JPS59141202A - Manufacture of radially anisotropic cylinder type magnet - Google Patents

Manufacture of radially anisotropic cylinder type magnet

Info

Publication number
JPS59141202A
JPS59141202A JP1529283A JP1529283A JPS59141202A JP S59141202 A JPS59141202 A JP S59141202A JP 1529283 A JP1529283 A JP 1529283A JP 1529283 A JP1529283 A JP 1529283A JP S59141202 A JPS59141202 A JP S59141202A
Authority
JP
Japan
Prior art keywords
powder
molding
magnetic field
die
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1529283A
Other languages
Japanese (ja)
Other versions
JPH0148643B2 (en
Inventor
Takashi Utsumoto
宇津本 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP1529283A priority Critical patent/JPS59141202A/en
Publication of JPS59141202A publication Critical patent/JPS59141202A/en
Publication of JPH0148643B2 publication Critical patent/JPH0148643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enable to manufacture the titled device having a high magnetic characteristics, generating no crack at molding time and at low cost by a method wherein mixed powder of pulverized powder of ferrite of the specified grain size, and granulated powder of the specified grain size and different from the pulverized powder thereof are filled up in a cylindrical molding die, and press molding in a magnetic field is performed applying the magnetic field in the radial direction of the molding substance. CONSTITUTION:Molding space is constructed of a die 4, lower core 5, lower punch 6, an upper core 8 and an upper punch 9. The upper and lower punches 6, 9 are consisting of a non-magnetic material, the others are consisting of a magnetic material, and the inside surface of the magnetic material die 4 is flame-coated with non-magnetic material. Mixed powder of ferrite consisting of the average grain size of 2mum or less and granulated powder consisting of grain size of 14-200 mesh and different from the pulverized powder thereof is filled up in the molding space of the die thereof, a magnetizing current of Bg 4,000 gauss or less is flowed to an upper coil 10 and a lower coil 11 as to make lines of magnetic force to repel mutually, and press molding in a magnetic field is performed applying the magnetic field radially in the radial direction of the molding substance.

Description

【発明の詳細な説明】 この発明は、円筒状磁石の径方向に放射状に磁気異方性
を有するラジアル異方性円筒状磁石の製造方法に係り、
すぐれた磁気特性と良好なる製造歩留でラジアル異方性
円筒状磁石を製造できる磁場中プレス成形方法に関する
Detailed Description of the Invention The present invention relates to a method for manufacturing a radially anisotropic cylindrical magnet having magnetic anisotropy radially in the radial direction of the cylindrical magnet.
The present invention relates to a press-molding method in a magnetic field that can produce radially anisotropic cylindrical magnets with excellent magnetic properties and a good production yield.

一般に、モーターに使用する磁石は、低出力用には等方
性円筒状磁石が使用され、高出力用には異方性弓型磁石
が円筒体に組立られて使用されている。しかし、最近、
高出力用の磁石に、組立工程の簡略化のため、一体成形
の円筒体の磁石でかつ、Br2500ガウス以上、(B
)() max 1.5 MGO以上の高い磁気特性を
有するラジアル異方性円筒状磁石が切望されている。
Generally, as magnets used in motors, isotropic cylindrical magnets are used for low output applications, and anisotropic bow-shaped magnets assembled into a cylindrical body are used for high output applications. However, recently,
In order to simplify the assembly process, the high-output magnet is an integrally molded cylindrical magnet with a Br2500 Gauss or higher (B
)() max 1.5 A radially anisotropic cylindrical magnet having magnetic properties higher than that of MGO is desperately needed.

かかる一体のラジアル異方性円筒状磁石の製造方法とし
て、特開昭57−31108号公報に、微粉砕されたフ
ェライト粉を磁場中で異方性造粒処理を行なった32メ
ツシユ〜200メツシユの異方性造粒粉を磁場中プレス
成型する方法が提案されている。
As a method for manufacturing such an integrated radially anisotropic cylindrical magnet, Japanese Patent Application Laid-Open No. 57-31108 discloses a method of manufacturing 32 meshes to 200 meshes in which finely ground ferrite powder is anisotropically granulated in a magnetic field. A method has been proposed in which anisotropic granulated powder is press-molded in a magnetic field.

