JPH07173505A - Production of rare earth-transition metal permanent magnet and press-forming machine therefor - Google Patents

Production of rare earth-transition metal permanent magnet and press-forming machine therefor

Info

Publication number
JPH07173505A
JPH07173505A JP31774693A JP31774693A JPH07173505A JP H07173505 A JPH07173505 A JP H07173505A JP 31774693 A JP31774693 A JP 31774693A JP 31774693 A JP31774693 A JP 31774693A JP H07173505 A JPH07173505 A JP H07173505A
Authority
JP
Japan
Prior art keywords
magnetic field
powder
angle
permanent magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31774693A
Other languages
Japanese (ja)
Inventor
Munehisa Hasegawa
統久 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP31774693A priority Critical patent/JPH07173505A/en
Publication of JPH07173505A publication Critical patent/JPH07173505A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To easily and uniformly supply a fine powder to a die and a forming space when a magnet flattened in the magnetization direction is produced and improve the magnetic characteristics. CONSTITUTION:An upper punch 3 is sufficiently raised, and a specified powder is supplied to a forming space formed by left and right compaction dies 1 and 2 and a lower punch 4. The feed part of the fine powder is wide enough as compared with the conventional right-angle magnetic field forming method, and hence the powder is uniformly supplied. When the upper punch 3 is lowered to a specified position after the powder was supplied, a magnetic field is impressed by a magnetic field generating coil 5, and the powder is compacted by the punches 1 and 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイスと下パンチとの
成形空間に容易にしかも均一に微粉末の給粉ができ、磁
気特性も向上させる希土類ー遷移金属系永久磁石の成形
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a rare earth-transition metal permanent magnet capable of easily and uniformly feeding fine powder into a molding space between a die and a lower punch and improving magnetic characteristics. Is.

【0002】[0002]

【従来の技術】近年、電子機器や精密機器の小型化、軽
量化の市場傾向に伴い、永久磁石においては従来のアル
ニコ磁石やフェライト磁石に代わり高エネルギー積を有
する希土類ー遷移金属系永久磁石が多くの分野で利用さ
れるようになってきた。そして、この希土類ー遷移金属
系永久磁石は高いエネルギ−積が得られるために磁石形
状も従来のアルニコ磁石やフェライト磁石で造られてい
た大型の物から磁化方向に偏平でかつ小物品が主流を占
めている。また、さらなる高性能化の要求も強くなって
おり、現在市場で実用化されている高エネルギ−積を有
する永久磁石は粉末冶金法を利用した希土類−遷移金属
系永久磁石が主流となっている。
2. Description of the Related Art In recent years, along with the market trend toward miniaturization and weight reduction of electronic devices and precision instruments, rare earth-transition metal permanent magnets having a high energy product have been replaced with conventional alnico magnets and ferrite magnets in permanent magnets. It has come to be used in many fields. Since this rare earth-transition metal permanent magnet can obtain a high energy product, the magnet shape is flat in the magnetization direction from a large one made of a conventional alnico magnet or ferrite magnet, and small articles are mainly used. is occupying. Further, there is a strong demand for higher performance, and rare earth-transition metal-based permanent magnets using powder metallurgy are the mainstream of permanent magnets with high energy products that are currently put to practical use in the market. .

【0003】ところで、この希土類−遷移金属系焼結磁
石を粉末冶金法により製造する方法は、目的組成に希土
類−遷移金属系合金を溶解し、これを平均粒子径が1〜
50μm程度の粉末に微粉砕した後、磁場中で成形し、
焼結、熱処理の工程を経る方法が一般的に利用されてい
る。成形工程においては、平均粒子径が1〜50μmの
微粉砕粉をダイス、下パンチで形成する成形空間に充填
した後上パンチが下降して原料粉末の圧密を終了するま
で配向磁界を原料粉末に印加し続けることにより配向を
行っており、配向磁界を印加する方向によって、(a)
圧密方向Fと配向磁界方向Mが互いに垂直である直角磁
界中成形方法(図4参照)、(b)圧密方向Fと配向磁
界方向Mが平行である平行磁界中成形方法(図5参
照)、のふたつに分けられる。
By the way, in the method for producing the rare earth-transition metal sintered magnet by the powder metallurgy method, the rare earth-transition metal alloy is melted in the intended composition, and the average particle diameter of the rare earth-transition metal alloy is 1 to 1.
After finely pulverizing to a powder of about 50 μm, molding in a magnetic field,
A method that goes through the steps of sintering and heat treatment is generally used. In the molding step, a finely pulverized powder having an average particle diameter of 1 to 50 μm is filled in a molding space formed by a die and a lower punch, and then an orientation magnetic field is applied to the raw material powder until the upper punch descends and finishes the consolidation of the raw material powder. Alignment is performed by continuing to apply, and depending on the direction in which the orientation magnetic field is applied, (a)
A right-angle magnetic field molding method in which the consolidation direction F and the orientation magnetic field direction M are perpendicular to each other (see FIG. 4), (b) a parallel magnetic field molding method in which the consolidation direction F and the orientation magnetic field direction M are parallel (see FIG. 5), It is divided into two.

