JPS59140310A - Controlling method of air fuel ratio in hot-blast stove - Google Patents

Controlling method of air fuel ratio in hot-blast stove

Info

Publication number
JPS59140310A
JPS59140310A JP1437083A JP1437083A JPS59140310A JP S59140310 A JPS59140310 A JP S59140310A JP 1437083 A JP1437083 A JP 1437083A JP 1437083 A JP1437083 A JP 1437083A JP S59140310 A JPS59140310 A JP S59140310A
Authority
JP
Japan
Prior art keywords
air
hot
combustion
fuel ratio
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1437083A
Other languages
Japanese (ja)
Inventor
Yuunosuke Maki
牧 勇之輔
Shinobu Amano
天野 忍
Nobuhiro Takashima
暢宏 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1437083A priority Critical patent/JPS59140310A/en
Publication of JPS59140310A publication Critical patent/JPS59140310A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces

Abstract

PURPOSE:To prevent the loss of energy by changing forcibly an air ratio to a means air ratio in a previous burning stage when a specified time elapses after completing the change-over of other hot-blast stove in order to keep an optimum burning state. CONSTITUTION:When one hot-blast stove is in the burning stage and the other hot blast stove starts a changing operation, the stove in the burning stage is supplied temporarily with excess air since a gas for burning and air are supplied to every hot-blast stove through a common piping. As the air ratio is decreased by air fuel ratio control, air is supplied insufficiently after the changing operation and a large amt. of gaseous CO is generated. Therefore, the air ratio is changed to the mean air mopt in the previous burning stage when the sepcified time t0 elapses after the changing operation of the other hot-blast stove is completed. The time t0 is determined empirically.

Description

【発明の詳細な説明】 本発明は熱風炉の空燃比制御方法に関するものである。[Detailed description of the invention] The present invention relates to an air-fuel ratio control method for a hot blast stove.

熱風炉は、高炉ガス(Bガス)とコークス炉ガス(Cガ
ス)との混合ガス(Mガス)を燃焼室で燃焼し、生成し
た高温ガスを蓄熱室のチェッカレンガの中を通過させて
これに熱を蓄え、この蓄熱を高炉への送風に与える装置
である。従って、熱風炉には燃焼期と送風期の2期があ
る。また、熱風炉は、通常3〜5基配置されて1基ある
いは2基が高炉への送風に使用され、他の熱風炉は燃焼
状態にあシ、送風中の熱風炉の熱が不足してきたときに
他の蓄熱を完了した熱風炉に切替えて、高炉への送風は
連続して行なわれている。なお、送風するにあたっては
、通常、時間差をつけて2基の熱風炉に同時送風するス
タンガードバ2レル制御が行なわれている。かかる熱風
炉の燃焼を制御するにあたっては、熱風炉のフレームの
温度が高く安定した効率のよい燃焼を行うために、排ガ
ス中のO,ガス濃度とCOガス濃度とを常に一定でかつ
可能な限り低い値に維持できるように燃焼用のMガスと
空気の比率を保つことが専要であって、そのバランスを
くずし高濃度のCoガスを排出するこ七はエネルギ節約
上および環境上望ましくない。このため、従来は以下に
述べるような空燃比って説明する。熱風炉2は、燃焼室
2aおよび蓄熱室2bを備えておシ、燃焼室2aおよび
蓄熱室2bの上部にはドームが取付けられ、連絡管2c
によシ連絡されている。Bガスと1次Cガスとが混合さ
れて1次Mガスにされると共に、混合比微調整用の2次
Cガス流路4を介して1次Mガスに2次Cガスが混合さ
れてMガスとされ、とのMガスがMガス流路6を介して
燃焼室2aに供給されている。iた、燃焼室2aには空
気流路8を介して燃焼用の空気が供給されている。この
Mガス流路6や空気流路8は、全熱風炉に共通の配管で
構成され、各炉にMガスや空気を共通に供給するように
1.ている。2次Cガス流路4には、2次Cガス流量F
c2を測定するCガス流量計10が取付けられ、またM
ガス流路6にはMガスの流量?、を測定するMガス流量
計12が取付けられている。
A hot stove burns a mixed gas (M gas) of blast furnace gas (B gas) and coke oven gas (C gas) in a combustion chamber, and passes the generated high-temperature gas through checker bricks in a heat storage chamber. This is a device that stores heat in the blast furnace and uses this stored heat to blow air to the blast furnace. Therefore, a hot air stove has two periods: a combustion period and a blowing period. In addition, three to five hot-blast stoves are usually arranged, and one or two of them are used to blow air to the blast furnace, while the other hot-blast stoves are in a state of combustion, and the heat from the hot-blast stoves that are blowing air has become insufficient. Sometimes, the blast furnace is switched to another hot blast furnace that has completed heat storage, and air is continuously blown to the blast furnace. Incidentally, when blowing air, normally a stun guard barrel two-barrel control is performed in which air is sent to two hot air stoves at the same time with a time difference. When controlling combustion in such a hot-blast stove, in order to maintain a high temperature of the flame of the hot-blast stove and achieve stable and efficient combustion, the O gas concentration and CO gas concentration in the exhaust gas must be kept constant and as much as possible. It is important to maintain the ratio of M gas for combustion to air so that it can be maintained at a low value, and it is undesirable from the point of view of energy saving and the environment to disrupt this balance and emit a high concentration of Co gas. For this reason, conventionally, the air-fuel ratio is explained as follows. The hot air stove 2 includes a combustion chamber 2a and a heat storage chamber 2b, a dome is attached to the upper part of the combustion chamber 2a and the heat storage chamber 2b, and a communication pipe 2c
I have been in contact with you. B gas and primary C gas are mixed to form primary M gas, and secondary C gas is mixed to the primary M gas via the secondary C gas flow path 4 for fine adjustment of the mixture ratio. The M gas is supplied to the combustion chamber 2a via the M gas flow path 6. Additionally, combustion air is supplied to the combustion chamber 2a via an air flow path 8. The M gas flow path 6 and the air flow path 8 are composed of piping that is common to all the hot stoves, and are designed to commonly supply M gas and air to each furnace. ing. The secondary C gas flow path 4 has a secondary C gas flow rate F.
A C gas flowmeter 10 is installed to measure c2, and M
Is there a flow rate of M gas in gas flow path 6? , an M gas flow meter 12 is attached to measure .

