JPS59141045A - X-ray analytical apparatus - Google Patents

X-ray analytical apparatus

Info

Publication number
JPS59141045A
JPS59141045A JP1526283A JP1526283A JPS59141045A JP S59141045 A JPS59141045 A JP S59141045A JP 1526283 A JP1526283 A JP 1526283A JP 1526283 A JP1526283 A JP 1526283A JP S59141045 A JPS59141045 A JP S59141045A
Authority
JP
Japan
Prior art keywords
ray
ray detector
solar slit
magnet
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1526283A
Other languages
Japanese (ja)
Other versions
JPH0456274B2 (en
Inventor
Hideo Okashita
岡下 英男
Masaaki Kako
加来 政明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP1526283A priority Critical patent/JPS59141045A/en
Publication of JPS59141045A publication Critical patent/JPS59141045A/en
Publication of JPH0456274B2 publication Critical patent/JPH0456274B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enhance the detection sensitivity of a light element according to an X-ray analytical method th reducing background noise generated by photoelectron, by constituting the case of a solar slit arranged in front of an X-ray detector from a magnet. CONSTITUTION:A solar slit 5 is formed by arranging several iron plates 5p in parallel and the side plate 5c of the solar slit case is formed of a magnet plate. This magnet plate is magnetized in the thickness direction thereof and a magnetic pole is formed as shown by the drawing. Therefore, a magnetic field is formed toward a downward direction as shown by the arrow and an electron path is shifted from the window W of an X-ray detector 4. As a result, there is no incident possibility to the X-ray detector and the background noise generated by a photoelectron is remarkably reduced and the detection sensitivity of a light element due to an X-ray analytical method can be enhanced.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は炭素、硼素、窒素等の軽元素の分析に−適した
X線分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an X-ray analyzer suitable for analyzing light elements such as carbon, boron, and nitrogen.

口・従来技術 炭素とか硼素或は窒素等の超軽元素の原子を励起したと
き発せられるX線は波長が長いので分光結晶を用いる分
光法が適用できず、X線を鏡面に、その面に平行に近い
入射角で入射させ、鏡面による全反射を利用して短波長
のX線と分離しヤ検出する方法が用いられている。この
場合エネルギーの低い長波長のX線を検出するためX線
検出回路の増幅度を上げているので試料を励起する放射
線従来全反射鏡と試料との間に磁石を配置してX線検出
器の方へ向う電子線の経路を曲げて光電子等がX線検出
器に飛び込むのを防いでいたが、実際上は殆んど効果が
認められず、X線による超軽元素の高感度の分析はきわ
めで困難であった。以下この点をもう少し詳しく説明す
る。
- Prior art The X-rays emitted when atoms of ultralight elements such as carbon, boron, or nitrogen are excited have long wavelengths, so spectroscopy using a spectroscopic crystal cannot be applied, so A method is used in which X-rays are made incident at an almost parallel angle of incidence, and total reflection by a mirror surface is used to separate them from short-wavelength X-rays and detect them. In this case, the amplification of the X-ray detection circuit is increased in order to detect long-wavelength X-rays with low energy, so the radiation that excites the sample is conventionally used with a magnet placed between the total reflection mirror and the sample. This method bent the path of the electron beam toward the X-ray to prevent photoelectrons from jumping into the X-ray detector, but in practice this had little effect, and the high-sensitivity analysis of ultralight elements using X-rays was difficult. was extremely difficult. This point will be explained in more detail below.

