JPS59137783A - Method of measuring depth of electrode in sealed electric furnace - Google Patents

Method of measuring depth of electrode in sealed electric furnace

Info

Publication number
JPS59137783A
JPS59137783A JP1039983A JP1039983A JPS59137783A JP S59137783 A JPS59137783 A JP S59137783A JP 1039983 A JP1039983 A JP 1039983A JP 1039983 A JP1039983 A JP 1039983A JP S59137783 A JPS59137783 A JP S59137783A
Authority
JP
Japan
Prior art keywords
electrode
electric furnace
furnace
electrode depth
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1039983A
Other languages
Japanese (ja)
Other versions
JPS6223235B2 (en
Inventor
実 喜多村
栗田 幸善
岡林 義晴
宮地 正孝
森本 政夫
茂樹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1039983A priority Critical patent/JPS59137783A/en
Publication of JPS59137783A publication Critical patent/JPS59137783A/en
Publication of JPS6223235B2 publication Critical patent/JPS6223235B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、フェロアロイの製造操業等のように密閉電気
炉を用いた各種鉱石の還元精錬に際して、操業の中断或
は正電・開戸を行なうことなく各極側々の電極深度(即
ち電極先端位置)を迅速且つ正確に測定することのでき
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables the reduction and refining of various ores using a closed electric furnace, such as in the production of ferroalloys, to each pole side without interrupting the operation or performing positive current/opening. The present invention relates to a method that can quickly and accurately measure the electrode depth (i.e., electrode tip position).

第1図は密閉電気炉を用いて精錬操業を行なっている状
況を例示する概略縦断面説明図である。
FIG. 1 is a schematic vertical cross-sectional view illustrating a refining operation using a closed electric furnace.

炉壁1の上方内面はシャモツト質耐火レンガで構築され
、下方内面は炭素質耐火物で構築されている。原料装入
口4より投入された原料A(鉱石及びコークス)中の鉱
石は、電極2(通常自焼成電極を8本使用)への通電に
よる抵抗熱を受けて溶解し、コークス及び半溶融物のH
で還元精錬が進み、比重差によってコークスベッドC1
スラグ及びコークスのSと溶湯Mに分離する。図中8は
炉蓋、5は排ガスダクトを示し、Dは付着物、10は定
期的に開口される出揚口を夫々示す。この楓の電気炉操
業における必要熱量は原料を溶融させる為の熱、Fe 
XM n % 81等の酸化物を還元させる為の熱、及
び溶湯やスラグに流動性を与える為の熱に分けられるが
、これらの大部分は、電極先端付近から生ずる抵抗熱に
よって供給される。
The upper inner surface of the furnace wall 1 is made of chamots refractory brick, and the lower inner surface is made of carbonaceous refractory. The ore in the raw material A (ore and coke) charged from the raw material charging port 4 is melted by the resistance heat generated by applying electricity to the electrode 2 (usually 8 self-firing electrodes are used), and the coke and semi-molten material are melted. H
Reduction refining progresses in the coke bed C1 due to the difference in specific gravity.
Separates into slag and coke S and molten metal M. In the figure, 8 indicates a furnace lid, 5 indicates an exhaust gas duct, D indicates deposits, and 10 indicates a regularly opened outlet. The amount of heat required to operate this Kaede electric furnace is the heat to melt the raw material, Fe
The heat is divided into heat for reducing oxides such as XM n % 81, and heat for imparting fluidity to the molten metal or slag, but most of these are supplied by resistance heat generated near the tip of the electrode.

そしてこの電極先端が最適位置にあるときに原料の溶融
、還元反応、生成物の流動性向上に寄与する熱がバラン
ス良く分配され、供給m力が最大限有効に活用されると
共にMn等の歩留りも最大となる。ちなみに電極先端が
適正位置でない場合は、上記溶融・還元・流動に寄与す
る熱バランスがくずれ、一部で過熱状態となり他の部分
では熱不足となる為、電力原単位を含めた操業効率はか
なり低下してくる。こうした意味から電極の電極先端位
置(即ち第1図における電極深度L)を正確に把握して
おくことは、電気炉操業において極めて重要なことであ
る。かかる要請に応する為、例えば以下に示す様な楓々
の電極先端位置測定方法が提唱されているが、夫々併記
する様な問題があり満足し得るものとは宮い難い。
When the electrode tip is in the optimal position, the heat that contributes to the melting of raw materials, reduction reactions, and improved fluidity of products is distributed in a well-balanced manner, making the most effective use of the supplied power and improving the yield of Mn, etc. is also maximum. By the way, if the electrode tip is not in the correct position, the heat balance that contributes to the above-mentioned melting, reduction, and flow will be disrupted, leading to overheating in some areas and insufficient heat in other areas, which will significantly reduce operating efficiency, including power consumption. It's going to decline. In this sense, it is extremely important to accurately know the position of the tip of the electrode (ie, electrode depth L in FIG. 1) in electric furnace operation. In order to meet this demand, for example, the method of measuring the position of the tip of Kaede's electrode as shown below has been proposed, but each method has the following problems and is hardly satisfactory.