【0004】[0004]

【発明が解決しようとする課題】ところで、磁化方向に
偏平な磁石を製造する場合、(a)の直角磁界中成形方
法ではI−Hカーブの角形性が良く磁気特性の高いもの
が製造できるが、圧密方向と配向磁界方向が互いに垂直
であるためにダイスと下パンチで形成する成形空間が鉛
直方向に長く、成形空間に平均粒子径が1〜50μm程
度の微粉を給粉する供給口が狭い。それゆえ成形空間へ
の微粉末の給粉が難しくバラツキの少ない均一な成形体
を作製できないという問題点がある。一方、(b)の平
行磁界中成形方法は、成形空間への微粉末供給の問題は
ないが、圧密方向と配向磁界方向が平行であるため、圧
密時に微粉の配向を乱してしまい(a)に比べるとI−
Hカーブの角形性は悪く磁気特性が低下するという問題
点がある。
By the way, in the case of producing a magnet flat in the magnetizing direction, the method for forming in a perpendicular magnetic field in (a) can produce an I-H curve having good squareness and high magnetic properties. Since the compaction direction and the orientation magnetic field direction are perpendicular to each other, the molding space formed by the die and the lower punch is long in the vertical direction, and the supply port for feeding fine powder having an average particle diameter of about 1 to 50 μm to the molding space is narrow. . Therefore, there is a problem that it is difficult to feed the fine powder to the molding space, and it is impossible to manufacture a uniform molded body with little variation. On the other hand, in the parallel magnetic field molding method of (b), there is no problem of supplying fine powder to the molding space, but since the compaction direction and the orientation magnetic field direction are parallel, the orientation of the fine powder is disturbed during compaction (a ) Compared to I)
There is a problem that the squareness of the H curve is bad and the magnetic characteristics are deteriorated.

【0005】そこで、本発明は、磁化方向に偏平な磁石
を製造する際に成形空間に容易にしかも均一に微粉末の
給粉ができるとともに、I−Hカーブの角形性の高い偏
平状希土類ー遷移金属系永久磁石を製造することができ
る方法の提供を課題とする。また、本発明は、このよう
な磁石を製造することができるプレス成形機の提供も課
題とする。
Therefore, according to the present invention, when manufacturing a magnet flat in the magnetizing direction, it is possible to easily and uniformly feed a fine powder into a molding space, and a flat rare earth having a high IH curve squareness. It is an object to provide a method capable of manufacturing a transition metal-based permanent magnet. Moreover, this invention also makes it a subject to provide the press molding machine which can manufacture such a magnet.

【0006】[0006]

【課題を解決するための手段】前述のように、磁気特性
の高い偏平状磁石を得るためには、配向磁界方向と圧密
方向とが直交している必要がある。しかし、従来のプレ
ス成形機の圧密方向が図4に示したように鉛直方向であ
るため、微粉末供給の点で問題があった。しかるに本発
明者は、圧密方向を鉛直方向ではなく水平方向とすれ
ば、配向磁界方向と圧密方向とを直交させつつ、微粉末
供給口を広くすることができることを知見した。本発明
はこの知見に基づきなされたものであり、配向磁界中で
希土類ー遷移金属系永久磁石原料粉末をプレス成形し、
その成形体を焼結する希土類ー遷移金属系永久磁石の製
造方法において、圧密方向が鉛直方向と(90゜−粉末
の安息角)以上(90゜+粉末の安息角)以下の角度を
なす方向であるとともに、配向磁界が鉛直方向に印加さ
れることを特徴とする希土類ー遷移金属系永久磁石の製
造方法である。
As described above, in order to obtain a flat magnet having high magnetic characteristics, the orientation magnetic field direction and the consolidation direction must be orthogonal to each other. However, since the consolidation direction of the conventional press molding machine is the vertical direction as shown in FIG. 4, there is a problem in supplying fine powder. However, the present inventor has found that if the consolidation direction is not the vertical direction but the horizontal direction, the fine powder supply port can be widened while making the orientation magnetic field direction and the consolidation direction orthogonal to each other. The present invention has been made based on this finding, press molding rare earth-transition metal-based permanent magnet raw material powder in the orientation magnetic field,
In the method for producing a rare earth-transition metal permanent magnet for sintering the compact, a direction in which the consolidation direction forms an angle with the vertical direction of (90 ° -powder repose angle) or more and (90 ° + powder repose angle) or less. In addition, the method for producing a rare earth-transition metal-based permanent magnet is characterized in that the orienting magnetic field is applied in the vertical direction.

