JPS59141255A - Ebullition-cooling type electric apparatus - Google Patents

Ebullition-cooling type electric apparatus

Info

Publication number
JPS59141255A
JPS59141255A JP1659483A JP1659483A JPS59141255A JP S59141255 A JPS59141255 A JP S59141255A JP 1659483 A JP1659483 A JP 1659483A JP 1659483 A JP1659483 A JP 1659483A JP S59141255 A JPS59141255 A JP S59141255A
Authority
JP
Japan
Prior art keywords
refrigerant liquid
boiling
coils
electric field
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1659483A
Other languages
Japanese (ja)
Inventor
Shunei Kodama
児玉 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1659483A priority Critical patent/JPS59141255A/en
Publication of JPS59141255A publication Critical patent/JPS59141255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To inhibit an electric field in bubbles to a sufficiently low value, to increase insulating strength and to apply an electric apparatus easily to specifications at high voltage by providing a conductive shielding plate disposed so as to flow bubbles between the shielding plate and the surface of a heat generating section. CONSTITUTION:Conductive shielding plates 21, 22 are constituted by metallic films 23, 24 electrically connected to the winding-starting and winding-ending sections of coils 15, 16 and heat-insulating plates 25, 26. Flow paths 27, 28 in which bubbles 12 flow are formed among the conductive shielding plates 21, 22 and the surfaces of both coils 15, 16. The potential of the metallic films 23, 24 is each kept at approximately the same potential as the surface of the coils 15, 16, and an electric field is applied only to a refrigerant liquid 4 between the conductive shielding plates 21, 22. Boiling is not generated in the refrigerant liquid 4 in a section where the electric field is applied, the high dielectric strength of the liquid can be utilized effectively while the electric field is hardly applied to the refrigerant liquid 4 and bubbles 12 in a section where a boiling and a heat transfer are executed, and insulating performance as a transformer is not damaged.

Description

【発明の詳細な説明】 この発明は沸騰冷却式電気機器、とくに沸騰冷却方式を
採用した変圧器等の高電圧電気機器の構成に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporative cooling type electrical device, and particularly to a configuration of a high voltage electrical device such as a transformer employing the evaporative cooling method.

この種の従来の沸騰冷却式電気機器の一例として変圧器
に適用した場合を第1図及び第2図について説明する。
As an example of this type of conventional evaporative cooling type electrical equipment, a case where it is applied to a transformer will be described with reference to FIGS. 1 and 2.

第1図はその全体構成図、%2図はその要部を拡大して
示す所面図である。図において、(1)はその上部に、
放熱フィン(2)を取り付けた凝峻器(3)を有する密
閉容器、(4)は密閉容器(1)内に収容された凝縮性
冷媒液で、例えばC5FlsO(パー70ログチルテト
ラヒドロ7ラン)等が使用され、その液面上はその蒸気
(4a)で占められている。
FIG. 1 is a diagram showing its overall configuration, and Figure 2 is an enlarged view of its main parts. In the figure, (1) is at the top,
A closed container with a condenser (3) fitted with radiation fins (2), (4) is a condensable refrigerant liquid contained in the closed container (1), for example C5FlsO (par 70 logyl tetrahydro 7 run). etc. are used, and the liquid surface is occupied by its vapor (4a).

(5) tri冷媒液(4)内に浸された変圧器本体で
、電圧が印加され主たる発熱部である高圧コイル(6)
及び門圧コイル(7)、両コイル(6) <7)の間に
仲人された絶縁バリア(8)及び両コイル(6)’ (
7)と鎖交するように配設器(1)外へ引き出す貫通端
子である。
(5) The transformer body is immersed in the tri refrigerant liquid (4), and the high-voltage coil (6) is the main heat generating part to which voltage is applied.
and gate pressure coil (7), insulation barrier (8) interposed between both coils (6) <7) and both coils (6)' (
This is a through terminal that is pulled out of the installation device (1) so as to be interlinked with 7).