そして、空気流路8には、空気流量FAIRを測定する
空気流量計14および空気流量を制御するバタフライ弁
16が順に取付けられている。
An air flow meter 14 for measuring the air flow rate FAIR and a butterfly valve 16 for controlling the air flow rate are attached to the air flow path 8 in this order.

熱風炉2の蓄熱室2bには、Mガスと空気との混合気を
燃焼させて生成された排ガスを外部に排出する排ガス流
路18が設けられており、この排ガス流路18に排ガス
中の残留酸素濃度を検出する07分析計20が取付けら
れている。
The heat storage chamber 2b of the hot air stove 2 is provided with an exhaust gas passage 18 for discharging the exhaust gas generated by burning the mixture of M gas and air to the outside. A 07 analyzer 20 for detecting residual oxygen concentration is attached.

Cガス流量計lOは、制御用マイクロコンピュータ24
の空燃比演算手段26の入力端に接続されている。Mガ
ス流量計12は、マイクロコンピュータ24の空燃比演
算手段26の入力端および空気量演算手段(Fr)2B
の入力端に接続されている。また、空気流量計14は空
気流量制御手段(FIC)30の入力端に接続され、バ
タフライ弁16は空気流量制御手段30の出力端に接続
されている。そして、空燃比演算手段26は、空気量演
算手段28を介して空気流量制御手段30に接続されて
いる。07分析計20はマイクロコンピュータ24内の
指示計(X工)31を経由して、プロセスコンピュータ
22に接続されている。このプロセスコンピュータ22
には熱風炉の燃焼期と送風期との切換えタイミングを示
す信号が入力されておす、またプロセスコンピュータ2
2はマイクロコンピュータ24に接続されている。
The C gas flow meter IO is controlled by a microcomputer 24 for control.
The air-fuel ratio calculation means 26 is connected to the input terminal thereof. The M gas flow meter 12 is connected to the input terminal of the air-fuel ratio calculation means 26 of the microcomputer 24 and the air amount calculation means (Fr) 2B.
is connected to the input end of the Further, the air flow meter 14 is connected to an input end of an air flow control means (FIC) 30, and the butterfly valve 16 is connected to an output end of the air flow control means 30. The air-fuel ratio calculation means 26 is connected to the air flow rate control means 30 via the air amount calculation means 28. The 07 analyzer 20 is connected to the process computer 22 via an indicator (X-engine) 31 within the microcomputer 24. This process computer 22
A signal indicating the switching timing between the combustion period and the blowing period of the hot air stove is input to the process computer 2.
2 is connected to a microcomputer 24.

