JPS59140395A - Method and device for continuous electroplating - Google Patents

Method and device for continuous electroplating

Info

Publication number
JPS59140395A
JPS59140395A JP1287183A JP1287183A JPS59140395A JP S59140395 A JPS59140395 A JP S59140395A JP 1287183 A JP1287183 A JP 1287183A JP 1287183 A JP1287183 A JP 1287183A JP S59140395 A JPS59140395 A JP S59140395A
Authority
JP
Japan
Prior art keywords
plating
plated
metal
continuous electroplating
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1287183A
Other languages
Japanese (ja)
Other versions
JPS6142798B2 (en
Inventor
Yasunori Kani
可児 保宣
Teruo Yamaguchi
輝雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1287183A priority Critical patent/JPS59140395A/en
Publication of JPS59140395A publication Critical patent/JPS59140395A/en
Publication of JPS6142798B2 publication Critical patent/JPS6142798B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain smooth plating having a uniform thickness in continuous electroplating using a plating member as an anode and a member to be plated as a cathode by maintaining the specified interpolar distance that causes consumption of the anode in the process of plating. CONSTITUTION:A plating member 1 to be used as an anode is un-coiled from an un-coiler 3, is introduced into a plating cell 5 and is taken up on a take-up 4. At least the outside surface of the member 1 is formed of a plating metal. A belt- like metal 2 to be used as a cathode is introduced from the opposite side to the cell 5 where the member 1 and the metal 2 are supported respectively by anode and cathode side conductor rollers 6, 7 disposed in the cell 5 and are run continuously at the prescribed space maintained between both. Electricity is conducted from a power source 8 to the rollers 6, 7 so that the members 1 and the metal 2 act respectively as the anode and the cathode. The distance (interpolar distance) between the member 1 and the metal 2 is thus maintained substantially constant without adjusting the interpolar distance and therefore the plating layer is formed continuously to an approximately uniform thickness.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、帯状金属の連続電気めっき方法およびその装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for continuous electroplating of metal strips.

〔従来技術〕[Prior art]

帯状金属の表面に電気めっきをする際に、一般に望まれ
る性質の一つとして、平滑で均一な厚さのめっきが得ら
れることがあげられる。
When electroplating the surface of a metal strip, one of the properties generally desired is that the plating be smooth and have a uniform thickness.

そして、この性質を満足させる要素の一つとして、帯状
金属(陰極)とめつき謡査′陽極)との間隔(極間距離
)を一定にすることがあげられる。
One of the factors that satisfies this property is to keep the distance between the strip metal (cathode) and the anode (interpole distance) constant.

すなわち、電気めっきにおいて陰極に析出するめつき材
の重量Wが電気分解に関するファラデー−の法則に従う
ことKよシ、めっきされる陰極の表面積をAとすると、
めっきの厚さTは、T=W/(A−d)・・・・・・d
はめつき層の比重−唱わされるから、次式で示すように
使用した電気量と電流効率に比例する。
That is, the weight W of the plating material deposited on the cathode during electroplating follows Faraday's law regarding electrolysis, and if the surface area of the cathode to be plated is A, then
The plating thickness T is T=W/(A-d)...d
Specific gravity of the plating layer - As stated, it is proportional to the amount of electricity used and the current efficiency as shown by the following equation.

T−I・t−EIfk・・・・・・工は電流の強さ、t
はめっき時間、Ettkは 陰極における電流効率。
T-I・t-EIfk・・・・・・Work is the strength of the current, t
is the plating time and Ettk is the current efficiency at the cathode.

しかして、極間距離が変ると、これにともない液抵抗が
変化して電流工が変ることから、めっき厚さTが変化す
ることが分かる。従って、めっき厚さを一定にするため
には、極間距離を一定にすることが必要である。
Therefore, it can be seen that when the distance between the electrodes changes, the liquid resistance changes and the electric current changes, so that the plating thickness T changes. Therefore, in order to keep the plating thickness constant, it is necessary to keep the distance between the poles constant.

