JPS591400B2 - Method for producing water treatment chemicals - Google Patents

Method for producing water treatment chemicals

Info

Publication number
JPS591400B2
JPS591400B2 JP55018292A JP1829280A JPS591400B2 JP S591400 B2 JPS591400 B2 JP S591400B2 JP 55018292 A JP55018292 A JP 55018292A JP 1829280 A JP1829280 A JP 1829280A JP S591400 B2 JPS591400 B2 JP S591400B2
Authority
JP
Japan
Prior art keywords
water
graft
water treatment
polymer
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55018292A
Other languages
Japanese (ja)
Other versions
JPS56115694A (en
Inventor
昭三 新保
裕延 福崎
理 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP55018292A priority Critical patent/JPS591400B2/en
Publication of JPS56115694A publication Critical patent/JPS56115694A/en
Publication of JPS591400B2 publication Critical patent/JPS591400B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 本発明はコークス、ピッチまたはピッチコークスの如き
炭素材料の表面(こ水溶性ビニルモノマーをグラフト重
合させた新規な水処理薬剤の製造方法に関し、殊Oこ汚
泥の脱水剤として優れた効果を発揮する水処理薬剤の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a new water treatment agent in which a water-soluble vinyl monomer is graft-polymerized on the surface of carbon materials such as coke, pitch or pitch coke, and in particular to a dewatering agent for sludge. The present invention relates to a method for producing a water treatment agent that exhibits excellent effects as a water treatment agent.

下水または有機性廃水を処理する際発生する汚泥は脱水
性が悪く、水分を多官しているために焼却するにしても
多大のエネルギーが必要となるため、汚泥の脱水工程で
できるだけ多くの水分を除去することが必要であり、各
種の有機系凝集剤が研究され、製造されている。
The sludge generated when treating sewage or organic wastewater has poor dewatering properties and contains a large amount of water, so even incineration requires a large amount of energy. It is necessary to remove this, and various organic flocculants are being researched and manufactured.

これから有機系凝集剤としてはポリアクリルアミド、ポ
リエチレンオキサイド、ポリアクリル酸ソーダ、ポリア
クリルアミド部分加水分解物、ポリアミノアルキル(メ
タ)アクリレート、ポリジアリルアンモニウムハライド
、キトサン等が挙げられ、廃水または汚泥の種類Qこ応
じて適宜用いられている。
Examples of organic flocculants include polyacrylamide, polyethylene oxide, sodium polyacrylate, polyacrylamide partial hydrolyzate, polyaminoalkyl (meth)acrylate, polydiallylammonium halide, and chitosan. It is used as appropriate.

しかしながら、これら有機凝集剤は汚泥の凝集性におい
て優れているが、その後の沖過処理において凝集フロッ
クがつぶれやすく、沖材の目づまりが生起し、実際有機
凝集剤のみでは充分な沢過が行えず、脱水率を向上させ
ることは容易ではない。
However, although these organic flocculants are excellent in flocculating sludge, the flocs tend to collapse during the subsequent offshore filtration treatment, causing clogging of the sludge material, and in fact, sufficient filtration cannot be achieved with organic flocculants alone. , it is not easy to improve the dehydration rate.

そこで、近年上記有機凝集剤のもつ欠点を改善する目的
で石炭にこれらの有機凝集剤をグラフト重合させる方法
が提案されている。
Therefore, in recent years, a method of graft polymerizing these organic flocculants to coal has been proposed in order to improve the drawbacks of the above-mentioned organic flocculants.

この石炭にグラフトさせた有機凝集剤は従来の有機凝集
剤に比較して石炭を核としてポリマーがグラフトしてい
るために、その凝集後の沈降速度が有機凝集剤単味に比
べて速く、且つ脱水性もかなり優れたものであり、汚泥
ケーキを焼却処理する場合においては、殊に優れたもの
があるということができる。
Compared to conventional organic flocculants, this organic flocculant grafted onto coal has a polymer grafted onto the coal as a core, so the sedimentation rate after flocculation is faster than that of the organic flocculant alone. The dewatering properties are also quite excellent, and it can be said that there are some that are particularly excellent when incinerating sludge cake.

しかしながら、実際凝集性や脱水性に優れた石炭グラフ
ト重合体即ち、石炭にポリマーが完全にグラフトしたも
のを効率よく製造することは甚だ困難である。
However, it is actually extremely difficult to efficiently produce a coal graft polymer with excellent cohesiveness and dehydration properties, that is, one in which a polymer is completely grafted onto coal.