【0007】以下本発明を図面を用いて説明する。図1
は本発明製造方法の成形体製造工程を示す概念図であ
る。図1において、1,2はそれぞれ左圧密ダイス、右
圧密ダイスであり、圧密方向が水平方向となるように図
示しない駆動源により水平方向に往復動する。3,4は
それぞれ上パンチ、下パンチであり、図示しない駆動源
により鉛直方向に往復動する。5は磁界発生用コイルで
あり、矢印M方向に磁界を印加する。
The present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is a conceptual diagram showing a molded body manufacturing process of the manufacturing method of the present invention. In FIG. 1, reference numerals 1 and 2 denote a left consolidation die and a right consolidation die, respectively, which are reciprocated horizontally by a drive source (not shown) so that the consolidation direction is horizontal. Reference numerals 3 and 4 are an upper punch and a lower punch, respectively, which are reciprocally moved in the vertical direction by a driving source (not shown). Reference numeral 5 denotes a magnetic field generating coil, which applies a magnetic field in the direction of arrow M.

【0008】成形体を成形するには、まず上パンチ3を
十分上昇させておき、左・右圧密ダイス1,2および下
パンチ4により形成される成形空間に所定の微粉末を供
給する(図1(a)参照)。微粉末の供給口は従来の直
角磁界成形法に比べて広いので、均一な供給が行える。
微粉末供給終了後上パンチ3を所定位置まで下降したら
(図1(b)参照)、磁界発生用コイルにより磁界を印
加するとともに、左・右圧密パンチ3,4で圧密、成形
する(図1(c)(d)参照)。この際、圧密方向と磁
界印加方向とは直交しているので、圧密により配向が乱
されることはない。圧密が終了するまで配向磁界を印加
し続けることにより配向を行い成形体を作製する。この
微粉末の配向時、配向度を向上させるためにパルス磁界
を併用することも可能である。なお、ダイスと下パンチ
で形成する成形空間は圧密した時の成形体が磁化方向の
厚みの2乗と磁化方向に垂直な面の面積との比が1以下
でかつ磁化方向の厚みが磁化方向に垂直な面の短い辺の
長さよりも小さくなるように設定する。
In order to form a compact, the upper punch 3 is first sufficiently raised, and a predetermined fine powder is supplied to the compact space formed by the left and right consolidation dies 1 and 2 and the lower punch 4 (see FIG. 1 (a)). Since the fine powder supply port is wider than in the conventional rectangular magnetic field molding method, uniform supply can be performed.
After the fine powder supply is completed, the upper punch 3 is lowered to a predetermined position (see FIG. 1B), a magnetic field is applied by the magnetic field generating coil, and the left and right consolidation punches 3 and 4 are consolidated and molded (FIG. 1). (See (c) and (d)). At this time, since the compaction direction and the magnetic field application direction are orthogonal to each other, the orientation is not disturbed by the compaction. Orientation is performed by continuing to apply an orientation magnetic field until compaction is completed, and a molded body is produced. When the fine powder is oriented, it is possible to use a pulse magnetic field together to improve the degree of orientation. The compacting space formed by the die and the lower punch has a ratio of the square of the thickness in the magnetizing direction to the area of the plane perpendicular to the magnetizing direction when the compact is compacted, and the thickness in the magnetizing direction is the magnetizing direction. Set to be smaller than the length of the short side of the plane perpendicular to.