しかしながら、従来の帯状金属の連続電気めっき装置に
おいては、めっきの進行とともに消耗するめつき材が単
に帯状金属に対抗した位置に配置されているに過ぎなか
ったため、めっき材の消耗に伴い極間距離が変化するの
でこの距離を一定にするための調整作業を必要とすると
いう問題があった。
However, in conventional continuous electroplating equipment for metal strips, the plating material, which wears out as plating progresses, is simply placed in a position opposite to the metal strip. Since the distance changes, there is a problem in that adjustment work is required to keep this distance constant.

〔−j@明の目的〕[-j@Ming's purpose]

本発明の目的は、めっき部材を陽極とし、被めっき部材
を陰極とした連続電気めっきにおいて、めっき過程での
陽極の消耗に基づく極間距離の変化を低減させて実質的
に極間距離を一定にすることを可能にした連続電気めっ
き方法およびその装置を提供することにある。
An object of the present invention is to reduce the change in the distance between electrodes due to consumption of the anode during the plating process and to keep the distance between the electrodes substantially constant in continuous electroplating using the plating member as the anode and the plated member as the cathode. The purpose of the present invention is to provide a continuous electroplating method and an apparatus for the same.

〔発明の概要〕[Summary of the invention]

本発明は、めっき部材が電解質の溶液中に連続的に浸せ
きされている被めっき部材との間に所定の間隔を置いて
、かつ該被めっき部材に沿って走行し得るように該めっ
き部材を電解質の溶液中に供給するようにしたことを特
徴とするものである。
In the present invention, the plating member is placed at a predetermined distance from the member to be plated, which is continuously immersed in an electrolyte solution, and the member is moved along the member to be plated. It is characterized in that it is supplied into an electrolyte solution.

そして、この構成によれば、めっき中、陽極であるめっ
き部材の表面が消耗するが、新たなめつき部材が走行し
て供給されることになるので、実質的に極間距離を一定
に維持することができ、この結果、被めっき部材にめっ
きされるめっき層をほぼ均一の厚みに連続的にめっきす
ることができる。
According to this configuration, the surface of the plating member, which is the anode, is worn out during plating, but a new plating member is supplied by traveling, so the distance between the electrodes can be maintained substantially constant. As a result, the plating layer to be plated on the member to be plated can be continuously plated to a substantially uniform thickness.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図〜第4図にょシ説明する。 Embodiments of the present invention will be explained with reference to FIGS. 1 to 4.

第1図は本発明の一実施例を示すもので、陽極(アノー
ド)となるめっき部材lは、矢印で図中に示したように
巻出機3から巻出され、めっき槽5へ導入され、そして
巻取機4によって巻取られる。とのめつき部材lは少な
くともその外表面をめっき金属によシ形成している。陰
(鈑(カソード)となる帯状金属(ストリップ)2は、
めっき部材工とは反対側からめっきll−Ii5へ導入
される。これらめっき部材工とストリップ2は、めっき
稽5に配置された陽極側コンダクタローラ6と陰極側コ
ンダクタローラ7によってそれぞれ支持され、所足の間
隔を保持して連続的に走行するようになっている。両コ
ンダクタロー26.7には、それぞれ支持しているめっ
き部材、ストリップがそれぞれ陽極、陰極となるよう電
源8によって電流を流している。
FIG. 1 shows an embodiment of the present invention, in which a plating member l serving as an anode is unwound from an unwinding machine 3 as indicated by the arrow in the figure, and introduced into a plating tank 5. , and is wound up by the winding machine 4. The plated member l has at least its outer surface made of plated metal. The metal band (strip) 2 that becomes the shade (cathode) is
It is introduced into the plating ll-Ii5 from the side opposite to the plating work. These plating parts and the strip 2 are supported by an anode-side conductor roller 6 and a cathode-side conductor roller 7 arranged in the plating chamber 5, respectively, and are configured to run continuously while maintaining the required spacing. . A current is applied to both conductor rows 26.7 by a power source 8 so that the plating members and strips supported thereon serve as an anode and a cathode, respectively.

このような装置にお込で、電気めっきは第2図に示すよ
うに行われる。
In such an apparatus, electroplating is carried out as shown in FIG.