即ち単に微粉炭を重合性モノマー水溶液中へ添加しても
、そのグラフト重合率、即ち仕込モノマー量に対する石
炭にグラフト化したポリマー量の比率は高くならない。
That is, simply adding pulverized coal to an aqueous polymerizable monomer solution does not increase the graft polymerization rate, that is, the ratio of the amount of polymer grafted to coal to the amount of monomer charged.

そこで、このグラフト重合率を高めんがために各種のグ
ラフト重合法が提案されている。
Therefore, various graft polymerization methods have been proposed to increase the graft polymerization rate.

例えば■機械的処理方法、即ち石炭を粉砕しながらその
表面に重合性モノマーをグラフトさせる方法■触媒を用
いる方法■放射線方法、即ち微粉炭単味にあらかじめ放
射線を照射させる方法または微粉炭と重合性モノマーと
の共存下で放射線を照射する方法等がある。
For example, ■ Mechanical treatment method, that is, a method in which a polymerizable monomer is grafted onto the surface of coal while pulverizing it; ■ Method using a catalyst; ■ Radiation method, that is, a method in which pulverized coal alone is irradiated with radiation in advance, or a method in which pulverized coal and polymerizable There are methods such as irradiating radiation in coexistence with monomers.

しかしながら■の方法による場合、グラフト重合率は向
上するが、反面激しい摩砕エネルギーのため分子量の低
下が避けられず、凝集性、脱水性に優れた水処理薬剤を
製造することができない。
However, in the case of method (2), although the graft polymerization rate is improved, on the other hand, a decrease in molecular weight is inevitable due to the intense grinding energy, making it impossible to produce a water treatment agent with excellent cohesion and dehydration properties.

また■の方法によれば一般にホモポリマーの生成が多く
なりモノマーの重合率は向上するが、グラフト重合率は
それ程向上しない。
Furthermore, according to the method (2), generally more homopolymers are produced and the polymerization rate of monomers is improved, but the graft polymerization rate is not improved so much.

更に■の方法は放射線を取り扱うために危険性が大きく
、且つ工業的には設備費が高くなる。
Furthermore, method (2) is highly dangerous because it involves the use of radiation, and also requires high equipment costs from an industrial perspective.

そこで本発明者らは前述の石炭グラフト重合体の汚泥に
対する脱水剤としての利点をそこなうことなく、より凝
集性に優れ、脱水性の良好なグラフト重合体を工業的に
簡単で、且つ効率よく製造せんがため、種々のグラフト
基材について探索研究を続けた結果、コークス、ピッチ
またはピッチコークスをグラフト基材に用いた場合、上
述の如きグラフト重合率を高める方法を採用することな
く、単にこれらを重合性モノマー水溶液中へ添加するだ
けで、高比率でグラフト化でき、脱水性の優れた水処理
薬剤を得ることができることを見い出し本発明を完成し
たものである。
Therefore, the present inventors have attempted to industrially easily and efficiently produce a graft polymer with better cohesiveness and better dewatering properties without sacrificing the above-mentioned advantages of the coal graft polymer as a dehydrating agent for sludge. As a result of continuing exploratory research on various grafting base materials for grafting, we found that when coke, pitch, or pitch coke is used as a grafting base material, it is possible to simply use these without adopting methods to increase the graft polymerization rate as described above. The present invention was completed based on the discovery that a water treatment agent with excellent dehydration properties that can be grafted at a high ratio can be obtained by simply adding it to an aqueous solution of polymerizable monomers.

即ち、本発明は、50メツシユ以下のコークス、ピッチ
、ピッチコークスから選ばれた一種またはそれ以上の粉
体に、水溶性ビニルモノマーをグラフト重合させること
からなる水処理薬剤の製造方法に関するものである。
That is, the present invention relates to a method for producing a water treatment agent, which comprises graft polymerizing a water-soluble vinyl monomer to one or more powders selected from coke, pitch, and pitch coke of 50 mesh or less. .

本発明(こ用いるグラフト基材としてはコークスをはじ
め、石炭、木材などの乾留によって得られるタールを蒸
留するとき得られる各種のピッチ、例えばタールピッチ
、木クールピッチ等を用いることができ、更にはピッチ
、を乾留して得られるピッチコークスを挙げることがで
きる。
As the graft base material used in the present invention, coke, various pitches obtained when distilling tar obtained by carbonization of coal, wood, etc., such as tar pitch, wood cool pitch, etc., can be used. Examples include pitch coke obtained by carbonizing pitch.

