrogen absorption expansion of titanium-containing material
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
JPS5822307A (en) Method of hot hydrostatic pressure press treatment using hydraulic pressure
JPS6146433B2 (en)
JP2005256149A (en) Treatment method for metallic body having open hole and metallic body
JPH0625713A (en) Method for sintering cr-base heat-resistant alloy powder
JPS58202939A (en) Hot plastic working method