次にfgx図に示す装置の空燃比制御方法についテa明
t−る。プロセスコンピュータ22は、切換えタイミン
グ信号に基づいて燃焼期にある熱風炉を判定すると共に
、02分析計20からのO7濃度信号を所定時間毎にサ
ンプリングして次の式に基づいて空気比(操作量)mを
計算して記憶する。
Next, we will discuss the air-fuel ratio control method for the device shown in the FGX diagram. The process computer 22 determines which hot air stove is in the combustion period based on the switching timing signal, and also samples the O7 concentration signal from the 02 analyzer 20 at predetermined time intervals and calculates the air ratio (operated amount) based on the following formula. ) m is calculated and stored.

m(t)=m(t−Δt)+α(SO2−Ao2) −
・・−・、・=+1まただ[7、m(t)は現在の空気
比、m(t−Δし)は前回計算された空気比、tは現在
時間、八tはサンプリング間隔、αは定数、S02は予
め設定された設定02濃度、Ao2は02分析計により
測定された実測0.濃度である。
m(t)=m(t-Δt)+α(SO2-Ao2) −
・・・・・=+1 Also [7, m(t) is the current air ratio, m(t-Δshi) is the previously calculated air ratio, t is the current time, 8t is the sampling interval, α is a constant, S02 is the preset 02 concentration, and Ao2 is the actual 0.02 concentration measured by the 02 analyzer. It is concentration.

すなわち、サンプリング間隔へしでO7濃度偏差のα倍
に空気比mを変化させるサンプル値比例制御テする。ま
た、プロセスコンピュータ22には、1次Mガスのカロ
リー分析から得られた1次Mガス理論空気量AOM l
および2次Cガスのカロリー分析から得られた2次Cガ
ス理論空気量AOCの値が予め記憶されている。プロセ
スコンピュータ22に記憶された空気比m1理論空気量
AOMI 、AOCは、マイクロコンピュータ24の空
燃比演算手段26に入力され、空燃比演算手段26は、
これらの値と各流量計1O112から入力される2次C
ガス流量Fc2およびMガス流量FMとに基づいて、以
下の式に従って燃焼案内の混合気の空燃比A、6を計算
する。
That is, sample value proportional control is performed to change the air ratio m to α times the O7 concentration deviation at each sampling interval. The process computer 22 also stores the theoretical air amount AOM l of the primary M gas obtained from the calorie analysis of the primary M gas.
And the value of the secondary C gas theoretical air amount AOC obtained from the calorie analysis of the secondary C gas is stored in advance. The air ratio m1 theoretical air amount AOMI, AOC stored in the process computer 22 is input to the air-fuel ratio calculating means 26 of the microcomputer 24, and the air-fuel ratio calculating means 26
These values and the secondary C input from each flowmeter 1O112
Based on the gas flow rate Fc2 and the M gas flow rate FM, the air-fuel ratio A, 6 of the mixture for combustion guidance is calculated according to the following formula.

価=mA、) r′M ただし、AoはMガスの理論空気量である。Value=mA,) r'M However, Ao is the theoretical air amount of M gas.

空燃比7賓1は空気量演算手段28に入力され、流量計
12から入力されるMガス流量F、との積が計算され設
定空気流量Airが求められる。そして、この設定空気
流量Airは空気流量制御手段3゜に入力され、空気流
量制御手段3oは、流量計14から入力される実測空気
流量’人1rと設定空気流量Airとの差忙基づいてバ
タフライ弁16をデユーティ比制御等によって制御し、
空気流路8に流れる空気流量がAirになるように制御
する。この結果、燃焼室内の混合気の空燃比がA乃にな
るように制御される。
The air-fuel ratio 7/1 is input to the air amount calculation means 28, and its product with the M gas flow rate F input from the flow meter 12 is calculated to obtain the set air flow rate Air. This set air flow rate Air is input to the air flow rate control means 3°, and the air flow rate control means 3o controls the butterfly flow based on the difference between the actual air flow rate input from the flow meter 14 and the set air flow rate Air. Controlling the valve 16 by duty ratio control etc.
The air flow rate flowing through the air flow path 8 is controlled to become Air. As a result, the air-fuel ratio of the air-fuel mixture in the combustion chamber is controlled to be A.