連続的に電解質の溶液に投入されるめっき部材1、すな
わち陽極側から、めっき金属のイオン10が溶液中に溶
解し、そして、この金属イオン10が陰極側のストリッ
プ2へ移動し、このストリップ2の表面にめっき層11
が形成される。
Ions 10 of the plating metal are dissolved in the solution from the plating member 1, that is, the anode side, which is continuously introduced into the electrolyte solution, and these metal ions 10 move to the strip 2 on the cathode side. Plating layer 11 on the surface of
is formed.

従って、本実施例ではめつき部材1がストリップ2に沿
ってかつ所定の間隔を保持して連続的に走行するように
供給されているので、めっき部材1とストリップ2との
間隔、すなわち極間距離は、めっき中、めっき部材1の
表面が消耗したとしても新たなめつき部材の部分を連続
的に供給し得ることから、めっき部材の消耗に基づいて
その都度調整する必要はなく常に該距離を一定に維持す
ることができる。この結果、ストリップ2にめっきされ
るめっき層11をストリップ全長にわたって均一の厚み
にすることができるものである。
Therefore, in this embodiment, since the plating member 1 is supplied so as to run continuously along the strip 2 while maintaining a predetermined interval, the distance between the plating member 1 and the strip 2, that is, the distance between the poles is During plating, even if the surface of the plating member 1 is worn out, a new part of the plating member can be continuously supplied, so there is no need to adjust the distance each time based on the wear of the plating member, and the distance can always be adjusted. can be maintained constant. As a result, the plating layer 11 plated on the strip 2 can have a uniform thickness over the entire length of the strip.

また、本実施例にあっては、めっき部材1およびストリ
ップ2が電解液中を走行しているので、電極面での電解
液の流速が増大し、電解の進行中、電極界面に形成され
る金属イオン製置の低い層、すなわち拡散層を薄くする
ことができ、これによって電流密度を大きくすることが
できる。ナな一;ち、電解液の流速増加によって、・高
速めっきを支配する主要因の電流密度を大きくすること
ができ、高速電気めっきが可能になるという効果を有す
る。
In addition, in this example, since the plating member 1 and the strip 2 are running in the electrolyte, the flow rate of the electrolyte on the electrode surface increases, and during the progress of electrolysis, the electrolyte is formed on the electrode interface. The layer with low metal ion deposition, ie, the diffusion layer, can be made thinner, which allows for higher current densities. First, by increasing the flow rate of the electrolytic solution, it is possible to increase the current density, which is the main factor governing high-speed plating, and has the effect of making high-speed electroplating possible.

伺、本実施例のものを複数組合せれば、さらに  1高
速電気めっきが可能になるということは言うまでもない
Needless to say, if a plurality of the methods of this embodiment are combined, even higher speed electroplating becomes possible.

また、本実施例では、めっき部材とストリップの走行方
向が逆の例を示したが、同じ方向にめっき部材とストリ
ップを走行させても同様の効果を得ることができる。
Furthermore, although this embodiment shows an example in which the running directions of the plating member and the strip are opposite, the same effect can be obtained even if the plating member and the strip run in the same direction.

また、本実施例では、極間距離をコンダクタローラ間に
渡って一定に保持しであるが、めっき部材及び被めっき
部材の走行方向前後のコンダクタローラにおける極間距
離が多少相違しても、はぼ同等の効果が得られることは
明らかである。
In addition, in this embodiment, the distance between the poles is kept constant across the conductor rollers, but even if the distance between the poles of the conductor rollers before and after the traveling direction of the plated member and the plated member is slightly different, It is clear that almost the same effect can be obtained.

また、本実施例ではめつき部材を連続的に供給するよう
にしであるが、めっき部材をめっきに影響がない程度に
間欠的に供給するよう忙してもほぼ同等の効果が得られ
ることは明らかである。
Furthermore, in this example, the plating materials were supplied continuously, but it is clear that almost the same effect can be obtained even if the plating materials are supplied intermittently to the extent that the plating is not affected. It is.

