JPS5914119B2 - Heat sink surface treatment method - Google Patents

Heat sink surface treatment method

Info

Publication number
JPS5914119B2
JPS5914119B2 JP54090796A JP9079679A JPS5914119B2 JP S5914119 B2 JPS5914119 B2 JP S5914119B2 JP 54090796 A JP54090796 A JP 54090796A JP 9079679 A JP9079679 A JP 9079679A JP S5914119 B2 JPS5914119 B2 JP S5914119B2
Authority
JP
Japan
Prior art keywords
heat
paint
heat sink
plating
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54090796A
Other languages
Japanese (ja)
Other versions
JPS5616693A (en
Inventor
哲男 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP54090796A priority Critical patent/JPS5914119B2/en
Publication of JPS5616693A publication Critical patent/JPS5616693A/en
Publication of JPS5914119B2 publication Critical patent/JPS5914119B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/06Coatings; Surface treatments having particular radiating, reflecting or absorbing features, e.g. for improving heat transfer by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明は沸騰冷却用放熱体の熱伝達率を向上できる放熱
体の表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface treatment of a heat radiator for improving the heat transfer coefficient of a heat radiator for boiling cooling.

沸騰冷却は放熱体より熱を冷媒潜熱により取り去る冷却
方式で、従来の空気や油等の対流熱伝達を利用する冷却
方式と放熱体表面での熱伝達率を比較すれば、桁はずれ
に優れた特性を表わす。この為沸騰冷却方式は、わずか
の表面積から多量の熱を発生し熱流速の大きい大電力半
導体素子等の冷却に適している。この沸騰冷却において
は、熱伝達面の気泡の発生及び成長が活発になる程沸騰
熱伝達率が向上する。例えば、放熱体表面に第1図に示
すようなキャビティを形成せしめ多孔性にする事により
、気泡の発生及び成長が活発になり第2図に示すように
沸騰熱伝達率が向上する。なお、第2図において、特性
^は平坦な放熱面を有するもの、特性(”はキャビティ
を有するものである。平坦面における沸騰では放熱面付
近の液体5 全体を加熱して気泡周囲の液体を過熱状態
にして気泡を成長させる。一方、キャビティを持つ表面
においてはキャビティ内で気泡が成長するので、キャビ
ティ内の液体膜は薄いため液全体が過熱状態にならなく
ても気泡周囲の液体は簡単に過熱状10態になる。この
結果、気泡の成長が活発になり沸騰熱伝達率が向上する
。即ち、比熱、密度及び熱伝達率が大きい固体壁に開口
部が狭くて深いキャビティが存在し、大きい熱流束のも
のにある時に高い沸騰熱伝達率が得られる。15従来は
機械加工またはメッキによつて第1図に示すようなキャ
ビティを形成させていた。
Boiling cooling is a cooling method that removes heat from a heat radiator using the latent heat of the refrigerant.If you compare the heat transfer coefficient on the surface of the heat radiator with conventional cooling methods that use convection heat transfer from air, oil, etc., it is an order of magnitude better. represents a characteristic. For this reason, the boiling cooling method generates a large amount of heat from a small surface area and is suitable for cooling high-power semiconductor devices and the like with a high heat flow rate. In this boiling cooling, the boiling heat transfer coefficient improves as the generation and growth of bubbles on the heat transfer surface becomes more active. For example, by forming cavities as shown in FIG. 1 on the surface of the heat sink to make it porous, the generation and growth of bubbles will be activated and the boiling heat transfer coefficient will be improved as shown in FIG. In Fig. 2, the characteristic ^ indicates that the heat dissipation surface is flat, and the characteristic ('' indicates that it has a cavity.In boiling on a flat surface, the entire liquid 5 near the heat dissipation surface is heated, and the liquid around the bubbles is heated. Bubbles grow by heating the surface.On the other hand, on a surface with cavities, the bubbles grow within the cavity, so the liquid film around the bubbles is easily absorbed even if the entire liquid does not become superheated because the liquid film inside the cavity is thin. As a result, the growth of bubbles becomes active and the boiling heat transfer coefficient increases.In other words, a deep cavity with a narrow opening exists in a solid wall with a large specific heat, density, and heat transfer coefficient. , a high boiling heat transfer coefficient can be obtained when the heat flux is large.15 Conventionally, a cavity as shown in FIG. 1 was formed by machining or plating.