この製造方法は、得られる磁石の磁気特性は良好である
が、異方性造粒粉のみの原料粉末では製造コストの上昇
を招来するとともに、プレス成形時に成形体にひび割れ
が発生し易くなり、製造歩留が低下する問題があった。
With this manufacturing method, the magnetic properties of the obtained magnet are good, but the raw material powder consisting only of anisotropic granulated powder increases the manufacturing cost, and the molded product is likely to crack during press molding. There was a problem that manufacturing yield decreased.

この発明は、ラジアル異方性円筒状磁石の製造に際して
、得られる磁石の磁気特性が高く、成形時のひび割れの
発生を防止し、安価に製造できる製造方法を目的として
いる。
The object of the present invention is to provide a manufacturing method for producing a radially anisotropic cylindrical magnet, in which the resulting magnet has high magnetic properties, prevents cracking during molding, and can be produced at low cost.

すなわち、この発明は、平均粒度2AIIN以下からな
るフェライトの微粉砕粉と、前記微粉砕粉と異種で粒度
が14メツシユ〜+200メツシユからなる造粒粉との
混合粉末を、円筒状成形体用ダイス内に充填し、成形体
の径方向に放射状に磁場を印加しながら磁場中プレス成
形することを要旨とするラジアル異方性円筒状磁石の製
造方法である。
That is, the present invention provides a die for a cylindrical molded body using a mixed powder of a finely crushed ferrite powder having an average particle size of 2 AIIN or less and a granulated powder different from the finely crushed powder and having a particle size of 14 mesh to +200 mesh. This is a method for producing a radially anisotropic cylindrical magnet, the gist of which is to press-form the molded body in a magnetic field while applying a magnetic field radially in the radial direction of the molded body.

次に、この発明による製造方法を具体的なプレス成形装
置の図面に基づいて説明する。
Next, the manufacturing method according to the present invention will be explained based on drawings of a specific press molding apparatus.

第1図のプレス成形装置は、基台(1)に立設した支柱
(2)に固着したダイスホルダー(3)に、ダイス(4
)を装着し、ダイス(4)内空間中心には基台に固着し
た下部コア(5)が配置され、下部コア(5)には下側
パンチ(6)が貫挿してあり、ダイスホルダー(3)の
下面に下部コイル(11)が配設してあり、また、昇降
可能に保持した上部プレート(7)には上部コア(8)
が垂下し、押えとともに上部パンチ(9)が貫挿され、
上部コイル(10)が配設してあり、ダイス(4)、下
部コア(5)、下側パンチ(6)、上部コア(8)、上
側パンチ(9)とで成形空間が構成される。上下のパン
チ(6)、(9)は非磁性材で他は磁性材からなり、磁
性材のダイス(4)の内側表面は非磁性材を溶射で被覆
しである。
The press forming apparatus shown in Fig. 1 has dies (4
), a lower core (5) fixed to the base is placed in the center of the inner space of the die (4), a lower punch (6) is inserted through the lower core (5), and the die holder ( 3) A lower coil (11) is disposed on the lower surface, and an upper core (8) is disposed on the upper plate (7) that can be raised and lowered.
hangs down, and the upper punch (9) is inserted together with the presser foot.
An upper coil (10) is disposed, and a molding space is constituted by a die (4), a lower core (5), a lower punch (6), an upper core (8), and an upper punch (9). The upper and lower punches (6) and (9) are made of non-magnetic material and the others are made of magnetic material, and the inner surface of the die (4) made of magnetic material is coated with non-magnetic material by thermal spraying.

上記のダイスの成形空間内に、平均粒度2ρ以下からな
るフェライトの微粉砕粉と、前記微粉砕粉と異種で粒度
が14メツシユ〜200メツシユからなる造粒粉との混
合粉末を充填し、上部コイル(10)と下部コイル(1
1)に図示する如く磁力線が反発するように、5o4o
ooガウス以下の磁化電流を流し、成形体の径方向に放
射状に磁場を印加しながら磁場中プレス成形する。
The molding space of the die described above is filled with a mixed powder of finely pulverized ferrite powder having an average particle size of 2ρ or less and granulated powder different from the finely pulverized powder and having a particle size of 14 mesh to 200 mesh. Coil (10) and lower coil (1
5o4o so that the lines of magnetic force repel as shown in 1)
A magnetizing current of less than 0 Gauss is applied, and a magnetic field is applied radially in the radial direction of the molded body while press-molding is performed in a magnetic field.

この発明方法によって、ラジアル異方性円筒状磁石の製
造に際して、得られる磁石の磁気特性が高く、成形時の
ひび割れの発生を防止し、安価に製造できる。
According to the method of the present invention, when manufacturing a radially anisotropic cylindrical magnet, the resulting magnet has high magnetic properties, prevents cracking during molding, and can be manufactured at low cost.

