JPS59139534A - Face plate of image pick up tube - Google Patents

Face plate of image pick up tube

Info

Publication number
JPS59139534A
JPS59139534A JP710284A JP710284A JPS59139534A JP S59139534 A JPS59139534 A JP S59139534A JP 710284 A JP710284 A JP 710284A JP 710284 A JP710284 A JP 710284A JP S59139534 A JPS59139534 A JP S59139534A
Authority
JP
Japan
Prior art keywords
conductive film
film
transparent conductive
face plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP710284A
Other languages
Japanese (ja)
Inventor
Hirobumi Ogawa
丸山瑛一
Mitsuo Ichikawa
市川光男
Tadaaki Hirai
小川博文
Eiichi Maruyama
平井忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP710284A priority Critical patent/JPS59139534A/en
Publication of JPS59139534A publication Critical patent/JPS59139534A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/39Charge-storage screens
    • H01J29/45Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen
    • H01J29/451Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen with photosensitive junctions
    • H01J29/456Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen with photosensitive junctions exhibiting no discontinuities, e.g. consisting of uniform layers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To restrict the reduction of yield rate due to a surface defect and to improve a picture image characteristic by forming a transparent conductive film formed upon an optically transmissive thin film glass on a filter with solid solution of a predetermined thickness consisting of In2O3 and SnO2. CONSTITUTION:Width 300-1,000Angstrom or 1,800-2,600Angstrom at the bottom of a spectroscopic transparency rate shown in a diagram representing a film thickness vs. transparency rate of a transparent conductive film material consisting of In2O3 and SnO2 in a visual light range is determined to obtain a film thickness proper to a transparent conductive film. Upon a thin plate glass 14, a transparent, conductive film In2O3-SnO2 spattered film 15 of a resistance value being not more than 5kOMEGA/unit area is formed in attached status at a temperature not burning an organic filter, an optically conductive film 16 is attached on it, and preferably a cleaning process is interposed in a forming process and forming is performed at least more than two times dividedly. Accordingly, the reduction of yield rate due to surface defect can be restricted, a good resistance value as for a photo-electric converting element is given, and a picture image property is improved as the surface ruggedness can be made small.

Description

【発明の詳細な説明】 本発明は、カラーテレビ撮像管の面板に関し、さらに詳
述すれば面板に色分解フィルタを備えた撮像管の面板に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a face plate for a color television image pickup tube, and more particularly to a face plate for an image pickup tube having a color separation filter on the face plate.

一般にカラーテレビ用カメラは緑色、青色、赤色の3色
の信号を得るのに各色それぞれに対して撮像管を心安と
するため、3本の撮像管が心安であった。きころが最近
1本の撮像管により2色または3色の色信号を取り出し
得る多色撮像管または単管カラー撮像管が開発された。
In general, a color television camera obtains three color signals of green, blue, and red, and requires one image pickup tube for each color, so it is safe to use three image pickup tubes. Recently, multicolor image pickup tubes or single-tube color image pickup tubes have been developed that can extract two or three color signals using a single image pickup tube.

第1図はこの従来の多色撮像管の一例を示す置部断面図
であり、第2図はその面板構体の一例を示す置部断面図
である。これらの図において、この撮像管は、ガラス寺
の透光材からなる面板1(透光性基板)の表面に色分解
ストライプフィルタ(以下色分解フィルタと称する)2
、接着剤3を介して溝板ガラス4、透明導゛亀膜5、光
導電膜6を順次被着し、かつこの面板1をインジウム7
を付けた信号型fi8を用いて電子銃9を内蔵する外管
10の開口端(こ耐層し、外電10の内部を真空にυ1
気して構成されている。そして、被写体11からの光1
2は、光学レンズ13を介して光導電膜6上に結像され
、被写体11の像に対する電荷パターン像を光導電膜6
上に形成し、電子銃9からの′電子ビーム14は外管1
0の外周に配置された1屍向コイル15、集束コイル1
6をこよって作られる磁界により光導電膜6の底面を集
束、走査し当該電荷パターンを電流に変侠し、透明導電
膜5とインジウム7を通じて信号電流8から電気信号と
して取り出される。
FIG. 1 is a sectional view of the holder showing an example of this conventional multicolor image pickup tube, and FIG. 2 is a sectional view of the holder showing an example of its face plate structure. In these figures, this image pickup tube has a color separation stripe filter (hereinafter referred to as a color separation filter) 2 on the surface of a face plate 1 (transparent substrate) made of a transparent glass material.
, a grooved glass plate 4, a transparent conductive film 5, and a photoconductive film 6 are sequentially adhered via an adhesive 3, and this face plate 1 is coated with an indium 7
Using a signal type fi8 with a
It is constructed with care. Then, light 1 from subject 11
2 is imaged on the photoconductive film 6 through the optical lens 13, and the charge pattern image corresponding to the image of the subject 11 is formed on the photoconductive film 6.
The electron beam 14 from the electron gun 9 is formed on the outer tube 1.
1 corpse facing coil 15 arranged around the outer circumference of 0, focusing coil 1
The magnetic field created by the photoconductive film 6 focuses and scans the bottom surface of the photoconductive film 6, converting the charge pattern into a current, which is extracted from the signal current 8 through the transparent conductive film 5 and the indium 7 as an electrical signal.