次に、上記のように構成された従来の沸騰冷却式変圧器
の冷却動作について説明する。まず、変圧器が運転され
ていない冷状態においては、密閉容器(1)内は周囲温
度に対応する冷媒液(4)の飽和然ると、それぞれ銅損
及び鉄損を発生し温度上昇を始める。両コイル(6) 
(7)及び鉄心(9)は冷媒液(4)内に浸されている
ので、それぞれの表面に接する冷媒液(4)はその蒸気
からなる気泡(12)を発生し両コイル(6) (7)
及び鉄心(9)から気化潜熱を奪ういわゆる沸騰熱伝達
を開始する。冷媒液(4)の蒸気(4a)は矢印(13
)に示すように上昇して凝a器(3)内に入りその内壁
で凝縮・液化し為矢印(14)に示すように下噂して冷
媒液(4)となって再び冷却に供される。この除、凝縮
熱が放熱フィン(2)を、径で大気に放散される。上記
現象は発熱及び放熱の条件に応じて一定の平衡状態に達
し、所定温度上昇における変圧器の運転が維持されるこ
とになる。
Next, the cooling operation of the conventional evaporative cooling transformer configured as described above will be explained. First, in a cold state when the transformer is not operating, when the refrigerant liquid (4) in the closed container (1) becomes saturated at the ambient temperature, copper loss and iron loss occur, respectively, and the temperature begins to rise. . Both coils (6)
(7) and the iron core (9) are immersed in the refrigerant liquid (4), so the refrigerant liquid (4) in contact with their surfaces generates bubbles (12) consisting of its vapor, and both coils (6) ( 7)
And so-called boiling heat transfer, which removes latent heat of vaporization from the iron core (9), is started. The vapor (4a) of the refrigerant liquid (4) is indicated by the arrow (13
), it rises and enters the condenser (3), condenses and liquefies on its inner wall, and then flows downward as shown by the arrow (14) to become refrigerant liquid (4) and is used for cooling again. Ru. After this, the heat of condensation is radiated to the atmosphere through the radiation fins (2). The above phenomenon reaches a certain equilibrium state depending on the conditions of heat generation and heat radiation, and the operation of the transformer is maintained at a predetermined temperature rise.

しかるに、上記のような従来の沸騰冷却式変圧器に訃い
ては、とくに絶縁強度上に深刻な欠点金有している。即
ち、冷媒液(4)例えば前述のCs B’ lsO等は
、液状でば70KV/2.5 tm程度の絶縁耐力を有
し一般変圧器に使用される鉱油等の絶縁油とほぼ同等の
Re力を有しているが、気化した状態では空気の絶縁耐
力程度に低下し、とくに運転開始直後で温度が低い範囲
においては気化圧力(蒸気圧)も低くその絶縁耐力は極
端に低下する。更に、気泡(12)内の比誘電率は約1
.0で、冷媒液(4)のそれ約1.9 より小さくその
分だけ気泡(12)内の電界が増大し沸騰に基づく絶縁
耐力の低下を一層顕著なものにしている。この結果、発
熱密度が高く多量の気泡(12)が発生しかつ印加電界
が高いコイルL6) (7)の人間において、上記絶縁
耐力の低下が問題とな放 り、変圧器運転時の部分娘電着の異常増大や場合によっ
てけ全路破壊に至り、高電圧変圧器等への本冷却方式の
適用が困難であった。
However, the conventional boiling-cooled transformer as described above has serious drawbacks, particularly in terms of insulation strength. That is, the refrigerant liquid (4), such as the above-mentioned Cs B' lsO, has a dielectric strength of about 70 KV/2.5 tm in liquid form, and has a Re almost equivalent to insulating oil such as mineral oil used in general transformers. However, in the vaporized state, the dielectric strength decreases to the same level as that of air.Especially in the range where the temperature is low immediately after the start of operation, the vaporization pressure (vapor pressure) is low and the dielectric strength decreases extremely. Furthermore, the relative permittivity within the bubble (12) is approximately 1.
.. 0, which is smaller than that of the refrigerant liquid (4) by about 1.9, and the electric field within the bubble (12) increases by that amount, making the decrease in dielectric strength due to boiling even more remarkable. As a result, in coil L6) (7), which has a high heat generation density, generates a large amount of bubbles (12), and has a high applied electric field, the decrease in dielectric strength becomes a problem, and the partial daughter voltage during transformer operation becomes a problem. It was difficult to apply this cooling method to high-voltage transformers, etc., due to an abnormal increase in wear and, in some cases, complete circuit failure.