しかし、かかる従来の空燃比制御では以下のような問題
点があった。すなわち、通常熱風炉は3〜5基設けられ
てスタッガードパラレル制御が行なわれておシ、1基の
熱風炉が燃焼期にあるときに他の熱風炉が切替えに入る
。このとき、燃焼用のMガスや空気は全熱風炉に共通の
配管から各熱風炉に供給されているため、他の熱風炉の
切替時に、制御上の問題から一時的に燃焼期の熱風炉が
空気過剰の燃焼状態拠なシ、排ガス中の残留酸素濃度が
過剰になってしまう。すると、空燃比制御によって空気
比mの値を下げ空気流量を下げようとするが、切替時間
が短く空気比mの値の追従性が悪いため、切替後02濃
度がなくなってがらでもmの値が低いところにあって空
気不足の状態が暫く続き、排ガス中に多量のCOガスが
発生して未応のCOガスを放出するというエネルギ損失
の問題が起っていた。この状態を時系列変化として第2
図に示す。また、上記のエネルギ損失によって熱風炉の
ドーム温度が一時的に降下してしまうことも確認されて
いる。上記の問題の発生は制御系の応答性の悪さが最も
大きな原因であるが、この応答性の悪さは計算時間の長
いプロセスコンピュータで空気比mを計算していること
、排ガスO。
However, such conventional air-fuel ratio control has the following problems. That is, three to five hot-blast stoves are usually provided and staggered parallel control is performed, and when one hot-blast stove is in the combustion period, the other hot-blast stoves are switched. At this time, M gas and air for combustion are supplied to each hot-blast stove from piping that is common to all hot-blast stoves, so when switching to other hot-blast stoves, due to control problems, the hot-blast stove in the combustion period is temporarily However, due to combustion conditions with excess air, the residual oxygen concentration in the exhaust gas becomes excessive. Then, an attempt is made to lower the value of the air ratio m by air-fuel ratio control to lower the air flow rate, but since the switching time is short and the followability of the value of the air ratio m is poor, the value of m remains even though the 02 concentration has disappeared after switching. Since the air pressure was low, the lack of air continued for some time, and a large amount of CO gas was generated in the exhaust gas, resulting in the problem of energy loss due to unresolved release of CO gas. This state is expressed as a second time series change.
As shown in the figure. It has also been confirmed that the dome temperature of the hot air stove temporarily drops due to the above energy loss. The main cause of the above problem is the poor responsiveness of the control system, but this poor responsiveness is due to the fact that the air ratio m is calculated by a process computer that takes a long calculation time, and the exhaust gas O.

分析計の応答性が悪いことおよびプロセスコンピュータ
が数分毎のサンプリング制御であること等が主な原因で
ある。
The main causes include the poor responsiveness of the analyzer and the fact that the process computer controls sampling every few minutes.

本発明は上記問題点を解消すべく成されたもので、常に
最適な燃焼状態を維持してフレーム温度を一定に保って
ドーム温度の降下を防止し、かつ末文だCOガスが多量
に発生することを防止することによってエネルギ損失を
防止した熱風炉の空燃比制御方法を提供することを目的
とする。
The present invention was made to solve the above problems, and it is possible to always maintain an optimal combustion state, keep the flame temperature constant, prevent the dome temperature from dropping, and generate a large amount of CO gas. It is an object of the present invention to provide an air-fuel ratio control method for a hot-blast stove that prevents energy loss by preventing this.

上記目的を達成するために本発明の構成は、従来の熱風
炉の空燃比制御方法において、他の熱風炉の切替えが終
了して所定時間to経過したときに空気比mを前回の燃
焼期の平均空気比moptK強制的に変更するようKし
たものである。この結果、空気比mの値が第3図に示す
ように変更される。
In order to achieve the above object, the configuration of the present invention is such that, in the conventional air-fuel ratio control method of a hot-blast stove, when a predetermined time to has elapsed after switching of another hot-blast stove is completed, the air ratio m is changed to that of the previous combustion period. The average air ratio moptK is forcibly changed. As a result, the value of the air ratio m is changed as shown in FIG.