この撮像管用面板の製造工程について述べると第3図に
示すように予じめガラス板1′を支持体として薄板化し
たガラス薄板4上に形成した透明導電膜5を用意し、面
板1上に色分解フィルタ2を被着し、その上に透明導電
膜、1) (CV D Sn 02ネサ膜)を膜厚11
00〜1500A被着形成した約30μmの薄板ガラス
4を接着剤3(3′も接着剤を示す)ではりつけ、さら
にその上に光導電膜6を被着したものである。この製造
方法では、Cvv膜を使用する“めで膜厚が博く液溜後
洗浄してもしみ、白きすが残ったり、ネサ膜のみのケミ
カルエツチングが不可能のため色分解フィルタの再生か
できないなどの欠点があり撮像管の製造原価を押上げる
大きな安置となっている。
To describe the manufacturing process of this face plate for an image pickup tube, as shown in FIG. A color separation filter 2 is deposited, and a transparent conductive film 1) (CV D Sn 02 Nesa film) is applied on it to a film thickness of 11
A thin plate glass 4 having a thickness of about 30 .mu.m and having a thickness of 00 to 1500 A is adhered thereto using an adhesive 3 (3' also indicates an adhesive), and a photoconductive film 6 is further adhered thereon. This manufacturing method uses Cvv membrane, which has a large thickness and leaves stains and white dust even after cleaning after liquid collection, and chemical etching of only the Nesa membrane is impossible, so the only option is to regenerate the color separation filter. These drawbacks have led to a significant increase in the manufacturing cost of image pickup tubes.

本発明の目的は、上記欠点を除去し、安価でかつ画像時
性の良好な撮像管用面板を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a face plate for an image pickup tube that is inexpensive and has good image quality.

上記目的を達成するための不発明は、撮像管面板に■n
203とSn O2からなる厚さ300〜1000λお
よび1800〜2600λのいずれか一方の膜厚の透明
導電膜を用いてなる。
The non-invention for achieving the above purpose is to
The transparent conductive film is made of 203 and SnO2 and has a thickness of either 300 to 1000λ or 1800 to 2600λ.