この発明はこのような従来の屯のの欠点を解消するため
になされたもので、発熱部表面と電気的に接続され上記
発熱部表面との間に気泡を通流させるように配設された
導電性シールド板を園えることにより、上記気泡内の電
界を十分低く抑え、絶縁強度が高く高電圧仕様への適用
が容易な沸騰冷却式電気m器を提供することを目的とす
るものである。
This invention was made in order to eliminate the drawbacks of such conventional tubes, and is arranged to be electrically connected to the surface of the heat generating part and to allow air bubbles to flow between the surface of the heat generating part and the surface of the heat generating part. The purpose of the present invention is to provide a boiling-cooled electric meter that suppresses the electric field within the bubble to a sufficiently low level by providing a conductive shield plate, has high insulation strength, and is easy to apply to high voltage specifications. .

以下、この発明の一実施例における沸騰冷却式変圧器を
図面について説明する。第3図は高低圧コイル対向部の
一部を拡大して示す所面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A boil-cooled transformer according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is an enlarged plan view of a part of the high-low voltage coil opposing portion.

図において、凝縮性冷媒液(4)、絶縁バリア(8)、
気泡(12)は従来の場合と同一であるから説明を省略
する。(15) (16)はそれぞれ素線絶縁(17)
 (18)を施した導体(19) (20)を巻回して
構成された高圧コイル及び低圧コイル、(21)(22
)はそれぞれ高圧コイル(15)及び低圧コイル(16
)の表面の両コイル(15)(16)対向面側に配設さ
れた導電性シールド板で、それぞれ両コイル(15) 
(16)の表向の一電位部(通常両コイル(15) (
16)の巻始又は巻終部)と絶縁電線(図示せず)等に
より′電気的に接続された金属膜(23) (24)と
これら内金f4膜(23) (24)の両コイル(15
) (16)側表面に接して配設されたブレスポード等
からなる熱絶縁板(25) (26)とから構成される
In the figure, a condensable refrigerant liquid (4), an insulation barrier (8),
Since the bubbles (12) are the same as in the conventional case, their explanation will be omitted. (15) and (16) are respectively strand insulation (17)
High-voltage coils and low-voltage coils constructed by winding conductors (19) and (20) subjected to (18), (21) and (22).
) are the high voltage coil (15) and the low voltage coil (16), respectively.
) on the opposite sides of both coils (15) and (16).
One potential part on the surface of (16) (normally both coils (15) (
16)) and the metal films (23) (24) electrically connected to the coils (23) (24) by insulated wires (not shown), etc., and both coils of these inner metal F4 films (23) (24). (15
) (16) It is composed of heat insulating plates (25) (26) consisting of breath plates etc. arranged in contact with the side surfaces.

そして、導電性シールド板(21) (22)と両コイ
ル(15) (16) R而との間に気泡(12)が通
流する所定の通流rI!r(27) (28)が形成さ
れる。なお、通流M (27)(28)の間隔は両コイ
ル(15) (16)の発熱両度、高さ等とも関連する
が通常1+o+程度で十分であり、適当なピッチで設け
られたスペー′!/″(図示せず)に維 よりその間隔が確保・=持される。また、金属膜(23
) (24)には4洩磁束に基づく渦流損失等を十分小
さくするため、通常ステンレス金網等が使用される。
Then, a predetermined flow rI! in which air bubbles (12) flow between the conductive shield plates (21) (22) and both coils (15) (16) R! r(27) (28) are formed. Note that the spacing between the flow paths M (27) and (28) is related to the heat generation rate and height of both coils (15) and (16), but usually about 1+o+ is sufficient, and the spacing provided at an appropriate pitch is sufficient. ′! /'' (not shown) to secure and maintain the spacing. Also, the metal film (23
) For (24), stainless steel wire mesh or the like is usually used to sufficiently reduce eddy current loss due to leakage magnetic flux.