第1図は従来の螢光X線分析装置を示す。1は励起用の
一次X線源、2は試料で、3が全反射鏡、4がX線検出
器で、5はX線検出器40前面に配置されたソーラスリ
ットである。X線検出器4にはガスフロー比例計数管が
用いられている。試料2は一次X線の照射を受けて螢光
X線Xを放射する。全反射鏡5とX線検出器4及び試料
2の位置関係は、試料から出た螢光X線が例えば炭素分
析の場合約8°の角度で全反射鏡面に入射し、同じ角度
で全反射されたX線が検出器4に入射するようにしであ
る。このように全反射鏡3に対して人、反対側X線が平
行に近いから、X線検出器4からはノーラスリット5を
通しても試料2を望むことができ試料2から出た光電子
のうちX線検出器従来は試料2と全反射鏡3との間に磁
石Mを置き、試料からX線検出器の方へ向けて放出され
た光電子の進路を曲げてX線検出器4に入るのを防ぐよ
うにしていた。しかしこの場合、試料からX線検出器と
は異る方向へ放出された光電子の経路が磁殆んど効果が
なかった。
FIG. 1 shows a conventional fluorescent X-ray analyzer. 1 is a primary X-ray source for excitation, 2 is a sample, 3 is a total reflection mirror, 4 is an X-ray detector, and 5 is a solar slit placed in front of the X-ray detector 40. The X-ray detector 4 uses a gas flow proportional counter. The sample 2 emits fluorescent X-rays X upon being irradiated with the primary X-rays. The positional relationship between the total reflection mirror 5, the X-ray detector 4, and the sample 2 is such that, for example, in the case of carbon analysis, the fluorescent X-rays emitted from the sample enter the total reflection mirror surface at an angle of about 8 degrees, and are totally reflected at the same angle. The X-rays are incident on the detector 4. In this way, since the X-rays on the opposite side are almost parallel to the total reflection mirror 3, the X-ray detector 4 can see the sample 2 even through the Nora slit 5, and the photoelectrons emitted from the sample 2 are Ray Detector Conventionally, a magnet M is placed between the sample 2 and the total reflection mirror 3 to bend the path of photoelectrons emitted from the sample toward the X-ray detector and prevent them from entering the X-ray detector 4. I was trying to prevent it. However, in this case, the path of photoelectrons emitted from the sample in a direction different from that of the X-ray detector had little effect.

へ目的 本発明は軽元素から発せられる長波長のX線によって軽
元素の分析する場合における上述した光電子等によシ発
生−hシー減してX線分析法による軽元素の検出感度を
高めることを目的とするO 二、構成 本発明はX線検出器の前面に磁場を形成するように磁石
を配置したX線分析装置を提供する。
Purpose of the present invention is to reduce the damage caused by photoelectrons, etc. mentioned above when analyzing light elements using long-wavelength X-rays emitted from the light elements, and to increase the detection sensitivity of light elements by X-ray analysis. 2. Structure The present invention provides an X-ray analyzer in which a magnet is arranged in front of an X-ray detector to form a magnetic field.

ホ、実施例 この実施例は第1図を利用して説明すればソーラスリッ
ト5の側面に磁石を配置するものである。
E. Embodiment This embodiment will be explained using FIG. 1, in which a magnet is arranged on the side surface of the solar slit 5.

X線分析装置としての全体的な構成は第1図と同じであ
るので、第2図に実施例におけるX線検出器部分だけを
示す。X線検出器4はガスフロー比例計数管で、Bは本
体、Cは芯線で、これが陽極になっている。WはX線入
射窓で1μmの厚さのポリプロピレンフィルムFが張設
してあり、ソーラスリット5のケース5CがフィルムF
の押えに兼用されている。ソーラスリット5は数枚の鉄
板5pを平行に配置したものであり、ソーラスリットケ
ースの側板5Cが磁石板になっている。この磁石板は厚
さ方向に磁化され、磁極は図示のように形成されている
。従って磁場は下向き矢印方向に形成され、スリイトの
鉄板5pに平行に図左方からソーラスリット5に入射し
た電子の経路は図の紙面に垂直にこちらに向けて曲げら
れ、X線検出器4の窓Wから反らされる。
Since the overall configuration of the X-ray analysis apparatus is the same as that shown in FIG. 1, FIG. 2 shows only the X-ray detector portion in the embodiment. The X-ray detector 4 is a gas flow proportional counter tube, B is a main body, and C is a core wire, which serves as an anode. W is an X-ray entrance window over which a polypropylene film F with a thickness of 1 μm is stretched, and the case 5C of the solar slit 5 is the film F.
It is also used as a presser foot. The solar slit 5 is made up of several iron plates 5p arranged in parallel, and the side plate 5C of the solar slit case is a magnetic plate. This magnet plate is magnetized in the thickness direction, and the magnetic poles are formed as shown. Therefore, the magnetic field is formed in the direction of the downward arrow, and the path of the electrons that entered the solar slit 5 from the left side of the figure parallel to the iron plate 5p of the slit is bent toward this direction perpendicular to the plane of the figure, and It is warped from window W.