この発明において、原料粉末の粒度を限定した理由は、
フェライト微粉砕粉の平均粒度が2ρを越えると磁気特
性が劣化するため好ましくなく、前記フェライト微粉砕
粉と異種の造粒粉の粒度が14メツシユを越え、200
メツシュ未満となるとプレス成形性が悪化するためであ
る。
In this invention, the reason why the particle size of the raw material powder is limited is as follows.
If the average particle size of the finely ground ferrite powder exceeds 2ρ, the magnetic properties will deteriorate, which is undesirable.
This is because if it is less than mesh, press formability will deteriorate.

3− また、原料粉末には種々のフェライト等が使用できるが
、例えば、Srフェライト及びBaフェライトに、Ca
 、SL 、N 、Pb 、BL、Cr  の1種また
は2種以上含有する粉末でもよい。
3- Also, various ferrites etc. can be used as the raw material powder, but for example, Sr ferrite, Ba ferrite, Ca
, SL, N, Pb, BL, and Cr.

この発明における造粒粉は、異方性でも等方性でもよい
が、成形性、コストの面から等方性のほうが好ましい。
The granulated powder in this invention may be anisotropic or isotropic, but isotropic is preferable in terms of moldability and cost.

以下にこの発明による実施例を示し、その効果を明らか
にする。
Examples according to the present invention will be shown below to clarify its effects.

ここでは、フェライトの微粉砕粉にSrフェライトを、
等方性造粒粉にBaフェライトを使用した例を説明する
が、逆に、微粉砕粉にBaフェライト、等方性造粒粉に
Srフェライトを使用し適当な混合割合としても、同様
にすぐれた磁気特性とプレス成形性が得られる。
Here, Sr ferrite is added to finely ground ferrite powder.
An example will be explained in which Ba ferrite is used for the isotropic granulated powder, but conversely, if Ba ferrite is used for the finely pulverized powder and Sr ferrite is used for the isotropic granulated powder at an appropriate mixing ratio, the same results will be obtained. It provides excellent magnetic properties and press formability.

平均粒度2ρ以下からなるSrフェライトの微粉砕粉と
、粒度が14メツシユ〜200メツシユからなる8aフ
エライトの等方性造粒粉とを、第1表に示すような混合
割合で混合原料粉末とし、上述したプレス成形装置を使
用して、磁気回路に6g3oo。
A finely pulverized powder of Sr ferrite having an average particle size of 2ρ or less and an isotropic granulated powder of 8a ferrite having a particle size of 14 to 200 mesh are used as a mixed raw material powder at the mixing ratio shown in Table 1, Using the above-mentioned press molding device, 6g3oo was formed into the magnetic circuit.

−Fl −t 4− ガウスの磁化電流を流し、外径50mmX内径35mm
X高さ15mm寸法の円筒状成形体に磁場中成型した。
-Fl -t 4- Apply Gaussian magnetizing current, outer diameter 50mm x inner diameter 35mm
It was molded into a cylindrical molded body with a height of 15 mm in a magnetic field.

得られた成形体を脱バインダー処理したのち、1200
℃で焼成した。その後、得られた円筒状磁石の磁気特性
を測定した。その結果は成形時のひび割れ発生率ととも
に第1表に示す。また、原料粉末に、STフェライト微
粉砕粉のみ、磁場中造粒したSrフェライト粉のみ、B
aフェライト造粒粉のみの場合を同様に実施し、比較例
とした。
After the obtained molded body was subjected to binder removal treatment, 1200
Calcined at ℃. Thereafter, the magnetic properties of the obtained cylindrical magnet were measured. The results are shown in Table 1 along with the crack occurrence rate during molding. In addition, the raw material powder includes only finely ground ST ferrite powder, only Sr ferrite powder granulated in a magnetic field, and B
A The case of using only ferrite granulated powder was similarly carried out and used as a comparative example.

第1表より明らかなように、この発明方法により、すぐ
れた磁気特性が得られるとともに成形時のひび割れの発
生が著しく低減していることがわかる。特に、Srフェ
ライト微微細粉色Baフェライト造粒粉の混合割合が、
50〜80 : 50〜20の場合には、高い磁気特性
とひび割れが皆無となり、最も好ましい結果が得られた
As is clear from Table 1, the method of the present invention provides excellent magnetic properties and significantly reduces the occurrence of cracks during molding. In particular, the mixing ratio of Sr ferrite fine powder colored Ba ferrite granulated powder is
50-80: In the case of 50-20, the most favorable results were obtained with high magnetic properties and no cracks.