また、本実施例では第2図に示すように陽(血となるめ
っき部材1を、基板11と基板の表面を覆うめっき金属
12とによって構成しているが、めっき部材全てをめっ
き金属により構成しても良い。
In addition, in this embodiment, as shown in FIG. 2, the plating member 1, which is the positive plating member, is composed of the substrate 11 and the plating metal 12 that covers the surface of the substrate, but all the plating members are composed of the plating metal. You may do so.

第3図は、本発明をさらに改良したもので、ストリップ
の複層亜鉛めっき(特開昭57−26154号参照)に
適用したものである。
FIG. 3 shows a further improvement of the present invention, which is applied to multilayer galvanizing of strips (see Japanese Patent Laid-Open No. 57-26154).

ペイオンリール103から巻出されたストリップ100
は入側ルーパ113、焼鈍炉114を介して溶融亜鉛浴
115へ導ひかれ、ここで溶融亜鉛めっきされる。溶融
亜鉛めっきをされたストリップ101は、クーリングタ
ワー116を介して連続電気亜鉛めっき装置へ導入され
、第4図に詳細を示すように溶融亜鉛めっ@層の上に更
に、電気亜鉛めっきされる。次いで、溶融および電気複
層亜鉛めっきされたストリップは、スギンパスミル11
7、後処理装置118、出側ルーパ119をそれぞれ介
してテンションリール104に巻取られ、複層亜鉛めっ
きされた製品コイルが作られる。
Strip 100 unwound from pay-on reel 103
is guided through an inlet looper 113 and an annealing furnace 114 to a molten zinc bath 115, where it is hot-dip galvanized. The hot-dip galvanized strip 101 is introduced into a continuous electrogalvanizing apparatus via a cooling tower 116 and is further electrogalvanized over the hot-dip galvanized layer as shown in detail in FIG. The hot-dip and electrically double-layer galvanized strips were then processed in a Suginpas Mill 11
7. The coil is wound onto the tension reel 104 via the post-processing device 118 and the output looper 119, respectively, to produce a multi-layer galvanized product coil.

この実施例において、電気めっきは第4図に示すように
行われる。
In this example, electroplating is performed as shown in FIG.

溶融伸鉛めっきされたストリップ101は、入側の2本
の@極側コンタツタローラ108Uでアノードとなシ、
さらにサポートローラ109によってループ形成してそ
の走行方向を変えて、出側の陰極側コンダクタロー21
07間でカンードとなる。すなわち、溶融亜鉛めっきさ
れたストリップ101がめつき部材となシ、その表面の
溶融亜鉛めっき層112がら亜鉛の金属イオン110が
電解質の溶液中に溶解する。そしてこの亜鉛の金、属イ
オン110は、亜鉛の金属イオンが溶解して溶融亜鉛め
っき層112が薄くなったストリップ102側へ移動し
、その薄くなった溶融亜鉛めっき層112の上に電気亜
鉛めっき層111として再び亜鉛めっきされる。伺、陽
極と陰極はストリップにより直接連絡されているが、サ
ポートロー2109によってその抵抗が大きくなるよう
ストリップを大きくループしているので、電気めっきに
は何ら影響がない。
The hot-dip lead-plated strip 101 is used as an anode by two contact rollers 108U on the input side.
Furthermore, a loop is formed by the support roller 109 and its traveling direction is changed, so that the cathode conductor row 21 on the exit side
It becomes Kando between 07 and 07. That is, when the hot-dip galvanized strip 101 is used as a plating member, the zinc metal ions 110 in the hot-dip galvanized layer 112 on the surface thereof are dissolved in the electrolyte solution. The zinc metal ions 110 then move to the strip 102 side where the zinc metal ions are dissolved and the hot-dip galvanized layer 112 has become thinner, and electrogalvanized on the thinner hot-dip galvanized layer 112. Galvanized again as layer 111. Although the anode and cathode are directly connected by a strip, the strip is looped in a large manner so that the resistance thereof is increased by the support row 2109, so that it has no effect on electroplating.