■電気炉を比重・開放し、炉蓋傾斜部の開口孔から鉄棒
を突込んで幇極端を検索確認し、水平線と鉄棒との角度
及び突込み長さから三角法によって電極先端位置を算出
する方法。
■Open the electric furnace, insert the iron rod through the opening in the sloped part of the furnace lid, search for and confirm the end of the roof, and use trigonometry to calculate the position of the electrode tip from the angle between the horizontal line and the iron rod and the length of the insertion.

この方法では電気炉操業を中断して炉蓋を開放しなけれ
ばならないので測定作業が大変であり、しかも多数の作
業員が開放された電気炉に近接して作業しなければなら
ないので、安全性のうえで問題があり、しかも連続的に
測定することが出来ない。
This method requires the interruption of electric furnace operation and the opening of the furnace lid, making the measurement work difficult. Furthermore, many workers must work in close proximity to the open electric furnace, resulting in safety concerns. However, there are problems with this, and furthermore, it is not possible to measure continuously.

■長手方向に炭素棒を挿通した鋼管を電極内へ同心的に
通し、該炭素棒を通して高周波電磁波を発信したときの
反射波の伝播時間により電極深度を求める方法。
■A method in which a steel pipe with a carbon rod inserted in the longitudinal direction is passed concentrically into the electrode, and the electrode depth is determined by the propagation time of the reflected wave when high-frequency electromagnetic waves are transmitted through the carbon rod.

この方法では鋼管の挿通によって電極の強度が低下し、
操業中に電極切損小数が発生し易い。しかも鋼管を通し
て高濃度のCOガスが炉外へ洩出する為、中毒や引火爆
発を起こす危険がある。
In this method, the strength of the electrode decreases due to the insertion of the steel pipe,
Electrode breakage is likely to occur during operation. Moreover, because highly concentrated CO gas leaks out of the furnace through the steel pipes, there is a risk of poisoning or ignition and explosion.

■特開昭56−66687号公報に図示されている様に
、炉蓋を貫通して温度測定用センサーを原料層内へ挿入
し、これを昇降させて1200°Cの温度域を検知し、
この位置を基にして電極先端位置を推定する方法。
■As illustrated in Japanese Patent Application Laid-open No. 56-66687, a temperature measurement sensor is inserted into the raw material layer through the furnace cover, and is raised and lowered to detect a temperature range of 1200°C.
A method for estimating the electrode tip position based on this position.

この方法ではU温のガス吹きやスラグの吹上げ等によっ
てセンサーが溶損を受は易く、しかもセンサーを硬い原
料層内で昇降させなければならないのでセンサーが機械
的に損傷し易く、又昇降に大きな装置と動力が必要で可
動部分が故障し易い。
In this method, the sensor is easily damaged by melting due to U-temperature gas blowing, slag blowing up, etc. Furthermore, since the sensor must be moved up and down within a hard raw material layer, the sensor is easily damaged mechanically. It requires large equipment and power, and moving parts are prone to failure.

加えてセンサーと炉蓋とのシールが困難である為、ガス
洩れによる中毒や爆発の危険も否定できない。
In addition, it is difficult to seal the sensor and the furnace lid, so the risk of poisoning or explosion due to gas leakage cannot be ruled out.

本発明者等は上記の様な状況に鑑み、電気炉の操業中断
及び正電開放尋を一切必要とせず、又他に伺らの障害も
伴なうことなく電極深度を迅速且つ正確に測定すること
のできる様な技術を確立すべく鋭意研究を進めてきた。
In view of the above-mentioned circumstances, the inventors of the present invention have developed a method for quickly and accurately measuring the electrode depth without the need for interrupting the operation of the electric furnace or opening the positive current, and without causing any other obstacles. We have been conducting intensive research to establish technology that can do this.

その結果、電気炉操業時に発生するガスの温度及び該ガ
ス中のCO含有率並びに炉内電気抵抗値を情報として電
極の電極深度即ち電極先端位置を連続的にほぼ正確に知
ることができることを確認し、蝕に本発明を完成した。
As a result, it was confirmed that the depth of the electrode, that is, the position of the electrode tip, can be determined continuously and almost accurately using the temperature of the gas generated during operation of the electric furnace, the CO content in the gas, and the electric resistance value inside the furnace. However, the present invention was completed in an eclipse.