ここで、切替え完了後所定時間to経過後に空気比mの
値を変更するのは、残留0.濃度が零に戻る時間が第2
図に示すように切替え完了後型くしてからであることに
基づいておシ、時間toは経験的に決定される。また、
空気比mの値の変更幅は、各熱風炉および燃焼条件によ
って最適値が異っているため、各熱風炉毎に前回燃焼時
の平均m値をプロセスコンピュータに記憶させておいて
、次回の燃焼時に用いる。
Here, changing the value of the air ratio m after a predetermined time to has elapsed after the completion of switching is because the residual 0. The time for the concentration to return to zero is the second
As shown in the figure, the time to is determined empirically based on the fact that molding is required after the switching is completed. Also,
The optimal value for changing the value of the air ratio m differs depending on each hot air stove and combustion conditions, so the average m value from the previous combustion is stored in the process computer for each hot air stove, and the value is changed for the next time. Used during combustion.

次に本発明の実施例について詳細に説明する。Next, embodiments of the present invention will be described in detail.

実施高炉は、4基の熱風炉による燃焼期115分、送風
期110分、切替期15分のスタッガードパラレル操業
を行っておシ、特定の熱風炉に注目すると燃焼を開始し
て約60分後に他の熱風炉が切替えに入る。この熱風炉
の切替えは各時刻約0分に始まり、送風および燃焼は約
120分後の時刻0分に完了するようなシーケンスに々
つており、かつ、空燃比制御はプロセスコンピュータに
よる2分毎のサンプリングによシ行なわれている。また
、高炉は、燃焼期の前半と後半とで燃料の投入量を変化
させる2段燃焼を行なっている。そして、この熱風炉に
おける排ガス02濃度、Mガス流量、空気流量、空気比
m1空燃比A乃は第4図に示すようである。なお、CO
ガス濃度はオンラインで測定していないが、オフライン
測定によると0.濃度が0%になる時間に多発すること
が確認されている。
The blast furnace used was operated in staggered parallel fashion using four hot blast furnaces, with a combustion period of 115 minutes, a blowing period of 110 minutes, and a switching period of 15 minutes.If you focus on a particular hot blast furnace, it will take approximately 60 minutes to start combustion. Other hot air stoves will switch over later. The switching of this hot air stove starts at approximately 0 minutes each time, and the blowing and combustion are completed approximately 120 minutes later at 0 minutes, and the air-fuel ratio is controlled every 2 minutes by the process computer. This is done through sampling. Furthermore, blast furnaces perform two-stage combustion in which the amount of fuel input is changed between the first half and the second half of the combustion period. The exhaust gas 02 concentration, M gas flow rate, air flow rate, and air ratio m1 air-fuel ratio A~ in this hot air stove are as shown in FIG. In addition, CO
The gas concentration was not measured online, but according to offline measurements it was 0. It has been confirmed that this occurs frequently when the concentration reaches 0%.

従って、本実施例では所定時間toを2分とし、平均空
気比m0Ptは、各熱風炉毎に前回の燃焼期の後半1時
間の時刻について下のA、B、C3期間の空気比mの平
均値を採用した。
Therefore, in this example, the predetermined time to is 2 minutes, and the average air ratio m0Pt is the average of the air ratios m in the lower A, B, and C3 periods for each hot air stove in the latter half of the previous combustion period. The value was adopted.

A:27分〜29分 B:37分〜39分 C:47分〜49分 とこで、後半1時間を採用したのは実施高炉では2段燃
焼を行なっており、前半1時間と後半1時間では空気比
の平均が異るからである。従って、空気比moptは操
業に応じて最適な数値を用いる必要がある。また、各熱
風炉毎に平均空気比moptを求めているのは各熱風炉
毎に燃焼特性が異ることによる。
A: 27 minutes to 29 minutes B: 37 minutes to 39 minutes C: 47 minutes to 49 minutes The second half of the hour was used because the blast furnace in use uses two-stage combustion; This is because the average air ratio is different. Therefore, it is necessary to use the optimum value for the air ratio mopt depending on the operation. Furthermore, the reason why the average air ratio mopt is determined for each hot-blast stove is that the combustion characteristics differ for each hot-blast stove.