これらを一種またはそれ以上混合して用いても何ら差し
支えない。
There is no problem even if one or more of these are used as a mixture.

これらは粉砕して用いることが望ましく、その粉砕度に
関しては大略50メツシユ以下、好ましくは200メツ
ンユ以下がよい。
It is desirable to use these materials after pulverizing them, and the degree of pulverization is approximately 50 mesh or less, preferably 200 mesh or less.

上限以上ではグラフト重合率は向上しない。Above the upper limit, the graft polymerization rate will not improve.

本発明において殊に、重要なことは第1にこれらグラフ
ト基材を後述の水溶性ビニルモノマー水溶液に単に混合
するのみでグラフト重合率を大幅に高めることができる
ことである。
What is particularly important in the present invention is that the graft polymerization rate can be greatly increased by simply mixing these graft base materials with the water-soluble vinyl monomer aqueous solution described below.

第2cこ本発明のグラフト基材は石炭と異なり、粉砕し
た後のグラフト性能はほとんど劣下しない第1点をもっ
ている。
2c: Unlike coal, the grafting base material of the present invention has the first point that the grafting performance after pulverization hardly deteriorates.

本発明のグラフト重合体は工業的に安価に製造でき、得
られたグラフト重合体は水処理薬剤、殊に汚泥の脱水剤
として優れた効果を発揮する。
The graft polymer of the present invention can be produced industrially at low cost, and the obtained graft polymer exhibits excellent effects as a water treatment agent, especially as a sludge dehydrating agent.

今、この発明の効果を具体的に説明すれば次の通りであ
る。
The effects of this invention will now be specifically explained as follows.

具体例 1 内容量500rfLlの攪拌、窒素導入管、温度計を取
り付けた反応容器にアクリルアミド60g1イオン交換
水40gを採り、窒素置換を行いつつ攪拌溶解させ、液
温を80℃に設定した。
Specific Example 1 60 g of acrylamide and 40 g of ion-exchanged water were placed in a reaction vessel having a content of 500 rfLl and equipped with a stirrer, a nitrogen inlet tube, and a thermometer, and dissolved with stirring while purging with nitrogen, and the liquid temperature was set at 80°C.

次いで粉砕直後及び粉砕して14日間放置した300メ
ツンユ以下のコークス、タールピッチ及びピッチコーク
スをそれぞれ100g加え、攪拌した後8時間重合を行
った。
Next, 100 g each of coke, tar pitch, and pitch coke having a weight of 300 mt or less that had been crushed immediately after crushing or that had been crushed and left for 14 days were added, stirred, and then polymerized for 8 hours.

この重合体を60℃の水で充分洗浄し、減圧乾燥してそ
れぞれグラフト重合体を得た。
This polymer was thoroughly washed with water at 60°C and dried under reduced pressure to obtain each graft polymer.

尚、比較例としてタールピッチに代え、300メツンユ
以下の粉砕直後及び粉砕して14日間放置した石炭を用
いた場合について上記と同様にグラフト重合体を製造し
た。
Incidentally, as a comparative example, graft polymers were produced in the same manner as described above, using instead of tar pitch, coal of 300 Metsuyu or less immediately after pulverization and coal that had been pulverized and left for 14 days.

その結果を第1表に示す。The results are shown in Table 1.

上表に示した如く、本発明のコークス、ピッチまたはピ
ッチコークスに比して、石炭のグラフト重合率にかなり
低いものであり、実際このような簡単な製造方法では石
炭グラフト重合体は工業的には製造不可能であり、仮り
に製造したとしても本発明の脱水性を付与させるには本
発明の水処理薬剤より多量に用いる必要がある。
As shown in the table above, the graft polymerization rate of coal is considerably lower than that of the coke, pitch or pitch coke of the present invention, and in fact, with such a simple production method, the coal graft polymer cannot be produced industrially. cannot be manufactured, and even if it were manufactured, it would be necessary to use it in a larger amount than the water treatment agent of the present invention in order to impart the dehydration properties of the present invention.

しかも理由は定かではないが、石炭は粉砕後の表面活性
の低下が著しく、約2〜4週間でグラフト重合率はゼロ
になるのに比べて本発明の基材はこのような傾向は非常
に少なく、この点からも工業的利点は太きいと言える。
Moreover, although the reason is not clear, the surface activity of coal significantly decreases after pulverization, and the graft polymerization rate reaches zero in about 2 to 4 weeks, whereas the base material of the present invention has this tendency. From this point of view, it can be said that the industrial advantage is significant.