しかし、機械加工では作業が非常に困難でありコストも
かかるという欠点があつた。又、放熱体表面を物理的に
荒らしてメッキする方法では、キャビティのク0 形状
が一定でないので定常的に優れた沸騰特性を得ることは
困難であるという欠点があつた。本発明は上記欠点を解
消するためになされたもので、塗料の島を形成してメッ
キすることによつて、優れた沸騰特性を有する剖熱体が
得られる放ク5 熱体の表面処理方法に関するものであ
る。本発明の一例を第3図に示す。第3図aに示すよう
に放熱体1の放熱面1aに塗料を付着させて微小の島2
を複数個形成し、その後メッキを施して第3図bに示す
ようにメッキ被膜3をつくる。30その後、塗料を剥離
剤で溶解すると、開口部4aの狭いキャビティ4が形成
される。
However, machining has the disadvantage that it is extremely difficult and costly. Furthermore, the method of physically roughening the surface of the heat sink and plating it has the disadvantage that it is difficult to consistently obtain excellent boiling characteristics because the shape of the cavity is not constant. The present invention has been made to solve the above-mentioned drawbacks, and by forming islands of paint and plating, a heat dissipating body having excellent boiling properties can be obtained. It is related to. An example of the present invention is shown in FIG. As shown in FIG.
A plurality of layers are formed and then plated to form a plating film 3 as shown in FIG. 3b. 30 The paint is then dissolved with a stripper, forming a narrow cavity 4 with an opening 4a.

なお、島2を形成するには、複数個の微細孔(図示せず
)を有するプレート(図示せず)を放熱面1aの表面当
接して、スプレーで塗料を吹きつける。そして、35島
2ができた状態でメッキを行なうと、塗料の付着した部
分は絶縁されているので金属表面はメッキされす、メッ
キ層は第3図bに示すように多孔質となる。次に塗膜剥
離剤で金属表面に付着した塗膜を溶解除去すると第3図
cに示す形状となりキヤビテイ4が形成される。沸騰の
核を作る場合、放熱体1の母材が銅のときはメツキには
銅メツキが有効で、つきまわり性の悪い硫酸銅メツキが
最良である。
In order to form the islands 2, a plate (not shown) having a plurality of micropores (not shown) is brought into contact with the surface of the heat radiation surface 1a, and paint is sprayed onto the plate (not shown). When plating is performed with the 35 islands 2 formed, the metal surface is not plated because the parts to which the paint is applied are insulated, and the plating layer becomes porous as shown in FIG. 3b. Next, by dissolving and removing the coating film adhering to the metal surface using a coating film stripping agent, the cavity 4 is formed into the shape shown in FIG. 3c. When creating a boiling nucleus, when the base material of the heat sink 1 is copper, copper plating is effective, and copper sulfate plating, which has poor throwing power, is best.

塗料としては無機顔料を含まないクリアーに有機顔料で
着色したもので、耐溶剤性のあまり良くないニトロセル
ロース、セラツク、アルキツド、ビニール等が有効であ
る。塗膜剥離剤としては溶剤系が有効である。次に本発
明の具体的実施例を示す。
The paint is a clear color containing no inorganic pigments and colored with organic pigments, and nitrocellulose, shellac, alkyd, vinyl, etc., which have poor solvent resistance, are effective. Solvent-based paint strippers are effective. Next, specific examples of the present invention will be shown.