上記構成による本発明の透明導電膜は、後述の研究芙験
結果により発見されたものである。すなわち、可視光領
域(λ−450〜600 n m )で上記■n203
とSnO2からなる透明導電膜材料の膜厚−隔週率特性
を測定したところ、第5図に示すように良好な透過率を
示す膜厚の範囲としてそれぞれの第1ピーク51、第2
ピーク52およびその近傍に該当する1200〜160
0人と2500〜3200人の2つの範囲を示した。し
かし、これは光透過がガラスと透明導電膜の2層の場合
であって、ガラス、透明導電膜そして光導電膜の3層の
場合になると光透過はさらに複雑な様相を呈する。とく
に、本発明の様に陰間導電膜5の屈折導1,6〜2.4
より、さらに上に形成する厚さ1〜2μInのSe系非
晶質の光導電膜6の屈折率2.5〜3.4の方が大きい
と1分光透過率は後述の様に反転して逆になる(図示せ
ず)。すなわち、透明導′fM、膜の分光透過率の山(
ピーク)は分光感度の谷になり、従って最適の透明導電
膜の膜厚は前述の第1,2ビーク51.52の値の膜厚
に該当する値と相違して、分光過率の谷の厚さ300〜
1000人または1800〜2600人が最も透明導電
膜に適した膜厚さなる。前記両膜厚範囲の膜厚と抵抗値
の関係は第6図に示すように、前者100〜250Ω/
 、後者35〜60Ω7/ で光電変換素子として充分
満足した値を示しており安定した良質な画像パターンを
提供することが確かめられた。本発明はとくに波f 5
50 n mの青色光に対して良好な光に%性を示した
。これは従来透過率の最適値のみを追って膜厚が博い方
向もしくは透明導電膜の分光透過率のみ(こたよって膜
厚を法定する方向fこ向っていたのに対して根本的に考
え方の修正を求めたもので画期的といえる。
The transparent conductive film of the present invention having the above structure was discovered through the results of research and experiments described below. That is, the above ■n203 in the visible light region (λ-450 to 600 nm)
When we measured the film thickness-biweekly rate characteristics of a transparent conductive film material consisting of
1200 to 160 corresponding to peak 52 and its vicinity
Two ranges were shown: 0 and 2,500 to 3,200. However, this is the case where light transmission is through two layers of glass and a transparent conductive film, and when it comes to three layers of glass, transparent conductive film, and photoconductive film, light transmission takes on a more complicated aspect. In particular, as in the present invention, the refractive conductors 1,6 to 2.4 of the implicit conductive film 5
Therefore, if the refractive index of the Se-based amorphous photoconductive film 6 with a thickness of 1 to 2 μIn formed above is larger, the 1-minute transmittance is reversed as described below. The opposite is true (not shown). That is, the transparent conductivity 'fM, the peak of the spectral transmittance of the film (
The peak) becomes the valley of the spectral sensitivity, and therefore, the optimum film thickness of the transparent conductive film is different from the value corresponding to the film thickness of the first and second peaks 51. Thickness 300~
The film thickness of 1,000 or 1,800 to 2,600 is most suitable for a transparent conductive film. The relationship between the film thickness and the resistance value in both film thickness ranges is shown in Figure 6.
, the latter being 35 to 60 Ω7/, which is a sufficiently satisfactory value as a photoelectric conversion element, and it was confirmed that a stable and high-quality image pattern could be provided. The present invention particularly focuses on waves f 5
It showed good light resistance for 50 nm blue light. This is a fundamentally different way of thinking, whereas in the past, only the optimal value of transmittance was followed and the film thickness was increased, or only the spectral transmittance of the transparent conductive film was followed (thus, the direction f was determined to determine the film thickness). It can be said to be groundbreaking as it required a correction.

以下に光透過率に関して詳述する。The light transmittance will be explained in detail below.

いま、ガラスの屈折率をn 1、透明導電膜の屈折至を
nl、光導電膜の屈折率をO2とすると光透過率Tは下
式で表わされる。
Now, assuming that the refractive index of glass is n1, the refractive index of the transparent conductive film is nl, and the refractive index of the photoconductive film is O2, the light transmittance T is expressed by the following formula.

2π (但しδ−二「(口、d)d;透明導電膜厚)ガラス、
透明導電膜、光導電膜のそれぞれの屈折率n。=’1.
47.n、=2.0.n2=2.95(:するとs n
o < nl< O2の関係になるので上式分母第3唄
は正の値をとる。一方前述の光導電膜がない2層の場合
は空気が光導電膜に置き換ったものと考えられるから、
屈折率n2=1.0となり、O2〈no<nの関係にな
る。結局、上式分母第3項は負の値をとる。これら分母
第3項は三角関数cosに係っているので、各波長に対
する光透過率は周1υ」性を帯び、上記分母第3項によ
って光透過率の周期性は逆転することになる。これ故、
順次各波艮λにつき光透過率をプロットしていけば明ら
かであるが、2層の場合のピーク値が、光導電膜を加え
た3層の場合には谷の位置に対応することになる。
2π (however, δ−2" (mouth, d) d; transparent conductive film thickness) glass,
The refractive index n of each of the transparent conductive film and the photoconductive film. ='1.
47. n,=2.0. n2=2.95 (: then s n
Since the relationship is o<nl<O2, the third song in the denominator of the above equation takes a positive value. On the other hand, in the case of the two-layer structure without the photoconductive film mentioned above, it is thought that air has replaced the photoconductive film.
The refractive index n2=1.0, and the relationship O2<no<n is established. As a result, the third term in the denominator of the above equation takes a negative value. Since these third terms in the denominator are related to the trigonometric function cos, the light transmittance for each wavelength has a periodicity of 1υ, and the periodicity of the light transmittance is reversed by the third term in the denominator. Therefore,
If you plot the light transmittance for each wave length λ in sequence, it will be clear that the peak value in the case of two layers corresponds to the position of the trough in the case of three layers including the photoconductive film. .