本発明に用いることのできる水溶性ビニル七ツマ−とし
てはアクリル酸、メタクリル酸またはこれらのエステル
化合物、アクリルアミド、メタクリルアミド、アミノカ
ルボン酸エステル等を挙げることができ、殊に本発明の
グラフト基材においてはアクリルアミドと下記の(I)
または(…)式で表わされるアミノカルボン酸エステル (式中R1はHまたはCH3,R2はHまたは炭素数1
〜4のアルキル基、R3及びR4は炭素数1〜4のアル
キル基、n二1〜4の整数、Xはアニオン基を示す。
Examples of the water-soluble vinyl hexamer that can be used in the present invention include acrylic acid, methacrylic acid, or ester compounds thereof, acrylamide, methacrylamide, aminocarboxylic acid esters, etc. In particular, the graft base material of the present invention In the case of acrylamide and the following (I)
or an aminocarboxylic acid ester represented by the formula (...) (in the formula, R1 is H or CH3, R2 is H or has 1 carbon number)
~4 alkyl group, R3 and R4 are alkyl groups having 1 to 4 carbon atoms, n2 is an integer of 1 to 4, and X represents an anion group.

)例えば、ジメチルアミンエチル(メタ)アクリレート
、ジエチルアミンエチル(メタ)アクリレート、これら
の塩酸塩、硫酸塩、酢酸塩等の第三級塩および塩化メチ
ル、ジメチル硫酸あるいはジエチル硫酸で四級化された
第四級塩等とを共用することによりグラフト重合率を一
段と高め、且つ水処理効果の卓越した薬剤を提供するこ
とができる。
) For example, dimethylamine ethyl (meth)acrylate, diethylamine ethyl (meth)acrylate, tertiary salts thereof such as hydrochloride, sulfate, acetate, and tertiary salts quaternized with methyl chloride, dimethyl sulfate, or diethyl sulfate. By co-using quaternary salts and the like, it is possible to further increase the graft polymerization rate and provide a chemical with excellent water treatment effects.

今、この効果を示せば次の通りである。Now, this effect can be demonstrated as follows.

具体例 2 内容量300m1の攪拌機、窒素導入管、温度計を取り
付けた反応容器に第2表に示す所定量のアクリルアミド
とジメチルアミンエチルメタクリレート塩化メチル塩と
を採り、更りこイオン交換水27gを添加し窒素置換を
行いつつ攪拌溶解させ、液温を60℃に設定した。
Specific Example 2 Into a reaction vessel with a capacity of 300 ml and equipped with a stirrer, a nitrogen inlet tube, and a thermometer, the predetermined amounts of acrylamide and dimethylamine ethyl methacrylate methyl chloride salt shown in Table 2 were placed, and 27 g of ion-exchanged water was added. The solution was stirred and dissolved while purging with nitrogen, and the liquid temperature was set at 60°C.

次いで200メツシユ以下のコークス67gを添加し、
攪拌した後10時間重合を行った。
Next, 67 g of coke of 200 mesh or less was added,
After stirring, polymerization was carried out for 10 hours.

得られたグラフト重合体を60℃の水で充分洗浄し、減
圧乾燥した後グラフト重合率を求めた。
The resulting graft polymer was thoroughly washed with water at 60° C., dried under reduced pressure, and then the graft polymerization rate was determined.

次いで、これらのグラフト重合体を用いて活性余剰汚泥
(懸濁固形分1.8重量係、pH7、6)に対する脱水
性を試験した。
Next, using these graft polymers, the dewaterability of activated surplus sludge (suspended solid content 1.8 weight ratio, pH 7, 6) was tested.

上記汚泥500Tnlをビーカーに採り、この懸濁固形
分に対してグラフト重合体2重量係懸濁水をグラフト重
合体中のポリマー換算で1.5重量係となるようζこ添
加すると共に水を加えて全量を600m1とした後、2
0Or−’p0mで10分間攪拌した後、下記に示す条
件下でヌツチェ試験を行った。
500 Tnl of the above sludge was taken into a beaker, and to this suspended solid content, suspension water was added in proportion to 2 parts by weight of the graft polymer so that the proportion was 1.5 parts by weight in terms of the polymer in the graft polymer, and water was added. After making the total volume 600ml, 2
After stirring for 10 minutes at 0Or-'p0m, a Nutsche test was conducted under the conditions shown below.