一般に、ストリップの片面に溶融亜鉛めっきで亜鉛めっ
きされる量は90〜150 g/m’の厚さであるが、
製品となるストリップの溶融亜鉛めっき層112と電気
亜鉛めっき層111の割合は、入側の陽極側コンダクタ
ローラ108での溶融亜鉛めっき!斯の厚さを100と
すれば、経済性の面から、電気亜鉛めっき層が30程度
、溶融亜鉛めっき層が70程度にそれぞれ決定される。
Generally, the amount galvanized by hot-dip galvanizing on one side of the strip is 90-150 g/m' thick,
The ratio of the hot-dip galvanized layer 112 and the electrolytic galvanized layer 111 of the product strip is the same as that of the hot-dip galvanized layer 108 on the inlet anode side conductor roller 108! Assuming that the thickness is 100, the electrogalvanized layer is determined to be approximately 30 mm thick, and the hot dip galvanized layer is determined to be approximately 70 mm thick, from an economic standpoint.

この調整は、ファラデーの電気分解に関する法則を用い
、電流・時間等を調整することによって容易にできる。
This adjustment can be easily done by adjusting the current, time, etc. using Faraday's law regarding electrolysis.

この本実施例によれば、溶融亜鉛めっきと電気亜鉛めっ
きのそれぞれ!徴を上手に利用することができる。すな
わち、溶融亜鉛めっきでは短時間で、厚いめっき層はイ
、4られるが溶融金属が凝固する際に内部よりガスが発
生して、発情の原因となるビンボールを生ずるという欠
点を有する。一方、電気亜鉛めっきにおいては、表面仕
上シは良好だが、耐食を目的とする厚さを得るには、め
っき処理に長時間と相当の電気量を必要とするという欠
点を有する。この両者を本実施例のように組合せること
によって、溶融めっきの欠点であるピンホールは電ネめ
っきによって補修でき、また電気めっきの欠点である処
理時間と所要電気量は、溶融めっきにおいて耐食に十分
なめっきが施されていることから短時間にかつ少ない電
気量にすることができる。さらに、電気亜鉛めっきにお
いては、溶融亜鉛めっきされ、連続してつながっている
ストリップによってアノードとカンードをそれぞれ構成
し、そしてアノードとして上流で溶融亜鉛めっきされた
ストリップを用いていることから、従来必要としていた
アノードの補給作業や、アノード消耗時に極間距離を一
定にするための調整作業等、特にアノードの補給作業を
一切する必要がなく、また使用されるエネルギーも不溶
解アノード(極間距離が調整不用だが陽極と帯状金属と
の間に省解液を常に高流速で供給する必要があることか
う高エネルギーを要する。)のように高エネルギーを必
要とせず従来の電気めっきで使用したエネルギー程度で
済み、省力化、ランニングコスト等の点で優れた効果を
有する。
According to this embodiment, both hot-dip galvanizing and electrogalvanizing! You can make good use of the signs. That is, in hot-dip galvanizing, a thick plating layer can be removed in a short time, but when the molten metal solidifies, gas is generated from inside, resulting in the formation of bubbles, which can cause estrus. On the other hand, electrogalvanizing provides a good surface finish, but has the disadvantage that the plating process requires a long time and a considerable amount of electricity in order to obtain the desired thickness for corrosion resistance. By combining these two methods as in this example, pinholes, which are a disadvantage of hot-dip plating, can be repaired by electroplating, and the disadvantages of electroplating, which are the processing time and amount of electricity required, can be repaired by hot-dip plating. Since sufficient plating is applied, it can be used in a short time and with a small amount of electricity. Furthermore, in electrogalvanizing, the anode and the cando are formed by continuous hot-dip galvanized strips, and the upstream hot-dip galvanized strip is used as the anode. There is no need to perform any special anode replenishment work, such as replenishment of the anode that has been used or adjustment work to maintain a constant distance between the poles when the anode is exhausted, and the energy used is Although it is not necessary, it does not require high energy and uses only the energy used in conventional electroplating. It has excellent effects in terms of labor saving, running cost, etc.