【0009】次に、この成形体は真空中あるいは窒素、
Arガス等の非酸化性雰囲気にて1000〜1300℃
の範囲で焼結され、350℃〜焼結温度の範囲内の温度
で熱処理され永久磁石が作製される。本発明の対象とな
る磁石合金は希土類−遷移金属系合金のSm−Co系磁
石およびR−Fe−B系磁石(R:Yを含む希土類元素
のうち1種または2種以上の組み合わせ)である。これ
らの合金を粉砕機等を用いて平均粒子径が1〜50μm
程度の微粉末にし、本発明製造方法に供する。本発明製
造方法において、圧密方向は図1に示した水平方向のみ
ならず、鉛直方向と(90゜−微粉の安息角)以上(9
0゜+微粉の安息角)以下の角度をなす方向まで許容さ
れる。この角度を外れると成形機のダイスおよび下パン
チで形成する成形空間に微粉末を均一に給粉しても成形
の振動あるいは自重等で微粉末がすべり成形空間内での
微粉末の均一性が悪くなる。その結果、不均一な成形体
となり磁気特性も低下する。
Next, this molded body is placed in a vacuum or nitrogen,
1000 to 1300 ° C in a non-oxidizing atmosphere such as Ar gas
And sintered at a temperature in the range of 350 ° C. to the sintering temperature to produce a permanent magnet. The magnet alloy which is the object of the present invention is a rare earth-transition metal alloy Sm—Co magnet and R—Fe—B magnet (one or a combination of two or more rare earth elements including R: Y). . The average particle size of these alloys is 1 to 50 μm using a crusher or the like.
It is made into a fine powder to a degree and used in the production method of the present invention. In the manufacturing method of the present invention, the consolidation direction is not limited to the horizontal direction shown in FIG. 1, but also the vertical direction and (90 ° −repose angle of fine powder) or more (9
Angles up to 0 ° + angle of repose of fine powder) are allowed. If this angle is deviated, even if the fine powder is uniformly fed to the forming space formed by the die and the lower punch of the molding machine, the fine powder will slip due to vibration of the molding or its own weight, etc., and the uniformity of the fine powder in the forming space will be improved. become worse. As a result, a non-uniform molded body is formed, and the magnetic properties are deteriorated.

【0010】次に、磁化方向の厚みの2乗と磁化方向に
垂直な面の面積との比が1以下でかつ磁化方向の厚みが
磁化方向に垂直な面の短い辺の長さよりも小とするが、
磁化方向の厚みの2乗と磁化方向に垂直な面の面積との
比が1以上あるいは磁化方向の厚みが磁化方向に垂直な
面の短い辺の長さよりも大きいと、成形機のダイスおよ
び下パンチで形成する成形空間に平均粒子径が1〜50
μm程度の微粉末を均一に給粉できなく、成形体のバラ
ツキが大きくなり製造上好ましくないからである。
Next, if the ratio of the square of the thickness in the magnetization direction to the area of the plane perpendicular to the magnetization direction is 1 or less and the thickness in the magnetization direction is smaller than the length of the short side of the plane perpendicular to the magnetization direction. But
If the ratio of the square of the thickness in the magnetization direction to the area of the plane perpendicular to the magnetization direction is 1 or more, or if the thickness in the magnetization direction is larger than the length of the short side of the plane perpendicular to the magnetization direction, the die of the molding machine and the bottom The average particle size is 1 to 50 in the molding space formed by the punch.
This is because it is not possible to uniformly feed the fine powder having a size of about μm and the variation of the molded body becomes large, which is not preferable in manufacturing.

【0011】[0011]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらの実施例によって限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0012】(実施例1)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する。この
平均粒子径が4.2μmの微粉末を、圧密方向が水平方
向であり、鉛直方向に磁界を発生させる装置を有する図
1に示す成形機の圧密ダイス1,2および下パンチ4で
形成する成形空間(断面積:20x20mm)に充填し
た後、上パンチ3を下降させ、約10kOeの配向磁界
を印加し配向させた。その後、原料粉末を水平方向に2
ton/cm2にて圧密化を行い成形体(20x10x5m
m、磁化方向:厚さ5mm方向)を得た。次に、この成
形体を1080℃、2時間の条件で焼結し、600℃、
2時間の熱処理を施し永久磁石を作製した。この永久磁
石の磁気特性および微粉末の成形空間への供給難易を表
1に、I−Hカーブを図3に示す。
(Example 1) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnet alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm. This fine powder having an average particle diameter of 4.2 μm is formed by the compacting dies 1 and 2 and the lower punch 4 of the molding machine shown in FIG. 1 which has a compaction direction horizontal and has a device for generating a magnetic field in the vertical direction. After filling the molding space (cross-sectional area: 20 × 20 mm), the upper punch 3 was lowered, and an orientation magnetic field of about 10 kOe was applied for orientation. After that, the raw material powder is horizontally
Compacted by ton / cm 2 (20x10x5m
m, magnetization direction: thickness 5 mm direction) was obtained. Next, this compact was sintered under the conditions of 1080 ° C. for 2 hours, and 600 ° C.
Heat treatment was performed for 2 hours to produce a permanent magnet. The magnetic properties of this permanent magnet and the difficulty of supplying fine powder to the molding space are shown in Table 1, and the I-H curve is shown in FIG.