次に、上記のように構成されたこの発明の一実施例とし
ての沸騰冷却式変圧器における動作を第3図ないしf1
6図について説明する。第4図第5図は第3図に対応し
て両コイル(15) (16)間における冷媒液(4)
のそれぞれ温度及び電位の分布を示す線図、第6図は冷
媒液(4)のIa相薫蒸気圧温度との関係を示す線図で
ある。まず、従来と同様冷状態を考えると、冷媒液(4
)の温度は第6図に示す周囲湯度TOで一定の分布をし
ており、密閉容器(1)内の圧力は冷媒液(4)の飽和
蒸気圧時性Sから温度TOに対する飽和蒸気圧POに保
たれている。即ち、この時点では冷媒液(4)と蒸気(
4a)とは共に圧力POK保たれている。但し、この発
明の説明においては、冷媒液(4)自体の揚程による圧
力は小さいとして無視している。ここで、変圧器が運転
に入り両コイル(15) (16)の温度上昇が開始さ
れると、両コイル(15) (16)の表面に接する冷
媒液(4)の温度もそれにつれて温度が上昇し、その飽
和蒸気圧がPOより大となりこの部分で周囲との圧力均
衡が破れついには発泡を伴う沸騰状態を呈し、沸騰熱伝
達に寄与するとともに蒸気(4a)の圧力を上昇させる
ように作用する。次に、一定時間経過t!i、熱的平衡
に達した状態を考える。第4図第6図において、Tlけ
冷媒液(4)の最高温度で通常発熱密度が最大である両
コイル(15) (16)の表面に接する冷媒液(4)
の温度がこれに該当する。T2は冷媒液(4)の最低温
度で凝縮a(3)で凝縮された直後の冷媒液(4)の温
度がこれに該当する。従って、冷媒o、(4)全体の温
度1dTlからT2の範囲に分布していることになり、
この温度分布及び飽和蒸気圧特性Sとの関連から沸騰の
発生分布が決定されることになる。
Next, the operation of the evaporative cooling type transformer as an embodiment of the present invention constructed as described above will be explained with reference to FIGS.
Figure 6 will be explained. Fig. 4 and Fig. 5 show the refrigerant liquid (4) between both coils (15) (16) corresponding to Fig. 3.
FIG. 6 is a diagram showing the temperature and potential distribution, respectively, and FIG. 6 is a diagram showing the relationship with the Ia phase vapor pressure temperature of the refrigerant liquid (4). First, considering the cooling state as in the past, the refrigerant liquid (4
) has a constant distribution with respect to the ambient water temperature TO shown in Figure 6, and the pressure inside the closed container (1) varies from the saturated vapor pressure time S of the refrigerant liquid (4) to the saturated vapor pressure with respect to the temperature TO. It is kept in PO. That is, at this point, the refrigerant liquid (4) and the vapor (
4a) and the pressure POK is maintained together. However, in the description of this invention, the pressure due to the lift of the refrigerant liquid (4) itself is ignored as it is small. Here, when the transformer starts operating and the temperature of both coils (15) (16) starts to rise, the temperature of the refrigerant liquid (4) in contact with the surface of both coils (15) (16) also increases accordingly. As the saturated vapor pressure becomes higher than PO, the pressure balance with the surroundings is broken at this part, and finally a boiling state accompanied by foaming occurs, which contributes to boiling heat transfer and increases the pressure of steam (4a). act. Next, a certain period of time has passed t! i. Consider a state in which thermal equilibrium has been reached. In Fig. 4 and Fig. 6, the refrigerant liquid (4) in contact with the surfaces of both coils (15) and (16), which usually has the maximum heat generation density at the highest temperature of the refrigerant liquid (4)
This applies to the temperature of T2 is the lowest temperature of the refrigerant liquid (4), which corresponds to the temperature of the refrigerant liquid (4) immediately after being condensed by condensation a (3). Therefore, the refrigerant o, (4) is distributed in the overall temperature range of 1 dTl to T2,
The boiling generation distribution is determined from the relationship between this temperature distribution and the saturated vapor pressure characteristic S.

即ち、温度TI、T2に対し特性Sから求まる圧力めら
れるが、当然Pl)Pt2)P2の関係が成立する。
That is, the pressure determined from the characteristic S is determined for the temperatures TI and T2, and naturally the relationship of Pl)Pt2)P2 holds true.