冑、本実施例においては、片面のみの溶融および電気複
層推鉛めつきの例を示しだが、本実施例と同じものを、
もう一方の片面が複層唾鉛めっきされるよう本実施例に
組合せることにより、両面に複層亜鉛めっき層を形成す
ることも可能である。
This example shows an example of single-sided melting and electric multi-layer lead plating, but the same thing as this example
By combining this embodiment so that the other side is multi-layered galvanized, it is also possible to form a multi-layered galvanized layer on both sides.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、めっき部材を被めっき部材に沿って走
行するように構成したので、極間距離を調整することな
くめつき部材と被めっき部材との間隔、すなわち陽極と
陰極との極間距離を実質的に一定に維持することができ
、よって、被めっき材にめっきされるめっき層をほぼ均
一の厚みに連続的にめっきすることが可能となるという
効果を奏する。
According to the present invention, since the plating member is configured to run along the member to be plated, the distance between the plating member and the member to be plated, that is, the distance between the anode and the cathode, can be adjusted without adjusting the distance between the electrodes. The distance can be maintained substantially constant, and therefore, the plating layer to be plated on the material to be plated can be continuously plated to a substantially uniform thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、電解質の溶液中に、陽極となるめっき部材を浸せき
するとともに陰極となる被めっき部材を連続的に浸せき
し、該陽極と陰極との間に電流を通じ、前記被めっき部
材の表面にめっき金属の膜を析出せしめる連続電気めっ
き方法において、前記めっき部材は、前記被めっき部材
との間に所定の間隔を置いて、該被めっき部材に沿って
前記′電解質の溶液中を走行し得るよう供給されでいる
ことを特徴とする連続電気めつき方法。 2、特許請求の範囲第1項において、前記めっき部材は
、その全体をめっき金属によシ形成したもので゛あるこ
とを特徴とする連続電気めっき方法。 3、特許請求の範囲第1項において、前記電解質の溶液
中における前記めっき部材と被めっき部材との進行方向
が反対になるよう前記めっき部材および被めっき部材を
それぞれ供給するようにしたことを特徴とする連続電気
めっき方法。 4、特許請求の範囲第1項において、前記めっき部材は
、予めめっき金属を溶融めっきした部材であシ、前記被
めっき部材は、該被めっき部材に沿って走行した後にル
ープを形成してその走行方向が変えられた前記めっき部
材であることを特徴とする連続電気めっき方法。 5、特許請求の範囲第4項において、前記めっき部材は
、溶融亜鉛めっきされた帯状金属であることを特徴とす
る連続電気めっき方法。 6、電解質の溶液を収容するめつき楢と、前記めっき槽
の溶液中に浸せきされ、陽極となるめっき部材と、前記
めっき槽の溶液中に連続的に浸せきされ、陰極となる被
めっき部材と、前記陽極と陰極との間にtlLR,を通
じさせる装置とから成る連続電気めっき装置において、
前記めっき部材が前記被めっき部材との間に所定の間隔
を置き、かつこの被めっき部材に沿って電解質の#液中
を走行し得るように前記めっき部材の走行装置を設けた
ことを特徴とする連続電気めっき装置。 7、特許請求の範囲第6項において、前記めっき部材の
走行装置は、めっき部材を供給する装置と、前記電解質
の溶液中に供給された該めっき部材をAil記被めっき
部材に沿って案内する装置と、前記電解質の溶液中から
前記案内装置を経ためつき部材を引き出す装置とから構
成されていることを特徴とする連続電気めつき装置。 8、特許請求の範囲第7項において、前記めっき部材を
供給する装置はめつき部材を巻回しだ巻出装(4であり
、前記めっき部材を弓τき出す装置はこのめっき部材を
巻取る巻取装置であることを特徴とする連続電気めっき
装置。 9、特πト1、〜求の範囲第7項において、前記めっき
部材を案内する装装置は複数のローラからなることを特
徴とする連続電気めつき装置。 10、特許請求の範囲第7項において、前記めっき部材
を案内する装置の入側と出側に、めっき部材および被め
っき部材をサポートするローラを有することを特徴とす
る連続眠気めっき装置。 11、帝状金1zj4を供給する供給装置と、この供給
された帯状金属にめっき金属を溶融めっきする装置と、
この溶融めっきされた帯状金属を連続的に浸せメ益る電
解質の溶液を収容するめっき槽と、前記めつき槽内の′
電解質の溶液中で該帯状金属の走行を案内する第1の案
内装置と、前記第1の案内装置を経た該帯状金属にルー
プを形成させその走行方向を転向させる転向装置と、前
記転向装置を経た該帯状金属が前記第1の案内装置に案
内されている帯状金属との間に所定の間隔を置き、かつ
この帯状金属に沿って前記めつき槽内の電解質の溶液中
を走行し得るように案内される第2の案内装置と、前記
第2の案内装置を経た該帯状金属を巻取る装置と、前記
第1の案内装置に案内されている帯状金属が陽極に、ま
た前記第2の案内装置に案内されている帯状金属が陰極
になるように、これら帯状金属に電流を通電させる装置
とから成ることを特徴とする連続眠気めっき装置。 12、特許請求の範囲第11項において、前記第1゜第
2の案内装置はローラから成ることを特徴とする連続電
気めつき装置。 13、%許請求の範囲第11項において、前記電流を通
電させる装置は、前記第1.第2の案内装置と電源とか
ら成ることを特徴とする連続電気めっき装置。 14、特許請求の範囲第11項において、前記転向装置
は複数のローラから成ることを特徴とする連続電気めっ
き装置。 15、特許請求の範囲第11項において、前記帯状金属
に溶融めっきする装置は溶融亜鉛めっき装置であること
を特徴とする連続電気めっき装置。
[Claims] 1. A plated member serving as an anode and a member to be plated serving as a cathode are continuously immersed in an electrolyte solution, and an electric current is passed between the anode and the cathode to remove the plated member. In a continuous electroplating method in which a film of plated metal is deposited on the surface of a member, the plated member is placed in the electrolyte solution along the member with a predetermined distance between the plated member and the member to be plated. 1. A continuous electroplating method characterized in that the continuous electroplating method comprises: a continuous electroplating method; 2. The continuous electroplating method according to claim 1, wherein the plating member is entirely formed of plating metal. 3. Claim 1, characterized in that the plating member and the member to be plated are supplied so that the moving directions of the member to be plated and the member to be plated in the electrolyte solution are opposite to each other. Continuous electroplating method. 