上記の実施例における排ガス中のO1濃度およびCo濃
度と従来方法にかける排ガス中の0.濃度およびCo濃
度とを比較して第5図に示す。第5図(b)に示すよう
に、本実施例の02オよびCo濃度は、第5図(a)に
示す従来例に比較してかなり低くなっておシ、COO2
0エネルギ損失が低減されていることが理解される。ま
た、第6図にドーム温度の変動を示すが、第6図(b)
に示す本実施例の場合には第6図(a)に示す従来例を
比較して炉切替え時の温度変動が少なくなっている。
O1 concentration and Co concentration in the exhaust gas in the above example and 0.0 in the exhaust gas subjected to the conventional method. A comparison between the concentration and the Co concentration is shown in FIG. As shown in FIG. 5(b), the O2O and Co concentrations in this example are considerably lower than those in the conventional example shown in FIG. 5(a).
It can be seen that the zero energy loss is reduced. Also, Fig. 6 shows the fluctuation of the dome temperature, and Fig. 6(b)
In the case of the present embodiment shown in FIG. 6(a), the temperature fluctuation at the time of furnace switching is reduced compared to the conventional example shown in FIG. 6(a).

以上説明したように本発明によれば、熱風炉切替え時の
不完全燃焼によるCOガス発生を抑制しかつエネルギ損
失を防止して最適な燃焼状態を維持できると共に、切替
え時におけるドーム温度の低下を防止できる、という特
有の効果が得られる。
As explained above, according to the present invention, it is possible to suppress CO gas generation due to incomplete combustion when switching hot stoves, prevent energy loss, maintain an optimal combustion state, and prevent a decrease in dome temperature when switching. This has the unique effect of preventing

【図面の簡単な説明】 第1図は従来の空燃比制御システムを示すブロック図、
第2図は従来の空燃比制御におけるプロセス量の変動を
示す線図、第3図は本発明における空気比の変更を示す
線図、第4図は実施炉のプロセス量の変動を示す線図、
第5図(8)、(b)は従来例と本実施例におけるCO
O20よび0.ガス濃度の変動を比較して示す線図、第
6図(aL(b)は従来例と本実施例におけるドーム温
度の変動を比較して示す線図である。 2・・・熱風炉、 10.12.14・・・流量計、 16・・・バタフライ弁、 20・・・O2分析計、 22・・−プロセスコンピュータ、 24・・・マイクロコンピュータ。 化4人  鵜 N 辰 之゛ (か2名) 第 2 図 第3図
[Brief explanation of the drawings] Figure 1 is a block diagram showing a conventional air-fuel ratio control system.
Fig. 2 is a diagram showing the variation in the process amount in conventional air-fuel ratio control, Fig. 3 is a diagram showing the change in the air ratio in the present invention, and Fig. 4 is a diagram showing the variation in the process quantity in the implementation furnace. ,
Figure 5 (8) and (b) show the CO in the conventional example and this example.
O20 and 0. 6 (aL(b) is a diagram comparing and showing the fluctuations in the gas concentration. FIG. 6 (b) is a diagram comparing and showing the fluctuations in the dome temperature in the conventional example and the present example. 2...Hot stove, 10 .12.14...Flowmeter, 16...Butterfly valve, 20...O2 analyzer, 22...-process computer, 24...Microcomputer. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)燃焼用ガスと空気とを混合し燃焼させて蓄熱する
燃焼期と該蓄熱を高炉への送風に与える送風期とが切替
えられ、少なくとも1基が燃焼期にあるときに他基が切
替えられる複数の熱風炉における燃焼期の熱風炉から排
出される排ガス中の残留酸素濃度を検出し、該残留酸素
濃度と予め設定された設定酸素濃度との偏差に基いて求
められる空気比と前記燃焼用ガスのカロリー分析値から
求められる理論空気量との積がら空燃比を求め、前記燃
焼期の熱風炉へ供給される前記燃焼用ガスと前記空気と
の比が該空燃比になるように該空気の量を制御する熱風
炉の空燃比制御方法において、他の熱風炉の切替えが終
了して所定時間経過したときに前記空気比を前回の燃焼
期の平均空気比に変更することを特徴とする熱風炉の空
燃比制御方法。
(1) The combustion period in which combustion gas and air are mixed and burned to store heat and the blowing period in which the stored heat is sent to the blast furnace are switched, and when at least one unit is in the combustion period, the other units are switched. The residual oxygen concentration in the exhaust gas discharged from the hot blast furnaces during the combustion period in a plurality of hot blast stoves is detected, and the air ratio and the combustion are determined based on the deviation between the residual oxygen concentration and a preset set oxygen concentration. The air-fuel ratio is determined by multiplying the theoretical air amount obtained from the calorie analysis value of the combustion gas, and the air-fuel ratio is adjusted so that the ratio of the combustion gas and the air supplied to the hot air stove during the combustion period becomes the air-fuel ratio. The air-fuel ratio control method for a hot-blast stove that controls the amount of air is characterized in that the air ratio is changed to the average air ratio of the previous combustion period when a predetermined time has elapsed after switching of other hot-blast stoves is completed. A method for controlling the air-fuel ratio of a hot-blast stove.
JP1437083A 1983-01-31 1983-01-31 Controlling method of air fuel ratio in hot-blast stove Pending JPS59140310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1437083A JPS59140310A (en) 1983-01-31 1983-01-31 Controlling method of air fuel ratio in hot-blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1437083A JPS59140310A (en) 1983-01-31 1983-01-31 Controlling method of air fuel ratio in hot-blast stove