〔ヌツチェ試験条件〕[Nutsche test conditions]

減圧度 400wnHg 沖過面積 95ffl 沖 材 東洋P紙A5A この結果を第2表に示す。 Decompression degree 400wnHg Offshore area 95ffl Oki Material Toyo P paper A5A The results are shown in Table 2.

上記から明らかな様に本発明においてはアクリルアミド
単味よりはアミノカルボン酸エステルの一種であるジメ
チルアミノエチルメタクリレート塩化メチル塩を共用す
る方がグラフト重合率を一段と高めることができる。
As is clear from the above, in the present invention, the graft polymerization rate can be further increased by using dimethylaminoethyl methacrylate methyl chloride salt, which is a type of aminocarboxylic acid ester, rather than using acrylamide alone.

しかしながらアミノカルボン酸エステル単味の場合グラ
フト重合率を大略100%にすることはできるが脱水性
、即ち汚泥の沢過速度は低下する傾向にあり、本発明に
おいてはアクリルアミドとアミノカルボン酸エステルと
を9:1〜1:9(重量比)の割合で用いた場合、更に
本発明の効果を高めることができる。
However, in the case of a single aminocarboxylic acid ester, although the graft polymerization rate can be approximately 100%, the dewaterability, that is, the sludge flow rate tends to decrease. When used in a ratio of 9:1 to 1:9 (weight ratio), the effects of the present invention can be further enhanced.

ところで、本発明水処理薬剤の製造条件に関して述べれ
ばモノマー濃度はモノマーの種類によって異なるが一般
に20〜90重量係の範囲が適当である。
Regarding the manufacturing conditions for the water treatment agent of the present invention, the monomer concentration varies depending on the type of monomer, but is generally in the range of 20 to 90% by weight.

また本発明に用いるグラフト基材の添加量に関しては制
約はないが、モノマー(こ対する添加割合が大きくなる
程一般に重合度は低下する。
Although there are no restrictions on the amount of the graft base material used in the present invention, the degree of polymerization generally decreases as the ratio of the graft base material added to the monomer increases.

反応温度としては20〜80℃が望ましい。The reaction temperature is preferably 20 to 80°C.

重合時間に関してはモノマ一種、グラフト基材の粉砕度
及び製造条件によって異なるが大略3〜12時間で充分
である。
The polymerization time varies depending on the type of monomer, the degree of pulverization of the graft base material, and the manufacturing conditions, but approximately 3 to 12 hours is sufficient.

尚、本発明においてはコークス等を単に水溶性ビニルモ
ノマーと混合するのみでグラフト重合率の高い重合体を
得ることができるが更に重合速度を速めるため、あるい
は既存設備の利用を考慮して触媒、紫外線、放射線を重
合に際し、使用することを防げるものでない。
In the present invention, it is possible to obtain a polymer with a high graft polymerization rate by simply mixing coke or the like with a water-soluble vinyl monomer, but in order to further speed up the polymerization rate or take into account the use of existing equipment, a catalyst, It cannot prevent the use of ultraviolet rays and radiation during polymerization.

以下に本発明の実施例を挙げて更に設問する。Further questions will be asked below with reference to examples of the present invention.

実施例 1 内容量500m1の攪拌機、窒素導入管、温度計を取り
付けた反応容器にアクリルアミド20.F11ジエチル
アミンエチルメタクリレート59.7gとイオン交換水
20gを採り、10%塩酸でpH2,8に調整した後、
窒素置換を行いつつ攪拌溶解させ、液温を50°Cに設
定した。
Example 1 Acrylamide 20.0 mm was placed in a reaction vessel with a capacity of 500 ml and equipped with a stirrer, a nitrogen inlet tube, and a thermometer. After taking 59.7 g of F11 diethylamine ethyl methacrylate and 20 g of ion-exchanged water and adjusting the pH to 2.8 with 10% hydrochloric acid,
The mixture was stirred and dissolved while purging with nitrogen, and the liquid temperature was set at 50°C.

次いで150メツシユ以下のタールピッチ80.2gを
加え、攪拌した後5時間重合を行った。
Next, 80.2 g of tar pitch of 150 meshes or less was added, stirred, and then polymerized for 5 hours.