従って、温度がPI3に対応する温度T12より高い部
分の冷媒液(4)は沸騰を起すが、逆に温度がT+2よ
り低い部分では飽和蒸気圧がPI3に達せず沸騰は生じ
ない。以上を基に第3図第4図に示す両フィル(15)
 (16)間の冷媒液(4)の温度及び沸騰の状況を考
える。金属膜(23) (24)の温度をTsとすると
、温度の高い通流路(27) (28) hI411と
は熱絶縁板(25) (26)により熱的に遮断されて
訃り又導電性シールド板(21) (22)闇の冷媒液
(4) dそれ自体の自然対流により低温部の冷媒液(
4)と適当に循環しているので、TsニツイてTI>T
12>T8>T2なる関係を成立させることは容易にで
き、従って導電性シールド板(21)(22)間では常
えず冷媒液(4)を沸騰しない状態に維持することが可
能となる。一方、金属膜(23)(24)はそれぞれ両
コイル(15) (16)の表面とほぼ同一電位に保た
れているので、第5図に示すように導電性シールド板(
21) (22)間の冷媒液(4)にのみ電界が印加さ
れることになる。なお、上記でほぼ同一電位としている
のけ、導電性シールド板(21) (22)に対向する
両コイル(15) (16)表面の巻回数に応じた電圧
が生じることを考慮したものであるが、上記電圧は両コ
イル(15) (16)間に印加される電圧に比較し十
分小さく、かつ上記電圧に対しては通常設けられる程度
の素線絶縁(17) (18)で十分耐えるので問題は
ない。
Therefore, the part of the refrigerant liquid (4) whose temperature is higher than the temperature T12 corresponding to PI3 causes boiling, but conversely, the saturated vapor pressure does not reach PI3 and boiling does not occur in the part whose temperature is lower than T+2. Based on the above, both fills (15) shown in Figures 3 and 4
Consider the temperature and boiling situation of the refrigerant liquid (4) during (16). If the temperature of the metal film (23) (24) is Ts, the high-temperature flow path (27) (28) hI411 is thermally isolated by the heat insulating plate (25) (26) and becomes conductive. (21) (22) Dark refrigerant liquid (4) d Due to its own natural convection, the refrigerant liquid (
4), so Ts nitsui TI>T
It is easy to establish the relationship 12>T8>T2, and therefore it is possible to always maintain the refrigerant liquid (4) in a non-boiling state between the conductive shield plates (21) and (22). On the other hand, since the metal films (23) and (24) are kept at approximately the same potential as the surfaces of both coils (15) and (16), the conductive shield plate (
An electric field will be applied only to the refrigerant liquid (4) between (21) and (22). It should be noted that although the potentials are set to be approximately the same in the above, it is taken into consideration that a voltage is generated depending on the number of turns on the surfaces of both coils (15) and (16) facing the conductive shield plates (21 and 22). However, the above voltage is sufficiently small compared to the voltage applied between both coils (15) (16), and the ordinary wire insulation (17) (18) is sufficient to withstand the above voltage. No problem.

従って、電界が印加される部分の冷媒液(4)は沸騰を
生じることなくその高い絶縁耐力を有効に活用できると
同時に、沸騰熱伝達を行う部分の冷媒(9) 液(4)及びその気泡(12) K /′i電界がほと
んど印加されず変圧器としての絶縁性能を損うことなく
その高い冷却性能を有効に活用することができるので、
沸騰冷却式の高電圧@器への適用が容易となる。
Therefore, the refrigerant liquid (4) in the part where the electric field is applied can effectively utilize its high dielectric strength without causing boiling, and at the same time, the refrigerant liquid (9) in the part where boiling heat is transferred and its bubbles. (12) Since almost no K/'i electric field is applied, the high cooling performance can be effectively utilized without impairing the insulation performance as a transformer.
It is easy to apply to boiling-cooled high-voltage devices.