次にこの製造工程を示すと第4図のようになる。Next, this manufacturing process is shown in FIG. 4.

製造方法上の安息は(1)透明導電膜の形成に試料を8
0°C以下に冷却してスパッター法を用いること、(2
)より好ましくは透明導電膜の形成工程を中間に洗浄工
程を挿入して少なくとも2回以上に分けて行うこと、で
ある。色分解フィルタ12(ここでは、分光透過率特性
の良い、安価な有機フィルタを用いた)か被着した面板
11上に約50μmの薄板ガラス14を接着剤13では
りつけ、そのあと接着剤13と薄板ガラス14を合わせ
て約30μm(接着剤の厚み約6μm、4板ガラス約2
4μm)の厚みまで研摩し、洗浄を行う。次に薄板ガラ
ス上に有機フィルタが焼偵しない温度(面板渋面温度1
40°C,lhr以下)で、抵抗値5に27口以下(抵
抗値が5に27口以上になるとパターン像のスミャー不
良がおこり使用不可能になる)の透明導電膜I n 2
03−8n O2スパツタ膜15を被着形成し、その上
に光導電膜16を被着する。この製造方法により従来の
CVI)膜を形成していた方法に比べて、■n203−
8nO2スパッタ膜では洗浄後のしみ、白きずがほとん
ど無くなり管球での面欠陥歩留が10%以下が75%に
向上した。面板表面温度は60°C以下、抵抗値は1桁
以上小さくなった。また工rI203−8nO2スパッ
タ膜のみのケミカルエツチングが簡単にできるため色分
解フィルタの再生が可能となり、大幅に製造原価が下が
った。
The rest in the manufacturing method is (1) 8 samples for forming a transparent conductive film.
Cooling to below 0°C and using sputtering method, (2
) More preferably, the step of forming the transparent conductive film is performed in at least two steps with a cleaning step inserted in the middle. A thin plate glass 14 of about 50 μm is glued onto the face plate 11 on which the color separation filter 12 (in this case, an inexpensive organic filter with good spectral transmittance characteristics is attached) is adhered, and then the adhesive 13 is The total thickness of the thin glass sheets 14 is approximately 30 μm (the thickness of the adhesive is approximately 6 μm, the thickness of the 4 glass sheets is approximately 2
Polish to a thickness of 4 μm) and wash. Next, the temperature at which the organic filter does not burn out on the thin glass (face plate stiffness temperature 1
Transparent conductive film I n 2 with a resistance value of 5 to 27 or less (if the resistance value exceeds 5 to 27, smearing defects of the pattern image will occur and it will become unusable) at 40°C, lhr or less)
03-8n O2 sputtered film 15 is deposited, and photoconductive film 16 is deposited thereon. Compared to the conventional method of forming CVI) films using this manufacturing method, ■n203-
With the 8nO2 sputtered film, there were almost no stains or white scratches after cleaning, and the yield of surface defects on the tube improved from 10% or less to 75%. The face plate surface temperature was 60°C or less, and the resistance value was reduced by more than an order of magnitude. Furthermore, since chemical etching of only the sputtered I203-8nO2 film can be easily performed, the color separation filter can be regenerated, resulting in a significant reduction in manufacturing costs.

また、上述の本発明の透明導電膜15の形成工程で約半
分の膜厚を形成したあと洗浄工程を行い、そのあ古、残
りの半分の膜厚を形成する方法を取った。この方法で行
うと従来のキズ、ゴミなどにたるピンホールが照<すり
工程の歩留りが向上した。こ4月は初めの洗浄等により
膜に仮に欠陥を生じても、続く2回−の洗浄で除去され
るか、又は2回目の良質7,1′膜(こより欠陥ある膜
が被覆されるためである。また本発明での透明導電膜は
従来のCV I)法によるS n 02膜(ネサ膜)I
こ比べて表面の凹凸が約1/10と小さいため画質もよ
り向上した撮像管が得られるこ♂寺の効果がある。
In addition, in the above-described process of forming the transparent conductive film 15 of the present invention, a cleaning process was performed after forming the transparent conductive film 15 to about half the thickness, and then the remaining half of the film thickness was formed. By using this method, the yield of the conventional process of removing pinholes caused by scratches, dirt, etc. was improved. This April, even if there is a defect in the membrane due to the initial cleaning, it will be removed in the next two cleanings, or the second high-quality 7,1' membrane (this will cover the defective membrane). In addition, the transparent conductive film in the present invention is an S n 02 film (NESA film) I formed by the conventional CV I) method.
Compared to this, the unevenness on the surface is about 1/10 smaller, so an image pickup tube with improved image quality can be obtained.