この重合体を60℃の水で充分洗浄し、減圧乾燥してグ
ラフト重合体164.8Iを得た。
This polymer was thoroughly washed with water at 60°C and dried under reduced pressure to obtain graft polymer 164.8I.

このグラフト重合体2重量係懸濁液17rnlを具体例
2で用いた活性余剰汚泥5001nlに添加して脱水性
試験を行ったところ、その沢過送度は5.2kl/ t
ri: ・h rであった。
When 17rnl of this graft polymer 2 weight suspension was added to 5001nl of activated surplus sludge used in Example 2 and a dewatering property test was conducted, the flow rate was 5.2kl/t.
ri: It was hr.

実施例 2 内容量300WLlの攪拌機、窒素導入管、温度計を取
り付けた反応容器に80係アクリル酸ソーダ水溶液30
.0gとイオン交換水30.0gを採り、窒素置換を行
いつつ液温を70℃に設定した。
Example 2 30% of an 80% sodium acrylate aqueous solution was placed in a reaction vessel with a content capacity of 300 WLl equipped with a stirrer, a nitrogen inlet tube, and a thermometer.
.. 0g and 30.0g of ion-exchanged water were taken, and the liquid temperature was set at 70°C while replacing with nitrogen.

次いで100メツシユ以下のピッチコークス96、(B
i’を加え、攪拌した後10時間重合させた。
Next, pitch coke 96, (B
i' was added, stirred, and then polymerized for 10 hours.

この重合体を60℃の水で充分洗浄し、減圧乾燥してグ
ラフト重合体114.Hi’を得た。
This polymer was thoroughly washed with water at 60°C and dried under reduced pressure to obtain graft polymer 114. Hi' was obtained.

このグラフト重合体とポリ塩化アルミニウム(A120
3102%、塩基度50.3%)とを用いて水産加工排
水(pH7、3、懸濁固形分53ppm)を処理する試
験を行った。
This graft polymer and polyaluminum chloride (A120
3102%, basicity 50.3%) was used to treat fishery processing wastewater (pH 7.3, suspended solid content 53 ppm).

上記水産加工廃水500WLlにポリ塩アルミニウム2
00p−を添加し、2分間混合した後、更ζこ上記グラ
フト重合体2重世襲懸濁液5mlを添加、混合した。
Polysalt aluminum 2 to 500WLl of the above seafood processing wastewater
After adding 00p- and mixing for 2 minutes, 5 ml of the above graft polymer double hereditary suspension was added and mixed.

次いで生成したフロックを沈降分離して懸濁固形分5.
6卿の処理水を得た。
Next, the generated flocs are separated by sedimentation to reduce the suspended solid content5.
6 Lord's treated water was obtained.

比較例として、グラフト重合体に代えてアクリル酸ソー
ダを用いて製造した高分子凝集剤(分子量300万)と
ピッチコークスとを本発明水処理薬剤と四重量比即ち、
1:5の割合で使用し、同様に試験した結果、懸濁固形
分34.21’l”の処理水を得た。
As a comparative example, a polymer flocculant (molecular weight 3 million) manufactured using sodium acrylate instead of the graft polymer and pitch coke were mixed with the water treatment agent of the present invention in a four weight ratio, that is,
As a result of the same test using a ratio of 1:5, treated water with a suspended solid content of 34.21'l'' was obtained.

実施例 3 実施例2で用いた反応容器にアクリルアミド35.6g
、80%アクリル酸ソーダ水溶液19.2g、イオン交
換水47、1 gを採り、窒素置換を行いつつ攪拌溶解
させ、液温を60℃に設定した。
Example 3 35.6 g of acrylamide was placed in the reaction vessel used in Example 2.
19.2 g of 80% sodium acrylate aqueous solution and 47.1 g of ion-exchanged water were taken and dissolved with stirring while purging with nitrogen, and the liquid temperature was set at 60°C.

次いで300メツシユ以下のコークスを72.0g加え
、攪拌した後6時間重合を行った。
Next, 72.0 g of coke of 300 mesh or less was added, stirred, and then polymerized for 6 hours.

この重合体を60°Cの水で充分洗浄し、減圧乾燥して
グラフト重合体111.:lを得た。
This polymer was thoroughly washed with water at 60°C and dried under reduced pressure to obtain graft polymer 111. :l was obtained.