なお、上記一実施例においては、導電性シールド板(2
1) (22)を高低圧コイル(15) (16)の対
向部に設けているが、必要に応じて高圧コイル(15)
の鉄心(9)対向側、さらには鉄心(9)の高圧コイル
(15)対向側等に設置してもよい。即ち、電圧が印加
されているか否かにかかわらず運転時その表面に電界が
印加される発熱部には上記の導電性シールド板を設置す
ることにより上記と同様の効果が得られる。また、熱絶
縁板(25) (26)は、両コイル(15) (16
)の発熱密度、通流路(27) (2B)の形状等の条
件によってはその使用を省略することもできる。更に、
変圧器以外の例えばリアクトル、抵抗器等においても同
様に適用できることはぎうまでもない。
In addition, in the above embodiment, the conductive shield plate (2
1) (22) is provided opposite the high and low voltage coils (15) and (16), but if necessary, the high voltage coil (15)
It may be installed on the opposite side of the iron core (9), or furthermore, on the side of the iron core (9) opposite to the high voltage coil (15). That is, the same effect as described above can be obtained by installing the above-mentioned conductive shield plate in the heat-generating part to which an electric field is applied to the surface during operation, regardless of whether a voltage is applied or not. In addition, the heat insulating plates (25) (26) are connected to both coils (15) (16).
Depending on the conditions such as the heat generation density of ) and the shape of the flow path (27) (2B), its use may be omitted. Furthermore,
It goes without saying that the present invention can also be applied to reactors, resistors, etc. other than transformers.

この発明は以上説明したように、機器本体の発熱部表面
と電気的に接続され上記発熱部表面とのIIffIVc
気泡を通流させるように配設された導電性シ(10) −ルド板を備えることにより、上記気泡内の電界を十分
低く抑え、絶#強度が向上し高電圧仕様への適用が容易
になるという効果がある。
As explained above, this invention is electrically connected to the surface of the heat generating part of the main body of the device, and the IIffIVc
By providing a conductive shield plate (10) arranged to allow air bubbles to flow through, the electric field within the air bubbles is suppressed to a sufficiently low level, the absolute strength is improved, and application to high voltage specifications is facilitated. It has the effect of becoming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の沸騰冷却式変圧器の全体構成図、第2図
はその要部を拡大して示す断面図、′ig3図はこの発
明を適用した一美施例における沸騰冷却式変圧器の高低
圧コイル対向部の一部を拡大して示す断面図、第4図第
5図は第3図に対応して高低圧コイル間における凝縮性
冷媒液のそれぞれ温度及び電位の分布を示す線図、第6
図は上記冷媒液の飽和蒸気圧と温度との関係を示す線図
であるO 図において、(1)は密閉容器、(4)はIM!縮性冷
媒液、(5)Iri機器本体としての変圧器本体、(1
2)は気泡、(15)(16)は発熱部としてのそれぞ
れ高圧コイル及び低圧コイル、(21)(22)は導電
性シールド板である。 なお、図中同一符号は同−又は相当部分を示す。 (11) 8 258− (6HLLILLI膓I博誹
Figure 1 is an overall configuration diagram of a conventional boiling-cooled transformer, Figure 2 is an enlarged sectional view of its main parts, and Figure 3 is a boiling-cooled transformer in the Kazumi embodiment to which this invention is applied. FIG. 4 is an enlarged cross-sectional view of a part of the opposing portion of the high- and low-pressure coils. FIG. Figure, 6th
The figure is a diagram showing the relationship between the saturated vapor pressure and temperature of the refrigerant liquid. In the figure, (1) is a closed container, and (4) is an IM! compressible refrigerant liquid, (5) transformer body as Iri equipment body, (1
2) is a bubble, (15) and (16) are a high voltage coil and a low voltage coil as heat generating parts, respectively, and (21) and (22) are conductive shield plates. Note that the same reference numerals in the figures indicate the same or equivalent parts. (11) 8 258- (6HLILLI