実施例 1 銅を母材とする放熱体の放熱面をアルカリ脱脂酸洗い等
によつて洗浄した後、放熱面に直径が約30μの貫通し
た微細孔を多数有するプレートを当接し、ビニール樹脂
エナメルをスプレーガンで吹き付け自然乾燥する。
Example 1 After cleaning the heat dissipation surface of a heat dissipation body made of copper as a base material by alkaline degreasing and pickling, etc., a plate having a large number of penetrating fine holes with a diameter of approximately 30 μm was brought into contact with the heat dissipation surface, and vinyl resin enamel was applied. Spray with a spray gun and let dry naturally.

次に硫酸銅2609/t、硫酸809/t、温度30℃
の条件下で空気撹拌を行ないながら5A/Dm2で50
分のメツキをしたとき、約50μの多孔質メツキ皮膜を
得た。更に塩化メチレンを主成分とする剥離剤の中に2
0分浸漬して塗膜を溶解除去して第2図cの形状を有す
る放熱体が得られた。実施例 2 銅を母材とする放熱体の放熱面をアルカリ脱FJ毘酸洗
い等によつて洗浄した後、放熱面に直径が約40μの貫
通した微細孔を多数有するプレートを当接し、油性エナ
メルをスプレーガンで吹き付け自然乾燥する。
Next, copper sulfate 2609/t, sulfuric acid 809/t, temperature 30℃
50 at 5A/Dm2 with air agitation under the conditions of
When plating was carried out, a porous plating film of about 50 μm was obtained. Furthermore, in the stripping agent whose main component is methylene chloride, 2
The coating film was dissolved and removed by immersion for 0 minutes to obtain a heat sink having the shape shown in FIG. 2c. Example 2 After cleaning the heat dissipation surface of a heat dissipation body made of copper as a base material by alkaline removal FJ pickling, etc., a plate having a large number of penetrating fine holes with a diameter of about 40 μm was brought into contact with the heat dissipation surface, and an oil-based Spray the enamel with a spray gun and let it dry naturally.

次に硫酸銅2609/t、硫酸809/t、温度30℃
の条件下で空気撹拌を行ないながら5A/Dm2で70
分のメツキをしたとき、約70μの多孔質メツキ被膜を
得た。さらに塗膜剥離剤トルエンの中に20分間浸漬し
て塗膜を溶解除去して第2図cの形状を有する放熱体が
得られた。この発明によると、放熱面に微小の塗料の島
を形成し、メツキをした後、塗料を除去して微細孔を形
成させることによつて、形状がほソー定となるキヤビテ
イを容易に得ることができる。
Next, copper sulfate 2609/t, sulfuric acid 809/t, temperature 30℃
70 at 5A/Dm2 with air agitation under the conditions of
When plating was carried out, a porous plating film of about 70 μm was obtained. Furthermore, the heat sink having the shape shown in FIG. 2c was obtained by immersing it in toluene, a paint film remover, for 20 minutes to dissolve and remove the paint film. According to this invention, a cavity with a uniform shape can be easily obtained by forming minute islands of paint on a heat dissipation surface, plating, and then removing the paint to form micropores. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の表面処理方法で得られた放熱体を示す断
面図、第2図は放熱体の熱抵抗特性を示す説明図、第3
図はこの発明の一実施例を説明する断面図である。
Figure 1 is a cross-sectional view showing a heat sink obtained by a conventional surface treatment method, Figure 2 is an explanatory diagram showing the thermal resistance characteristics of the heat sink, and Figure 3 is an explanatory diagram showing the thermal resistance characteristics of the heat sink.
The figure is a sectional view illustrating an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 放熱体の放熱面に微小の塗料の島を複数個形成し、
上記放熱面をメッキした後、上記塗料を除去して上記放
熱面に所定の微細孔を形成させることを特徴とする放熱
体の表面処理方法。 2 塗料の島は所定の間隔であけられた複数個の微細孔
を有するプレートを放熱体の表面に当接し、上記塗料を
付着させることを特徴とする特許請求の範囲第1項記載
の放熱体の表面処理方法。
[Claims] 1. Forming a plurality of minute islands of paint on the heat dissipation surface of the heat dissipation body,
A method for surface treatment of a heat radiating body, comprising plating the heat radiating surface and then removing the paint to form predetermined micropores in the heat radiating surface. 2. The heat radiator according to claim 1, wherein the paint islands are made by bringing a plate having a plurality of micro holes opened at predetermined intervals into contact with the surface of the heat radiator to adhere the paint. surface treatment method.
JP54090796A 1979-07-16 1979-07-16 Heat sink surface treatment method Expired JPS5914119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54090796A JPS5914119B2 (en) 1979-07-16 1979-07-16 Heat sink surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54090796A JPS5914119B2 (en) 1979-07-16 1979-07-16 Heat sink surface treatment method