第3図は上述実施例の斜視図で、5yはソーラスリット
のケースを兼ねた軟鉄板のヨークで磁石板5Cに対する
磁気回路を構成してソーラスリット内の空間に形成され
る磁場を強めている。
FIG. 3 is a perspective view of the above-mentioned embodiment, where 5y is a soft iron plate yoke that also serves as a case for the solar slit, and constitutes a magnetic circuit for the magnet plate 5C to strengthen the magnetic field formed in the space inside the solar slit. .

X線検出器の前面に磁場を形成する方法は上述したよう
な構造だけに限られない。例えば第3図において上下方
向に磁場を形成するように上下に磁石を設けてもよい。
The method of forming a magnetic field in front of the X-ray detector is not limited to the structure described above. For example, in FIG. 3, magnets may be provided above and below so as to form a magnetic field in the vertical direction.

この場合ソーラスリットを構成する平行板は非磁性材料
が望ましい。
In this case, the parallel plates constituting the solar slit are preferably made of non-magnetic material.

へ、効果 本発明によるときは、X線検出器の前面まで飛来する電
子はその経路の方向が略々試料とX線検出器とを結ぶ方
向に揃っているので、X線検出器の前面に磁場を形成す
ることにより、殆んど全部がX線検出器のX線入射窓か
ら反らされ、異る方向の電子が磁場で曲げられた結果、
X線検出器に入射するようになると云った可能性がなく
なり、光電子等によって発生するバックグランドが従来
に比し著るしく低減し、X線検出のS / N比を向上
させることができる。第4図は本発明の効果を例示する
グラフで、鋳鉄中の炭素の検量線(X線検出強度と炭素
濃度との関係グラフ)を示す。この図でAは従来例、B
は本発明における検量線、縦軸はX線強度、横軸は鋳鉄
中の炭素濃度である。
Effects According to the present invention, since the direction of the path of the electrons flying to the front of the X-ray detector is approximately aligned in the direction connecting the sample and the X-ray detector, the electrons flying to the front of the X-ray detector By creating a magnetic field, almost all of them are deflected away from the X-ray entrance window of the X-ray detector, and as a result of the electrons in different directions being bent by the magnetic field,
There is no possibility that the photoelectrons will enter the X-ray detector, the background generated by photoelectrons, etc. is significantly reduced compared to the conventional method, and the S/N ratio of X-ray detection can be improved. FIG. 4 is a graph illustrating the effects of the present invention, showing a calibration curve for carbon in cast iron (a graph of the relationship between X-ray detection intensity and carbon concentration). In this figure, A is the conventional example, and B
is the calibration curve in the present invention, the vertical axis is the X-ray intensity, and the horizontal axis is the carbon concentration in cast iron.

士の印は従来例、本発明の夫々において、S / N比
1となる炭素濃度とX線強度を示す。S / N比が1
まで定量測定が可能とすると、従来例では炭素濃度3.
2係までしか測定できなかったの゛が、本発明によれば
濃度1.6q6まで測定可能となり、感度が2倍に向上
したことになる。
The mark indicates the carbon concentration and X-ray intensity at which the S/N ratio is 1 in both the conventional example and the present invention. S/N ratio is 1
If quantitative measurement is possible up to a carbon concentration of 3.
Previously, it was possible to measure only up to 2 levels, but according to the present invention, it is now possible to measure concentrations up to 1.6q6, which means that the sensitivity has been doubled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の平面図、第2図は本発明の一実施例に
おけるX線検出部の水平断面図、第3図は同実施例X線
検出部の斜視図、第4図は本発明の効果を例示するグラ
フである。 1・・・励起用−次X線源、2・・・試料、3・・・全
反射鏡、4・・・X線検出器、5 ・ソーラスリット、
5c・・・ソーラスリットのケース兼磁石板、5p・・
・ソーラスリットを構成する板、5y・・ヨーク。 代理人 弁理士  縣   浩  介 ΦC 紫4図
FIG. 1 is a plan view of a conventional example, FIG. 2 is a horizontal sectional view of an X-ray detection section in an embodiment of the present invention, FIG. 3 is a perspective view of the X-ray detection section of the same embodiment, and FIG. It is a graph illustrating the effect of the invention. 1... Excitation-order X-ray source, 2... Sample, 3... Total reflection mirror, 4... X-ray detector, 5 - Solar slit,
5c...Solar slit case and magnet plate, 5p...
・The plate that makes up the solar slit, 5y...Yoke. Agent Patent Attorney Hiroshi Agata ΦC Murasaki 4