【0013】(実施例2)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する。この
平均粒子径が4.2μmの微粉末を圧密方向が水平方向
であり、鉛直方向に磁界を発生させる装置を有する成形
機の圧密ダイスおよび下パンチで形成する成形空間(断
面積:13x20mm)に充填した後、上パンチを下降
させ、約10kOeの配向磁界を印加し配向させた。そ
の後、原料粉末を水平方向に2ton/cm2にて圧密化を行
い成形体(13x13x12mm、磁化方向:厚さ12
mm方向)を得た。次に、成形体を1080℃、2時間
の条件で焼結し、600℃、2時間の熱処理を施し永久
磁石を作製した。この永久磁石の磁気特性および微粉末
の成形空間への供給難易を表1に示す。
(Example 2) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnet alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm. The fine powder having an average particle diameter of 4.2 μm is compacted in a compaction die of a compactor having a device for generating a magnetic field in the vertical direction and a compacting die (lower cross-sectional area: 13 × 20 mm) formed by a compacting machine having a vertical magnetic field generating device. After filling, the upper punch was lowered, and an orienting magnetic field of about 10 kOe was applied for orienting. Then, the raw material powder was horizontally compacted at 2 ton / cm 2 to obtain a compact (13 × 13 × 12 mm, magnetization direction: thickness 12).
mm direction) was obtained. Next, the molded body was sintered under the condition of 1080 ° C. for 2 hours and heat-treated at 600 ° C. for 2 hours to produce a permanent magnet. Table 1 shows the magnetic characteristics of this permanent magnet and the difficulty of supplying fine powder to the molding space.

【0014】(実施例3)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する(安息
角=50゜)。この平均粒子径が4.2μmの微粉末を
圧密方向が鉛直方向と70゜の角度をなす方向であり、
鉛直方向に磁界を発生させる装置を有する成形機のダイ
スおよび下パンチで形成する成形空間(断面積:20x
20mm、磁化方向に対して70゜の傾斜角を持つ)に
充填した後上パンチを下降させ、約10kOeの配向磁
界を印加し配向させた。その後、原料粉末を鉛直方向と
70゜の角度をなす方向に2ton/cm2にて圧密化
を行い成形体(20x10x5mm、断面積は磁化方向
に対して70゜の傾斜角を持つ、磁化方向:厚さ5mm
方向)得た。次に、成形体を1080℃、2時間の条件
で焼結し、600℃、2時間の熱処理を施し永久磁石を
作製した。この永久磁石の磁気特性および微粉末の成形
空間へ供給難易を表1に示す。
(Example 3) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnetic alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm (repose angle = 50 °). The compaction direction of this fine powder having an average particle diameter of 4.2 μm is the direction forming an angle of 70 ° with the vertical direction,
A molding space formed by a die and a lower punch of a molding machine having a device for generating a magnetic field in the vertical direction (cross-sectional area: 20x
20 mm, having an inclination angle of 70 ° with respect to the magnetization direction), and then the upper punch was lowered, and an orientation magnetic field of about 10 kOe was applied for orientation. Then, the raw material powder was compacted in a direction forming an angle of 70 ° with the vertical direction at 2 ton / cm 2 to obtain a compact (20 × 10 × 5 mm, cross-sectional area having an inclination angle of 70 ° with respect to the magnetization direction, the magnetization direction: 5mm thickness
Direction) got. Next, the molded body was sintered under the condition of 1080 ° C. for 2 hours and heat-treated at 600 ° C. for 2 hours to produce a permanent magnet. Table 1 shows the magnetic characteristics of this permanent magnet and the difficulty of supplying the fine powder to the molding space.

【0015】(比較例1)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する。この
平均粒子径が4.2μmの微粉末を圧密方向が鉛直方向
で、鉛直方向に磁界を発生させる装置を有する成形機の
ダイスおよび下パンチで形成する成形空間(断面積:2
0x10mm)に充填した後上パンチを下降させ、約1
0kOeの配向磁界を印加し配向させた。その後、原料
粉末を鉛直方向に2ton/cm2にて圧密化を行い成
形体(20x10x5mm)を得た。次に、成形体を1
080℃、2時間の条件で焼結し、600℃、2時間の
熱処理を施し永久磁石を作製した。この永久磁石の磁気
特性および微粉末の成形空間への供給難易を表1に、I
−Hカーブを図3に示す。
(Comparative Example 1) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnet alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm. A compacting space (cross-sectional area: 2
(0x10 mm) and then lower the upper punch to about 1
Orientation was performed by applying an orientation magnetic field of 0 kOe. Then, the raw material powder was vertically compacted at 2 ton / cm 2 to obtain a compact (20 × 10 × 5 mm). Next, 1
Sintering was performed under conditions of 080 ° C. for 2 hours, and heat treatment was performed at 600 ° C. for 2 hours to produce a permanent magnet. Table 1 shows the magnetic characteristics of this permanent magnet and the difficulty of supplying fine powder to the molding space.
The -H curve is shown in FIG.