Publications (1)

Publication Number Publication Date
JPS59140310A true JPS59140310A (en) 1984-08-11

Family

ID=11859156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1437083A Pending JPS59140310A (en) 1983-01-31 1983-01-31 Controlling method of air fuel ratio in hot-blast stove

Country Status (1)

Country Link
JP (1) JPS59140310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881463A (en) * 2009-12-28 2010-11-10 中冶南方工程技术有限公司 Intelligent control method of automatic optimizing combustion of hot blast heater
CN105783024A (en) * 2016-02-29 2016-07-20 中冶南方工程技术有限公司 Automatic control method for air-fuel ratio of hot-blast stove
CN111710135A (en) * 2020-05-26 2020-09-25 广东韶钢松山股份有限公司 Early warning and control process for brick collapse of blast furnace hot blast stove fire well wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881463A (en) * 2009-12-28 2010-11-10 中冶南方工程技术有限公司 Intelligent control method of automatic optimizing combustion of hot blast heater
CN105783024A (en) * 2016-02-29 2016-07-20 中冶南方工程技术有限公司 Automatic control method for air-fuel ratio of hot-blast stove
CN111710135A (en) * 2020-05-26 2020-09-25 广东韶钢松山股份有限公司 Early warning and control process for brick collapse of blast furnace hot blast stove fire well wall
CN111710135B (en) * 2020-05-26 2022-04-12 广东韶钢松山股份有限公司 Early warning and control process for brick collapse of blast furnace hot blast stove fire well wall

Similar Documents

Publication Publication Date Title
US3602487A (en) Blast furnace stove control
EP0498809A1 (en) Microbridge-based combustion control.
CN108458486A (en) A kind of Combustion of Hot Air Furnace automatic control system and its control method
CN110160082A (en) A kind of fuel gas method for controlling combustion, system and device
JPS59140310A (en) Controlling method of air fuel ratio in hot-blast stove
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
US3416470A (en) Method of controlling and/or regulating induced draught fans for waste heat boilers
CN110671717B (en) Combustion accurate control system for steam power generation boiler
KR20030016715A (en) Mtehod and apparatus for automatic control of gas combustion in the hot stove for operating blast furnace
JP4671136B2 (en) Combustion control method for rotary melting furnace
JPS5823527B2 (en) Kinnetsuronadoniokeru
JPS604724A (en) Combustion method by oxygen-enriched air for combustion
JP2797943B2 (en) Mixed gas calorie control device
JPH07310918A (en) Combustion apparatus with proportional valve proportion valve regulating device therefor
KR100691514B1 (en) Combustion air control method by measuring of fuel calorific value
KR100804230B1 (en) Combustion control method for hot stove of blast furnace
KR101070065B1 (en) Hot stove combustion control apparatus capable of controlling carbon dioxide
JPS6365230A (en) Burning control method for hot air furnace
JPH0233558A (en) Hot water feeder
JP2653627B2 (en) Incomplete combustion detection device for combustion equipment
JPS55132663A (en) Baking method of coated pipe
SU1497432A1 (en) Method and apparatus for controlling carbon oixide afterburning
JPS5956508A (en) Method for controlling combustion in hot stove for blast furnace
JPS6030415B2 (en) Control method for preventing black smoke generation from combustion furnace
JPS6115393Y2 (en)