Claims (1)

【特許請求の範囲】[Claims] X線検出器の前面に配置させるソーラスリットのケース
を磁石によって構成したことを特徴とするX線分析装置
An X-ray analysis device characterized in that a case of a solar slit placed in front of an X-ray detector is made of a magnet.
JP1526283A 1983-01-31 1983-01-31 X-ray analytical apparatus Granted JPS59141045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1526283A JPS59141045A (en) 1983-01-31 1983-01-31 X-ray analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1526283A JPS59141045A (en) 1983-01-31 1983-01-31 X-ray analytical apparatus

Publications (2)

Publication Number Publication Date
JPS59141045A true JPS59141045A (en) 1984-08-13
JPH0456274B2 JPH0456274B2 (en) 1992-09-07

Family

ID=11883935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1526283A Granted JPS59141045A (en) 1983-01-31 1983-01-31 X-ray analytical apparatus

Country Status (1)

Country Link
JP (1) JPS59141045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125549A (en) * 1983-11-22 1985-07-04 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン X-ray analyzer with deflection system
JPS6355199U (en) * 1986-09-29 1988-04-13
JP2000098091A (en) * 1998-09-28 2000-04-07 Rigaku Corp Solar slit and x-ray device
JP2013096968A (en) * 2011-11-07 2013-05-20 Jeol Ltd Energy dispersion type x-ray detector
WO2023210633A1 (en) * 2022-04-28 2023-11-02 株式会社堀場製作所 Radiation detection device and radiation detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53161687U (en) * 1977-05-23 1978-12-18
JPS55113955U (en) * 1979-02-02 1980-08-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53161687U (en) * 1977-05-23 1978-12-18
JPS55113955U (en) * 1979-02-02 1980-08-11

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125549A (en) * 1983-11-22 1985-07-04 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン X-ray analyzer with deflection system
JPS6355199U (en) * 1986-09-29 1988-04-13
JP2000098091A (en) * 1998-09-28 2000-04-07 Rigaku Corp Solar slit and x-ray device
JP2013096968A (en) * 2011-11-07 2013-05-20 Jeol Ltd Energy dispersion type x-ray detector
WO2023210633A1 (en) * 2022-04-28 2023-11-02 株式会社堀場製作所 Radiation detection device and radiation detector

Also Published As

Publication number Publication date
JPH0456274B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
JPS59141045A (en) X-ray analytical apparatus
JP2002189004A (en) X-ray analyzer
Lees et al. Direct beta autoradiography using microchannel plate (MCP) detectors
JP2637871B2 (en) X-ray counter
US4320295A (en) Panoramic ion detector
Jaklevic et al. Quantitative X-ray fluorescence analysis using monochromatic synchrotron radiation
Blomker et al. Response of plastic scintillators in magnetic fields
JPS6073447A (en) Light element fluorescent x-ray spectroscope
Bigler et al. Quantitative mapping of atomic species by X-ray absorption spectroscopy and contact microradiography
CA1237830A (en) X-ray analysis apparatus comprising a deflection system
JPS6378056A (en) Total reflection fluorescent x-ray analyzer
JP3946643B2 (en) X-ray analysis method for light particle device
JPH0220679Y2 (en)
Sevier Emulsion as a detector of individual electrons for use in beta-spectroscopy
JPH0611466A (en) Method and device for fluorescent x-ray spectrometry
JP5846469B2 (en) Total reflection X-ray fluorescence analyzer and total reflection X-ray fluorescence analysis method
JPS5812123Y2 (en) X-ray analysis equipment for electron microscopes, etc.
JPH07318658A (en) X-ray energy detector
JPS63151844A (en) X-ray photoelectron analyzer
JPH0434349A (en) X-ray fluorescence analyzer
JP4478792B2 (en) Back-mounted X-ray detection method
JPH07107518B2 (en) Primary ion irradiation method
JPH08226904A (en) Analytical electron microscope and analytical method
JP3195046B2 (en) Total reflection state detection method and trace element measuring device