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁性を有する凝縮性冷媒液が収容された密閉容
器、上記冷媒液中に配設され上記冷媒液の沸騰熱伝達に
より冷却される発熱部を有し電圧が印加される機器本体
、上記発熱部の所定表面の同−電位部と電気的に接続さ
れることにより上記電圧印加に基づく電界が印加され上
記所定表面と相対向し所定の間隔を隔て上記沸騰熱伝達
に伴い上記所定表面上に発生する気泡を上記間隔内に通
流させるように配設された導電性シールド板を備えたこ
とを特徴とする沸騰冷却式電気機器。
(1) A closed container containing a condensable refrigerant liquid having insulating properties, a device body to which a voltage is applied, which has a heat generating part disposed in the refrigerant liquid and cooled by boiling heat transfer of the refrigerant liquid; By being electrically connected to the same potential part on the predetermined surface of the heat generating part, an electric field based on the voltage application is applied to the predetermined surface facing the predetermined surface and separated from the predetermined interval by the boiling heat transfer. An evaporative cooling type electric device, characterized in that it is equipped with a conductive shield plate arranged so that air bubbles generated above flow through the above-mentioned interval.
(2) !電性シールド板は金属膜とその表面に形成さ
れた熱絶縁板とからなることを特徴とする特許請求の範
囲第1項記載の沸騰冷却式電気機器。
(2)! 2. The boiling cooling type electrical equipment according to claim 1, wherein the electrical shielding plate is composed of a metal film and a heat insulating plate formed on the surface of the metal film.
(3)金属膜は非磁性材料からなることを特徴とする特
許請求の範囲第2項記載の沸騰冷却式電気機器。
(3) The evaporative cooling electric device according to claim 2, wherein the metal film is made of a non-magnetic material.
(4)機器本体は巻線、鉄心及び所定の絶縁物とからな
る変圧器本体であることを特徴とする特許請求の範囲第
1項ない門弟3項のいずれかに記載の沸騰冷却式電気機
器。
(4) The evaporative cooling type electrical equipment according to any one of claims 1 and 3, wherein the equipment body is a transformer body consisting of a winding, an iron core, and a predetermined insulator. .
(5)発熱部は巻線であることを特徴とする特許請求の
範囲第4項記載の沸騰冷却式電気機器。
(5) The evaporative cooling electric device according to claim 4, wherein the heat generating portion is a winding.
JP1659483A 1983-02-02 1983-02-02 Ebullition-cooling type electric apparatus Pending JPS59141255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1659483A JPS59141255A (en) 1983-02-02 1983-02-02 Ebullition-cooling type electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1659483A JPS59141255A (en) 1983-02-02 1983-02-02 Ebullition-cooling type electric apparatus

Publications (1)

Publication Number Publication Date
JPS59141255A true JPS59141255A (en) 1984-08-13

Family

ID=11920603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1659483A Pending JPS59141255A (en) 1983-02-02 1983-02-02 Ebullition-cooling type electric apparatus

Country Status (1)

Country Link
JP (1) JPS59141255A (en)

Similar Documents

Publication Publication Date Title
US3201728A (en) Evaporative cooled inductive apparatus having cast solid insulation with cooling ducts formed therein
US2722616A (en) Evaporative cooling system for dynamo-electric machines
US10910138B2 (en) Gas-insulated electrical apparatus, in particular gas-insulated transformer or reactor
US2947957A (en) Transformers
CA1098187A (en) Vaporization cooled and insulated electrical inductive apparatus
US2770785A (en) Directly-cooled electromagnetic components
US3142809A (en) Cooling arrangement for electrical apparatus having at least one multilayer winding
US3073885A (en) Insulating and cooling arrnagement for electrical apparatus
US3627899A (en) Electrical bushing assembly with evaporative heat pump disposed between insulation and electrical lead
US4173746A (en) Vaporization cooled electrical apparatus
US3264589A (en) Transformer pockets for vaporized cooling
EP1966807A1 (en) Cooling of high voltage devices
US2985707A (en) Electrical cooling system
JPS59141255A (en) Ebullition-cooling type electric apparatus
US1953914A (en) Temperature indicator
US1394143A (en) X-ray apparatus
US5688398A (en) Device for filtering an electrically insulative and thermally conductive liquid medium and a power electronics unit incorporating a device of this kind
US2774807A (en) Vaporization-forced liquid cooled transformer
US2759987A (en) Cooling electrical apparatus
KR101011004B1 (en) Current Lead for High Voltage Superconducting Machine
US2055346A (en) High voltage electrical apparatus
US3304359A (en) Electrical bushing with inductor-type fluid-circulating impeller
CA1043453A (en) Cooling system for a high temperature transformer assembly
JPS6242513Y2 (en)
JPS63164306A (en) Gas-insulated stationary induction electric apparatus