4. In claim 1, the plated member is a member pre-plated with a plating metal, and the plated member forms a loop after traveling along the plated member. A continuous electroplating method characterized in that the plating member has a traveling direction changed. 5. The continuous electroplating method according to claim 4, wherein the plating member is a hot-dip galvanized metal strip. 6. A plating oak that accommodates an electrolyte solution, a plating member that is immersed in the solution in the plating tank and becomes an anode, and a member to be plated that is continuously immersed in the solution in the plating tank and becomes a cathode; A continuous electroplating device comprising a device for passing tlLR between the anode and the cathode,
A traveling device for the plating member is provided so that the plating member is spaced from the member to be plated at a predetermined distance and can travel along the member to be plated in the electrolyte solution. Continuous electroplating equipment. 7. In claim 6, the plating member traveling device includes a device for supplying the plating member, and a device for guiding the plating member supplied into the electrolyte solution along the member to be plated. 1. A continuous electroplating device comprising: a device; and a device for drawing out the tampering member from the electrolyte solution through the guide device. 8. In claim 7, the device for supplying the plated member is a coiler for winding and unwinding the plated member. A continuous electroplating device characterized in that it is a plating device. 9. A continuous electroplating device characterized in that the device for guiding the plating member comprises a plurality of rollers. Electroplating device. 10. The continuous drowsiness device according to claim 7, characterized in that the device for guiding the plating member has rollers on the entry side and the exit side for supporting the plating member and the member to be plated. Plating equipment. 11. A supplying equipment for supplying Teishokin 1zz4, and an equipment for hot-dipping plating metal onto the supplied strip metal.
a plating tank containing an electrolyte solution that serves to continuously immerse the hot-dip plated metal strip;
a first guide device that guides the running of the strip metal in an electrolyte solution; a turning device that forms a loop in the strip metal that has passed through the first guide device and turns the running direction; and a turning device that A predetermined distance is placed between the metal strip and the metal strip guided by the first guide device, and the metal strip is configured to run along the metal strip in the electrolyte solution in the plating bath. a device for winding up the metal strip that has passed through the second guide device; and a device that winds up the metal strip that has passed through the second guide device; 1. A continuous drowsiness plating device comprising a device for applying current to the metal strips guided by the guide device so that the metal strips become cathodes. 12. The continuous electroplating apparatus according to claim 11, wherein the first and second guide devices are rollers. 13.% Permitted In claim 11, the device for supplying the current is the device for supplying the current. A continuous electroplating apparatus comprising a second guide device and a power source. 14. The continuous electroplating apparatus according to claim 11, wherein the turning device comprises a plurality of rollers. 15. The continuous electroplating apparatus according to claim 11, wherein the apparatus for hot-dipping the metal strip is a hot-dip galvanizing apparatus.
JP1287183A 1983-01-31 1983-01-31 Method and device for continuous electroplating Granted JPS59140395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287183A JPS59140395A (en) 1983-01-31 1983-01-31 Method and device for continuous electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287183A JPS59140395A (en) 1983-01-31 1983-01-31 Method and device for continuous electroplating