以下余白 −〇− 特開昭59−141202(3)Below margin −〇− JP-A-59-141202 (3)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するためのプレス成形装置の縦
断説明図である。 図中、1・・・基台、2・・・支柱、3・・・ダイスホ
ルダー、4・・・ダイス、5・・・下部コア、6・・・
下側パンチ、7・・・上部プレート、8・・・上部コア
、9・・・上側パンチ、10・・・上部コイル、11・
・・下部コイル。 出願人  住友特殊金属株式会社
FIG. 1 is a longitudinal sectional view of a press molding apparatus for carrying out the present invention. In the figure, 1... Base, 2... Support, 3... Dice holder, 4... Dice, 5... Lower core, 6...
Lower punch, 7... Upper plate, 8... Upper core, 9... Upper punch, 10... Upper coil, 11.
・Lower coil. Applicant: Sumitomo Special Metals Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒度2m以下からなるフェライトの微粉砕粉と
、前記微粉砕粉と異種で粒度が14メツシユ〜200メ
ツシユからなる造粒粉との混合粉末を、円筒状成形体用
ダイス内に充填し、成形体の径方向に放射状に磁場を印
加しながら磁場中プレス成形することを特徴とするラジ
アル異方性円筒状磁石の製造方法。
1. A mixed powder of finely crushed ferrite powder having an average particle size of 2 m or less and granulated powder different from the finely crushed powder and having a particle size of 14 to 200 mesh is filled into a die for a cylindrical compact, A method for producing a radially anisotropic cylindrical magnet, which comprises press-molding in a magnetic field while applying a magnetic field radially in the radial direction of the compact.
JP1529283A 1983-01-31 1983-01-31 Manufacture of radially anisotropic cylinder type magnet Granted JPS59141202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1529283A JPS59141202A (en) 1983-01-31 1983-01-31 Manufacture of radially anisotropic cylinder type magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1529283A JPS59141202A (en) 1983-01-31 1983-01-31 Manufacture of radially anisotropic cylinder type magnet

Publications (2)

Publication Number Publication Date
JPS59141202A true JPS59141202A (en) 1984-08-13
JPH0148643B2 JPH0148643B2 (en) 1989-10-20

Family

ID=11884758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1529283A Granted JPS59141202A (en) 1983-01-31 1983-01-31 Manufacture of radially anisotropic cylinder type magnet

Country Status (1)

Country Link
JP (1) JPS59141202A (en)

Also Published As

Publication number Publication date
JPH0148643B2 (en) 1989-10-20

Similar Documents

Publication Publication Date Title
CN1139083C (en) Radially anisotropic sintered R-Fe-B-Based magnet and production method thereof
JPH11204359A (en) Method and device for manufacturing dust core
US3085291A (en) Device for manufacturing magnetically anisotropic bodies
US5762967A (en) Rubber mold for producing powder compacts
JPS59141202A (en) Manufacture of radially anisotropic cylinder type magnet
JPH1197229A (en) Dust core and method for manufacturing it
WO2003056583A1 (en) Production method for permanent magnet and press device
JPH09129463A (en) Manufacturing method and device of rare earth cylindrical magnet material
JPH0650502Y2 (en) Radial orientation mold
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPH02281721A (en) Manufacture of magnet
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JP2000012359A (en) Magnet and its manufacture
JPH0786070A (en) Manufacture of bond magnet
JPH01147819A (en) Method and device for molding anisotropic ring-shaped permanent magnet
JPH03265102A (en) Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
JPH1154314A (en) Pressurized powder magnetetic core, its manufacture and coil parts using the core
JPH08298220A (en) Production of rare earth-fe based permanent magnet material
JPH0997730A (en) Manufacture of sintered permanent magnet
JPH03235311A (en) Manufacture of anisotropic plastic magnet
JP2003234227A (en) Method of manufacturing magnetic ferrite core
JPH07173505A (en) Production of rare earth-transition metal permanent magnet and press-forming machine therefor
JP2002158127A (en) Manufacturing device of rare earth magnet, and manufacturing method thereof
JPH01117011A (en) Apparatus for forming transversal magnetic field and method for permanent magnet
JPH0419685B2 (en)