【0016】(比較例2)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する。この
平均粒子径が4.2μmの微粉末を圧密方向が鉛直方向
で、圧密方向と互いに垂直な方向に磁界を発生させる装
置を有する成形機のダイスおよび下パンチで形成する成
形空間(断面積:20x5mm)に充填した後上パンチ
を下降させ、約10kOeの配向磁界を印加し配向させ
た。その後、原料粉末を鉛直方向に2ton/cm2
て圧密化を行い成形体(20x10x5mm、磁化方
向:厚さ5mm方向)得た。次に、成形体を1080
℃、2時間の条件で焼結し、600℃、2時間の熱処理
を施し永久磁石を作製した。この永久磁石の磁気特性お
よび微粉末のダイスへの供給難易を表1に、I−Hカー
ブを図3に示す。
(Comparative Example 2) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnet alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm. A compacting space (cross-sectional area: the fine powder having an average particle diameter of 4.2 μm) is formed by a die and a lower punch of a molding machine having a device for generating a magnetic field in a direction perpendicular to the consolidation direction and a direction perpendicular to the consolidation direction. (20 × 5 mm), the upper punch was lowered, and an orienting magnetic field of about 10 kOe was applied for orienting. Then, the raw material powder was vertically compacted at 2 ton / cm 2 to obtain a compact (20 × 10 × 5 mm, magnetization direction: thickness 5 mm direction). Next, the molded body is 1080
Sintering was performed under the conditions of 2 ° C. and 2 hours, and heat treatment was performed at 600 ° C. for 2 hours to produce a permanent magnet. The magnetic properties of this permanent magnet and the difficulty of supplying fine powder to the die are shown in Table 1, and the I-H curve is shown in FIG.

【0017】(比較例3)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する(安息
角=50゜)。この平均粒子径が4.2μmの微粉末を
圧密方向が鉛直方向と35゜の角度をなす方向で、鉛直
方向に磁界を発生させる装置を有する成形機のダイスお
よび下パンチで形成する成形空間(断面積:20x20
mm、磁化方向に対して35゜の傾斜角を持つ)に充填
した後上パンチを下降させ、その後約10kOeの配向
磁界を印加し粉末を配向させた。その後、原料粉末を鉛
直方向と35゜の角度をなす方向に2ton/cm2
て圧密化を行い成形体(20x10x5mm、断面積は
磁化方向に対して35゜の傾斜角を持つ、磁化方向:厚
さ5mm方向)とした。次に、成形体を1080℃、2
時間の条件で焼結し、600℃、2時間の熱処理を施し
永久磁石を作製した。この永久磁石の磁気特性および微
粉末のダイスへの振り込みの難易を表1に示す。
(Comparative Example 3) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnetic alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm (repose angle = 50 °). A molding space for forming the fine powder having an average particle diameter of 4.2 μm by a die and a lower punch of a molding machine having a device for generating a magnetic field in the vertical direction in a direction in which the compaction direction forms an angle of 35 ° with the vertical direction ( Cross-sectional area: 20x20
mm, having a tilt angle of 35 ° with respect to the magnetization direction), the upper punch was lowered, and then an orientation magnetic field of about 10 kOe was applied to orient the powder. Then, the raw material powder was compacted in a direction forming an angle of 35 ° with the vertical direction at 2 ton / cm 2 to obtain a compact (20 × 10 × 5 mm, cross-sectional area having an inclination angle of 35 ° with respect to the magnetization direction, magnetization direction: The thickness was 5 mm). Next, the molded body is heated to 1080 ° C., 2
Sintering was performed under the condition of time, and heat treatment was performed at 600 ° C. for 2 hours to produce a permanent magnet. Table 1 shows the magnetic characteristics of this permanent magnet and the difficulty of transferring the fine powder to the die.