Publications (2)

Publication Number Publication Date
JPS59140395A true JPS59140395A (en) 1984-08-11
JPS6142798B2 JPS6142798B2 (en) 1986-09-24

Family

ID=11817479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287183A Granted JPS59140395A (en) 1983-01-31 1983-01-31 Method and device for continuous electroplating

Country Status (1)

Country Link
JP (1) JPS59140395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112894A (en) * 1984-06-28 1986-01-21 Nippon Steel Corp Electrolytic cell for electroplating
JPS63183192A (en) * 1987-01-26 1988-07-28 Mitsubishi Heavy Ind Ltd Continuous electroplating device for band steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112894A (en) * 1984-06-28 1986-01-21 Nippon Steel Corp Electrolytic cell for electroplating
JPS6314073B2 (en) * 1984-06-28 1988-03-29 Nippon Steel Corp
JPS63183192A (en) * 1987-01-26 1988-07-28 Mitsubishi Heavy Ind Ltd Continuous electroplating device for band steel

Also Published As

Publication number Publication date
JPS6142798B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
SU1542430A3 (en) Apparatus for making laminated articles
US3975242A (en) Horizontal rectilinear type metal-electroplating method
CN113249770A (en) Water electroplating equipment for electroplating processing of surface of flexible film substrate
US5425862A (en) Apparatus for the electroplating of thin plastic films
US4430166A (en) Method and apparatus for electro-treating a metal strip
US5441627A (en) Metal foil manufacturing method and an anodized film forming apparatus used therefor
CN214991962U (en) Water electroplating equipment for electroplating processing of surface of flexible film substrate
JPS6238436B2 (en)
JPS59140395A (en) Method and device for continuous electroplating
JPH10310900A (en) Apparatus for electrodepositing metallic layer on band plate
US4559113A (en) Method and apparatus for unilateral electroplating of a moving metal strip
CN114207190A (en) Method and device for electrolytically coating electrically conductive strips and/or fabrics by means of impulse technology
RU2590787C2 (en) Method for improvement of metal coating on steel band
CN210458392U (en) A tape transport device for electroplate
CA1165271A (en) Apparatus and method for plating one or both sides of metallic strip
JPS59205496A (en) Electroplating apparatus
JPH07228992A (en) Plating method and device therefor
JP3178373B2 (en) Continuous electroplating method and equipment
US4721554A (en) Electroplating apparatus
JPS63293200A (en) Electroplating method
JPS58161792A (en) Horizontal electroplating method with alloy
JPH0488194A (en) Continuous plating device
JP2004232063A (en) Surface plating device for metallic foil
JPS62188799A (en) Electrode for electroplating
SU981465A1 (en) Apparatus for electrolytic degreasing of elongated flexible products