このグラフト重合体とポリ塩化アルミニウム(A120
310.1%、塩基度50.2%)とを用いて含油廃水
(油分164卿、懸濁固形分78pp)を処理する試験
を行った。
This graft polymer and polyaluminum chloride (A120
310.1%, basicity 50.2%) was used to treat oil-containing wastewater (oil content 164 ppm, suspended solid content 78 pp).

上記廃水5007711にポリ塩化アルミニウム300
解を添加し2分間混合した後、更に上記グラフト重合体
1重世襲懸濁液3mlを添加混合した。
Polyaluminum chloride 300 in the above wastewater 5007711
After adding the solution and mixing for 2 minutes, 3 ml of the above-mentioned single-layer graft polymer suspension was further added and mixed.

次いで生成したスカムを除去して油分5ppm、懸濁固
形分4.31)Inの処理水を得た。
The generated scum was then removed to obtain treated water with an oil content of 5 ppm and a suspended solid content of 4.31) In.

比較例としてグラフト重合体に代えてアクリルアミドと
アクリル酸ソーダとを用いて製造した高分子凝集剤(分
子量960万、アニオン化率24.5%)とコークスと
を本発明水処理薬剤と四重量比即ち、1:2の割合で併
用し、同様に試験した結果、油分18卿、懸濁固形分1
8.7ppmの処理水を得た。
As a comparative example, a polymer flocculant (molecular weight 9.6 million, anionization rate 24.5%) manufactured using acrylamide and sodium acrylate instead of the graft polymer and coke were mixed with the water treatment agent of the present invention in a four weight ratio. That is, when used together in a ratio of 1:2 and tested in the same manner, the oil content was 18% and the suspended solid content was 1%.
Treated water with a concentration of 8.7 ppm was obtained.

実施例 4 実施例2で用いた反応容器にアクリルアミド20、5
g、ジメチルアミンエチルアクリレート塩化メチル塩5
9.7g、イオン交換水20gを採り、窒素置換を行い
つつ攪拌溶解させ、液温を70℃に設定した。
Example 4 Acrylamide 20, 5 was added to the reaction vessel used in Example 2.
g, dimethylamine ethyl acrylate methyl chloride salt 5
9.7 g and 20 g of ion-exchanged water were taken and dissolved with stirring while purging with nitrogen, and the liquid temperature was set at 70°C.

次いで200メツンユ以下のタールピッチ52.7gを
加え、攪拌した後8時間重合を行った。
Next, 52.7 g of tar pitch of 200 meters or less was added, stirred, and then polymerized for 8 hours.

この重合体を60℃の水で充分洗浄し、減圧乾燥してグ
ラフト重合体128.4gを得た。
This polymer was thoroughly washed with water at 60° C. and dried under reduced pressure to obtain 128.4 g of a graft polymer.

このグラフト重合体1重世襲懸濁液201rLlを具体
例2で用いた活性余剰汚泥500m1に添加して脱水性
試験を行ったところ、その沖過速度は4.8kl/ m
・h rであった。
When 201 rLl of this graft polymer single hereditary suspension was added to 500 ml of activated surplus sludge used in Example 2 and a dewatering property test was conducted, the offshore overspeed was 4.8 kl/m.
・It was hr.

比較例としてグラフト連合体に代えてアクリルアミドと
ジメチルアミンエチルアクリレート塩化メチル塩とを用
いて製造した高分子凝集剤(カチオン化率517係)と
タールピッチを本発明水処理薬剤と四重量比即ち、3:
2の割合で併用した場合のそれは0.8 kl/lri
’・hrであった。
As a comparative example, a polymer flocculant (cationization rate: 517) produced using acrylamide and dimethylamine ethyl acrylate methyl chloride salt instead of the graft complex and tar pitch were mixed with the water treatment agent of the present invention in a four weight ratio, that is, 3:
When used together at a ratio of 2, it is 0.8 kl/lri
'・hr.

実施例 5 実施例3で製造したグラフト重合体(本発明品)及びア
クリルアミドとアクリル酸ソーダとを用いて製造した高
分子凝集剤(比較例品)を用い、カオリン懸濁水による
凝集試験を行なった。
Example 5 A flocculation test using kaolin suspension water was conducted using the graft polymer manufactured in Example 3 (invention product) and the polymer flocculant manufactured using acrylamide and sodium acrylate (comparative example product). .

水道水に局方カオリナイトを加え懸濁させ、pH71、
濁度353度の濁水を調製した。
Add and suspend pharmacopoeial kaolinite to tap water, pH 71,
Turbid water with a turbidity of 353 degrees was prepared.