実施例1 不発明に使った試料は大きさ約2/3インチφ及び1イ
ンチφ、厚さ約1.7 mm tおよび約2.5mmt
のガラス面板11で、その面板11上にストライブ状に
色分解フィルタ12を付け、その上に約50μmのマイ
クロシートガラス14を接着し、そのあとマイクロシー
トガラスを接着剤13を含み約30μmまで研摩し、洗
浄をした試料の上に低温(約60°C以下)で透明導電
膜15を作成した。透明導電膜の作成条件は、通常の2
極の高周波スパッタ装置を用いた。試料を基板ホルダー
上(こおき、基板ホルダーを水冷し試料の下面より冷却
した。ターゲットにIn2O3: bno2(91:9
モル%)の固溶体を用いた。電極間間隔は30〜60m
m不活性ガスに100%Arガスを使用し、Arガス圧
は5.1 X 10 ’ Torr 〜5.OX1O−
3Torrのスパッタリングパワーはスパッタによる放
熱のため(こ100 Watt (0,55Watt 
/Cm2)とした。スパッタ時間はグリスバッタを30
分行った後、本スパッタ45分で膜厚2200±200
人である。得られた透明導電膜の分光透過率特性は波艮
550nmで谷の埴を示す。表面抵抗は約40〜50Ω
/ である。膜の表面状態(凹凸)は従来の5n02ネ
サ膜に比べて約1/10の平滑である。そして、最後に
透明導電膜15上に光導電膜16を被着形成した。
Example 1 The samples used for the invention had sizes of approximately 2/3 inch φ and 1 inch φ, and thicknesses of approximately 1.7 mm t and approximately 2.5 mm t.
A color separation filter 12 is attached on the face plate 11 in the form of a stripe, and a micro sheet glass 14 of about 50 μm is adhered thereon, and then the micro sheet glass is bonded to a thickness of about 30 μm including the adhesive 13. A transparent conductive film 15 was formed on the polished and cleaned sample at a low temperature (approximately 60° C. or lower). The conditions for creating the transparent conductive film are the usual 2
A polar high-frequency sputtering device was used. The sample was placed on the substrate holder (heated), and the substrate holder was water-cooled to cool it from the bottom of the sample.
A solid solution of mol %) was used. Inter-electrode spacing is 30-60m
100% Ar gas was used as the inert gas, and the Ar gas pressure was 5.1 x 10' Torr ~ 5. OX1O-
The sputtering power of 3 Torr is due to heat dissipation by sputtering (100 Watt (0,55 Watt
/Cm2). The sputtering time is 30 minutes for grease grasshopper.
After performing the main sputtering for 45 minutes, the film thickness was 2200±200.
It's a person. The spectral transmittance characteristics of the obtained transparent conductive film exhibit a trough pattern at a wavelength of 550 nm. Surface resistance is approximately 40-50Ω
/ It is. The surface condition (irregularities) of the film is approximately 1/10 smoother than that of the conventional 5n02 Nesa film. Finally, a photoconductive film 16 was formed on the transparent conductive film 15.