【0018】(比較例4)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
平均粒子径が4.2μmである微粉末に粉砕する。この
平均粒子径が4.2μmの微粉末を圧密方向が水平方向
で、鉛直方向に磁界を発生させる装置を有する成形機の
ダイスおよび下パンチで形成する成形空間(断面積:2
0x20mm)に充填した後上パンチが下降させ、その
後約10kOeの配向磁界を印加し粉末を配向させた。
その後、原料粉末を水平方向に2ton/cm2にて圧密化を
行い成形体(20x10x15mm、磁化方向:厚さ1
5mm方向)を得た。次に、成形体を1080℃、2時
間の条件で焼結し、600℃、2時間の熱処理を施し永
久磁石を作製した。この永久磁石の磁気特性および微粉
末のダイスへの供給難易を表1に示す。
(Comparative Example 4) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. % The magnet alloy consisting of the balance Fe is pulverized into fine powder having an average particle diameter of 4.2 μm. A molding space (cross-sectional area: 2) for forming the fine powder having an average particle diameter of 4.2 μm by a die and a lower punch of a molding machine having a device for generating a magnetic field in the vertical direction with a horizontal compaction direction.
(0x20 mm), the upper punch was lowered, and then an orienting magnetic field of about 10 kOe was applied to orient the powder.
Then, the raw material powder was horizontally consolidated at 2 ton / cm 2 to form a compact (20 × 10 × 15 mm, magnetization direction: thickness 1).
5 mm direction) was obtained. Next, the molded body was sintered under the condition of 1080 ° C. for 2 hours and heat-treated at 600 ° C. for 2 hours to produce a permanent magnet. Table 1 shows the magnetic properties of this permanent magnet and the difficulty of supplying fine powder to the die.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明によれば、磁化方向に偏平な磁石
を製造する時ダイスと成形空間に容易にしかも均一に微
粉末の給粉ができ磁気特性の向上もはかられ、工業上そ
の利用価値は極めて高いものである。
According to the present invention, when a magnet flat in the magnetizing direction is manufactured, it is possible to easily and uniformly feed fine powder to the die and the molding space, and to improve the magnetic characteristics. The utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明製造方法の粉末成形工程を示す図であ
る。
FIG. 1 is a diagram showing a powder molding step of the production method of the present invention.

【図2】本発明製造方法の圧密方向を示す図である。FIG. 2 is a diagram showing a consolidation direction of the manufacturing method of the present invention.

【図3】実施例、比較例のI−Hカーブである。FIG. 3 is an I-H curve of an example and a comparative example.

【図4】従来の直角磁界中成形方法を示す図である。FIG. 4 is a diagram showing a conventional method for forming in a perpendicular magnetic field.

【図5】従来の平行磁界中成形方法を示す図である。FIG. 5 is a diagram showing a conventional parallel magnetic field molding method.

【符号の説明】[Explanation of symbols]

1 左圧密ダイス、2 右圧密ダイス、3 上パンチ、
4 下パンチ、5 磁界発生装置、6 ダイス
1 left consolidation die, 2 right consolidation die, 3 upper punch,
4 lower punch, 5 magnetic field generator, 6 dice

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/02 G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 41/02 G