これの500m1を採り前記の薬剤(本発明品、比較例
品)の1重世襲懸濁液の所定量を加え、ジャーテスター
を用い150rl)Inで1分間の急速攪拌、次いで5
Qrplで3分間の緩速攪拌を行なった後、フロックの
沈降速度及び5分間静置後の上澄水濁度を測定した。
Take 500 ml of this, add a predetermined amount of 1-fold hereditary suspension of the above-mentioned drug (inventive product, comparative example product), and stir rapidly for 1 minute at 150 ml using a jar tester.
After performing slow stirring for 3 minutes with Qrpl, the sedimentation rate of the flocs and the turbidity of the supernatant water after standing for 5 minutes were measured.

この結果を第3表に示す。The results are shown in Table 3.

Claims (1)

【特許請求の範囲】 150メツシュ以下のコークス、ピッチ、ピッチコーク
スから選ばれた一種またはそれ以上の粉体に、水溶性ビ
ニルモノマーをグラフト重合させることからなる水処理
薬剤の製造方法。 2 水溶性ビニルモノマーとしてアクリルアミドと下記
の(1)または(1)式で表わされるアミノカルボン酸
エステルとを共用する特許請求の範囲第1項記載の水処
理薬剤の製造方法。 (式中R1はHまたはCH3、R2は−Hまたは炭素数
1〜4のアルキル基、R3及びR4は炭素数1〜4のア
ルキル基、nは1〜4の整数、Xはアニオン基を示す。 )
[Scope of Claims] A method for producing a water treatment agent, which comprises graft polymerizing a water-soluble vinyl monomer to one or more powders selected from coke, pitch, and pitch coke having a mesh size of 150 mesh or less. 2. The method for producing a water treatment agent according to claim 1, wherein acrylamide and an aminocarboxylic acid ester represented by the following formula (1) or (1) are used together as the water-soluble vinyl monomer. (In the formula, R1 is H or CH3, R2 is -H or an alkyl group having 1 to 4 carbon atoms, R3 and R4 are an alkyl group having 1 to 4 carbon atoms, n is an integer of 1 to 4, and X is an anion group. )
JP55018292A 1980-02-15 1980-02-15 Method for producing water treatment chemicals Expired JPS591400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55018292A JPS591400B2 (en) 1980-02-15 1980-02-15 Method for producing water treatment chemicals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55018292A JPS591400B2 (en) 1980-02-15 1980-02-15 Method for producing water treatment chemicals

Publications (2)

Publication Number Publication Date
JPS56115694A JPS56115694A (en) 1981-09-10
JPS591400B2 true JPS591400B2 (en) 1984-01-11

Family

ID=11967532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55018292A Expired JPS591400B2 (en) 1980-02-15 1980-02-15 Method for producing water treatment chemicals

Country Status (1)

Country Link
JP (1) JPS591400B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231120Y2 (en) * 1987-12-29 1990-08-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613268B (en) * 2013-12-03 2016-03-30 湖南科技大学 A kind of sludge dehydration conditioner and deep dehydration method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231120Y2 (en) * 1987-12-29 1990-08-22

Also Published As

Publication number Publication date
JPS56115694A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
JP6378342B2 (en) Organic wastewater treatment method
JP4854432B2 (en) Sludge dewatering method
JP6152108B2 (en) Polymer flocculant, method for producing the same, and sludge dewatering method using the same
JP4857170B2 (en) Cationic polymer flocculant and sludge treatment method using the same
JP5427985B2 (en) Sludge dewatering agent and sludge dewatering method
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
US3835046A (en) Dewatering of aqueous suspensions
RU2321599C2 (en) Environment safe polyelectrolytes and their using as coagulants
JP5961934B2 (en) Sludge dewatering method
JP2015062901A (en) Method for removing colored component
JPS591400B2 (en) Method for producing water treatment chemicals
JP2976283B2 (en) Polymer flocculant
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP2004202401A (en) Method for treating sludge generated from livestock facility
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP3775767B2 (en) Sludge dewatering agent
JPH08243600A (en) Polymer flocculant
JP2002045900A (en) Method for dewatering sludge
JP2017000914A (en) Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
JP4175194B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
RU2060976C1 (en) Sewage sediment and active sludge treatment method
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
JP4093128B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
JP2001089532A (en) Amphoteric polymer flocculant and method of dehydrating sludge using the same
JPS5823160B2 (en) water treatment agent