以上説明したごとく本発明によれば低温(140”C以
下)で透明導電膜を作成する場合、■r+203−8n
O2を2バツタで作成することが最適であり、色分解フ
ィルタの分光透過率特性を悪くせず、抵抗値が100Ω
/ 以下の膜厚は1800〜2600人が最適条件であ
る。
As explained above, according to the present invention, when creating a transparent conductive film at low temperature (below 140"C), ■r+203-8n
It is optimal to create O2 in two batches, without deteriorating the spectral transmittance characteristics of the color separation filter, and with a resistance value of 100Ω.
/ The optimal condition for the following film thickness is 1,800 to 2,600 people.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多色撮像管の例を示す概略断面図、第2
図は面板構体の断面図、第3図は従来の撮像管用面板製
造工程図、第4図は本発明の撮像管用面板製造工程図、
第5図は膜厚による分光透過率の変動曲線図、第6図は
本発明に使用した透明導電膜の膜厚き抵抗値の関係を示
す特性曲線図である。 11・・面板、12・・色分解フィルタ、13・・・接
着剤、14・・・薄板ガラス、15・・・透明導電膜%
 16・・・光導電膜。 毛 1  図 ぐ 第2図 晃3 図 − 第仝図 +5図 透明薄宜暖販厚(ズラ
Figure 1 is a schematic cross-sectional view showing an example of a conventional multicolor image pickup tube;
The figure is a sectional view of the face plate structure, FIG. 3 is a conventional image pickup tube face plate manufacturing process diagram, and FIG. 4 is an image pickup tube face plate manufacturing process diagram of the present invention.
FIG. 5 is a variation curve diagram of spectral transmittance depending on film thickness, and FIG. 6 is a characteristic curve diagram showing the relationship between film thickness and resistance value of the transparent conductive film used in the present invention. 11... Face plate, 12... Color separation filter, 13... Adhesive, 14... Thin glass, 15... Transparent conductive film%
16...Photoconductive film. Hair 1 Fig. 2 Fig. 3 Fig. - Fig. 5 + Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 有機材料からなる色分解ストライプフィルタと、該フィ
ルタ上に形成された透光性薄膜ガラスと、該ガラス上に
形成された透明導電膜とを少なくとも有する撮像管面板
において、上記透明導電膜は酸化インジウムと酸化第二
錫の固溶体で形成され、その膜厚が300〜1000人
および1800〜2600λのいずれか一方の膜厚であ
ることを特徴とする撮像管用面板。
In an image pickup tube face plate having at least a color separation stripe filter made of an organic material, a transparent thin film glass formed on the filter, and a transparent conductive film formed on the glass, the transparent conductive film is made of indium oxide. A face plate for an image pickup tube, characterized in that the face plate is formed of a solid solution of tin oxide and stannic oxide, and has a film thickness of either 300 to 1000 λ or 1800 to 2600 λ.
JP710284A 1984-01-20 1984-01-20 Face plate of image pick up tube Pending JPS59139534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP710284A JPS59139534A (en) 1984-01-20 1984-01-20 Face plate of image pick up tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP710284A JPS59139534A (en) 1984-01-20 1984-01-20 Face plate of image pick up tube

Publications (1)

Publication Number Publication Date
JPS59139534A true JPS59139534A (en) 1984-08-10

Family

ID=11656717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP710284A Pending JPS59139534A (en) 1984-01-20 1984-01-20 Face plate of image pick up tube

Country Status (1)

Country Link
JP (1) JPS59139534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293654A (en) * 1989-05-09 1990-12-04 Maatec Kk Fluorescent penetrant inspection method by using dry process developer and developer contained in aerosol container used in this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293654A (en) * 1989-05-09 1990-12-04 Maatec Kk Fluorescent penetrant inspection method by using dry process developer and developer contained in aerosol container used in this method

Similar Documents

Publication Publication Date Title
FR2716980A1 (en) Dielectric interference filter system, liquid crystal display, CCD device, method for manufacturing such a system and use of the method.
CN103439760B (en) The making method of a kind of anti-blue light microscopic sheet
JP2002083948A (en) Microlens, solid-state image pickup device, and method of manufacturing these
US4957358A (en) Antifogging film and optical element using the same
TW201339622A (en) Optical lens and method of making the same
JPH0894831A (en) Color filter
JPH04299873A (en) Manufacture of photovoltaic device
JPS59139534A (en) Face plate of image pick up tube
JP2811629B2 (en) Spatial light modulator
JPH0915420A (en) Color filter for color liquid crystal projector and its production
JPS6332362B2 (en)
JP3102995B2 (en) LCD light valve
KR0161371B1 (en) Liquid crystal light valve and its fabrication method
JP2002280533A (en) Solid-state image sensor and its manufacturing method
JP2002314057A (en) Manufacturing method of solid-state image sensing device and solid-state image sensing system
JPH09505905A (en) Silicon dioxide bonding layer and method
JPS61124901A (en) Production of color separating filter
JPH063693A (en) Dielectric substance mirror and its manufacture
JPS60134486A (en) Photoelectric conversion device
JPS5942283B2 (en) color separation stripe filter
JPS5832447B2 (en) Manufacturing method of image pickup tube face plate with built-in filter
JPH0486601A (en) Color filter
JPH04116501A (en) Optical parts having conductive antireflection coat
JPS5924485B2 (en) Method for manufacturing face plate for image pickup tube with built-in stripe filter
SU822737A1 (en) Method of manufacturing television picture converters