Publications (2)

Publication Number Publication Date
JPS5616693A JPS5616693A (en) 1981-02-17
JPS5914119B2 true JPS5914119B2 (en) 1984-04-03

Family

ID=14008540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54090796A Expired JPS5914119B2 (en) 1979-07-16 1979-07-16 Heat sink surface treatment method

Country Status (1)

Country Link
JP (1) JPS5914119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168313U (en) * 1984-10-05 1986-05-10
JPS61271611A (en) * 1985-05-25 1986-12-01 Mitsubishi Electric Corp Rotary head assembly for magnetic recording and reproducing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956697A (en) * 1982-05-06 1984-04-02 Agency Of Ind Science & Technol Manufacture of heat transfer surface boiling at low degree of superheat
JPH01137704U (en) * 1988-03-11 1989-09-20
FR2945337B1 (en) * 2009-05-06 2012-05-25 Commissariat Energie Atomique THERMAL EXCHANGE DEVICE WITH INCREASED THERMAL EXCHANGE COEFFICIENT AND METHOD OF MAKING SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168313U (en) * 1984-10-05 1986-05-10
JPS61271611A (en) * 1985-05-25 1986-12-01 Mitsubishi Electric Corp Rotary head assembly for magnetic recording and reproducing device

Also Published As

Publication number Publication date
JPS5616693A (en) 1981-02-17

Similar Documents

Publication Publication Date Title
US5486234A (en) Removal of field and embedded metal by spin spray etching
US7387740B2 (en) Method of manufacturing metal cover with blind holes therein
JPS58218124A (en) Method of etching polymerized insulating layer and etchant composition
US5837118A (en) Method of producing hollow electroformed product of precious metal
JPS5914119B2 (en) Heat sink surface treatment method
CN103060866A (en) A treatment method for a copper-molybdenum material before gold-plating
US2634469A (en) Bonding aluminum or aluminum base alloy to ferrous metal by means of an alloy bond
CA1070260A (en) Method of electroforming on a metal substrate
US2793178A (en) Method of providing insulator with multiplicity of conducting elements
US3306830A (en) Printed circuit boards and their fabrication
JPH01500677A (en) Chrome mask for electroless nickel or copper plating
US4387137A (en) Capacitor material
US5183553A (en) Method of forming a high temperature resistant copper coating on an inorganic dielectric
JPS5948876B2 (en) Heat sink surface treatment method
JPS5925040B2 (en) Heat sink surface treatment method
JPS6366917B2 (en)
GB2274853A (en) Process for electroplating nonconductive surface e.g through holes in print wiring board
CN109097806B (en) Aluminum alloy and preparation method thereof
TWI644356B (en) Methods of etching carbon nanotube sheet material for electrical circuit and thin film thermal structure applications
GB1063098A (en) Improvements in heat exchangers
JP2872834B2 (en) Method for manufacturing two-layer flexible printed circuit board
JPS6328027A (en) Electrode foil for electrolytic capacitor and manufacture of the same
JP3465594B2 (en) Plating method inside micro holes
KR100646688B1 (en) Manufacturing method of catch cup, catch cup manufactured by the method, and photh resist coating apparatus of wafer
JP2914019B2 (en) Electronic component manufacturing method