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 配向磁界中で希土類ー遷移金属系永久磁
石原料粉末をプレス成形し、その成形体を焼結する希土
類ー遷移金属系永久磁石の製造方法において、圧密方向
が鉛直方向と(90゜−粉末の安息角)以上(90゜+
粉末の安息角)以下の角度をなす方向であるとともに、
配向磁界が鉛直方向に印加されることを特徴とする希土
類ー遷移金属系永久磁石の製造方法。
1. A method for manufacturing a rare earth-transition metal permanent magnet, comprising press-molding a rare earth-transition metal permanent magnet raw material powder in an orienting magnetic field and sintering the compact, wherein the consolidation direction is the vertical direction (90). ° -powder angle of repose) or more (90 ° +
The angle of repose of the powder) is less than or equal to
A method for manufacturing a rare earth-transition metal permanent magnet, characterized in that an orienting magnetic field is applied in the vertical direction.
【請求項2】 配向磁界中で希土類ー遷移金属系永久磁
石原料粉末をプレス成形し、その成形体を焼結する希土
類ー遷移金属系永久磁石の製造方法において、圧密方向
が鉛直方向および鉛直方向と(90゜−粉末の安息角)
以上(90゜+粉末の安息角)以下の角度をなす方向で
あるとともに、配向磁界が鉛直方向に印加されることを
特徴とする希土類ー遷移金属系永久磁石の製造方法。
2. A method for manufacturing a rare earth-transition metal permanent magnet, comprising press-molding a rare earth-transition metal permanent magnet raw material powder in an orienting magnetic field and sintering the compact, wherein the consolidation direction is the vertical direction and the vertical direction. And (90 ° -powder repose angle)
A method for producing a rare earth-transition metal-based permanent magnet, characterized in that the orientation magnetic field is applied in a vertical direction while having a direction of an angle not less than (90 ° + powder repose angle).
【請求項3】 鉛直方向と(90゜−粉末の安息角)以
上(90゜+粉末の安息角)以下の角度をなす方向が水
平方向である請求項1または2に記載の希土類ー遷移金
属系永久磁石の製造方法。
3. The rare earth-transition metal according to claim 1, wherein a direction which forms an angle of not less than (90 ° −powder repose angle) and not more than (90 ° + powder repose angle) with the vertical direction is a horizontal direction. Method for manufacturing a permanent magnet.
【請求項4】 前記成形体は、磁界印加方向の厚みの2
乗と磁界印加方向に垂直な面の面積との比が1以下でか
つ磁界印加の厚みが磁界印加方向に垂直な面の短い辺の
長さよりも小さい請求項1〜3のいずれかに記載の希土
類ー遷移金属系永久磁石の製造方法。
4. The molded body has a thickness of 2 in the magnetic field application direction.
The ratio of the square to the area of a surface perpendicular to the magnetic field application direction is 1 or less, and the thickness of the magnetic field application is smaller than the length of a short side of the surface perpendicular to the magnetic field application direction. Manufacturing method of rare earth-transition metal permanent magnet.
【請求項5】 鉛直方向と(90゜−粉末の安息角)以
上(90゜+粉末の安息角)以下の角度をなす方向で作
動する圧密手段と、鉛直方向に磁界を印加する磁界発生
手段とを有することを特徴とするプレス成形装置。
5. A compaction means that operates in a direction that forms an angle of (90 ° −powder repose angle) or more and (90 ° + powder repose angle) or less with the vertical direction, and a magnetic field generation means that applies a magnetic field in the vertical direction. And a press forming apparatus.
【請求項6】 鉛直方向および鉛直方向と(90゜−粉
末の安息角)以上(90゜+粉末の安息角)以下の角度
をなす方向で作動する圧密手段と、鉛直方向に磁界を印
加する磁界発生手段とを有することを特徴とするプレス
成形装置。
6. A compaction means that operates in a vertical direction and a direction that forms an angle of (90 ° −powder repose angle) or more and (90 ° + powder repose angle) or less with the vertical direction, and applies a magnetic field in the vertical direction. A press forming apparatus comprising: a magnetic field generating means.
【請求項7】 鉛直方向と(90゜−粉末の安息角)以
上(90゜+粉末の安息角)以下の角度をなす方向が水
平方向である請求項5または6に記載プレス成形装置。
7. The press molding apparatus according to claim 5, wherein a direction which forms an angle of not less than (90 ° −powder repose angle) and not more than (90 ° + powder repose angle) with the vertical direction is a horizontal direction.
JP31774693A 1993-12-17 1993-12-17 Production of rare earth-transition metal permanent magnet and press-forming machine therefor Pending JPH07173505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31774693A JPH07173505A (en) 1993-12-17 1993-12-17 Production of rare earth-transition metal permanent magnet and press-forming machine therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31774693A JPH07173505A (en) 1993-12-17 1993-12-17 Production of rare earth-transition metal permanent magnet and press-forming machine therefor

Publications (1)

Publication Number Publication Date
JPH07173505A true JPH07173505A (en) 1995-07-11

Family

ID=18091576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31774693A Pending JPH07173505A (en) 1993-12-17 1993-12-17 Production of rare earth-transition metal permanent magnet and press-forming machine therefor

Country Status (1)

Country Link
JP (1) JPH07173505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095567A (en) * 2004-09-29 2006-04-13 Tdk Corp Molding device and molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095567A (en) * 2004-09-29 2006-04-13 Tdk Corp Molding device and molding method

Similar Documents

Publication Publication Date Title
CN1061162C (en) Hot-pressed magnets formed from anisotropic powders
US5762967A (en) Rubber mold for producing powder compacts
EP0378698B1 (en) Method of producing permanent magnet
KR101804313B1 (en) Method Of rare earth sintered magnet
JPH07173505A (en) Production of rare earth-transition metal permanent magnet and press-forming machine therefor
JPH07105301B2 (en) Manufacturing method of magnetic anisotropy Nd-Fe-B magnet material
KR20180119754A (en) Manufacturing method Of rare earth sintered magnet
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPH02156038A (en) Making of permanent magnet
JPH0997730A (en) Manufacture of sintered permanent magnet
JP2003193107A (en) Method for pressing rare-earth alloy powder, and method for manufacturing sintered compact of rare-earth alloy
JPH07183148A (en) Manufacture of rare-earth permanent magnet
CN103480836A (en) Granulation method of sintered neodymium iron boron powder materials
JPS61119006A (en) Manufacture of sintered magnet
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JP2003133117A (en) METHOD FOR MANUFACTURING 2-17 BASED Sm-Co RARE-EARTH PERMANENT MAGNET
KR20180119755A (en) Manufacturing method of rare earth sintered magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
JPH06188136A (en) Manufacture of permanent magnet
JP3101800B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH01202805A (en) Manufacture of r-tm-r series plastically worked magnet
JP2005213544A (en) Compacting method in magnetic field and method for producing rare-earth sintered magnet