即ち本発明に係る電極深度の測定方法とは、電気炉から
発生するガスの温度■及び該ガス中のCO含有率(P)
を測定して下記〔19式より電極深度指数(X)を求め
る一万、電極深度指数(X)と電極深度との関係を、炉
内電気抵抗値をパラメータとして予め求めておき、実操
業において求められる電極深度指数(X)から電極深度
を把握するところに要旨が存在する。
That is, the electrode depth measuring method according to the present invention is based on the temperature of the gas generated from the electric furnace and the CO content (P) in the gas.
Determine the electrode depth index (X) using formula 19 below.The relationship between the electrode depth index (X) and the electrode depth is determined in advance using the electrical resistance value in the furnace as a parameter, and in actual operation The gist lies in determining the electrode depth from the required electrode depth index (X).

X=α・T十β・P+γ    CII但しα、β、γ
は電気炉の抽類、操業条件、装入原料等によって決まる
定数 以下実施例図面を参照しながら本発明の構成及び作用効
果を詳細に説明する。第2図は本発明に係る操業例を示
す概略断面説明図であり、基本的な構成は第1図の例と
同一であるので、同一部分には同一の符号を付している
。但し本発明を実施するに当っては、該電気炉設備に炉
内発生ガスの温度検知手段、該発生ガス中のCO濃度分
析手段及び炉内電気抵抗測定手段を設け、各手段から得
られる情報を図示しない演算−解析装置へ入力して、以
下に詳述する如く電極深度(1,)を検知し得る様に構
成している。即ち図では、電気炉の上方空隙部にガス温
検知センサー6を配置してガス温度を常時観測すると共
に、同じく上方空隙部には発生ガス抜出管7を挿入して
発生ガスを図示しないCO濃度測定器に導き、常時co
ill!度を測定できる様にしている。尚ガス温検知セ
ンサー6及び発生ガス抜出管7の配置位1−は特に限定
されないが、第8図(電気炉1の横断面略図)に示す如
く、各電極2の炉心Pに最も近い点aから電極2の中心
点qを結ぶ直線Kを基準にして両側へ夫々60度の角度
で扇形に広がる電極後方部(第8図の斜線領域)に配置
するのがよく、この中でも特に好ましいのは、直線に上
の各電極2の直後部である。
X=α・T×β・P+γ CII α, β, γ
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and operation and effects of the present invention will be explained in detail below with reference to the drawings of the embodiments. FIG. 2 is a schematic cross-sectional explanatory diagram showing an example of operation according to the present invention, and since the basic configuration is the same as the example shown in FIG. 1, the same parts are given the same reference numerals. However, in carrying out the present invention, the electric furnace equipment is provided with a means for detecting the temperature of the gas generated in the furnace, a means for analyzing the CO concentration in the generated gas, and a means for measuring the electric resistance in the furnace, and information obtained from each means is provided. is input to a calculation/analysis device (not shown), and the electrode depth (1,) is configured to be detected as described in detail below. That is, in the figure, a gas temperature detection sensor 6 is arranged in the upper cavity of the electric furnace to constantly observe the gas temperature, and a generated gas extraction pipe 7 is also inserted in the upper cavity to collect the generated gas (not shown). Directed to the concentration measuring device and constantly connected to the co
ill! It is possible to measure the degree. The position 1- of the gas temperature detection sensor 6 and the generated gas extraction pipe 7 is not particularly limited, but as shown in FIG. It is preferable to arrange it at the rear part of the electrode (shaded area in Fig. 8) which spreads in a fan shape at an angle of 60 degrees to both sides with reference to the straight line K connecting center point q of the electrode 2 from a to the center point q of the electrode 2. is immediately behind each electrode 2 on the straight line.

その理由は、この領域が他の電&2による影春を最も受
けにくいことによる。但しCO濃度測定のための発生ガ
ス抜出管7については必ずしも各電極毎に設置する必要
はなく発生ガスの全てが果まるダクト5の入口部の一個
所としてこれを代表させてもかまわない。又各電極2に
接続した給電設備には電流計及び消費電力計を取付け(
何れも図面省略)、それらの測定値から炉内電気抵抗を
測定できる様にしている。尚炉内電気抵抗測定手段とし
て、この他炉内に別途抵抗計を設置することも可能であ
るが、設備保全の上からは上記手段の方が好ましい。又
該抵抗値の代わりに、これと4・目間係数の高い(90
%以上)′f4i極への供給電力の力率を用いてもよい
The reason for this is that this area is the least susceptible to being affected by other Den & 2 attacks. However, the generated gas extraction pipe 7 for measuring the CO concentration does not necessarily need to be installed for each electrode, and may be representatively placed at one point at the inlet of the duct 5 where all the generated gas is discharged. In addition, an ammeter and a power consumption meter are attached to the power supply equipment connected to each electrode 2 (
(Both drawings omitted), the electrical resistance inside the furnace can be measured from these measured values. Although it is possible to separately install a resistance meter in the furnace as a means for measuring electrical resistance inside the furnace, the above-mentioned means is preferable from the viewpoint of equipment maintenance. Also, instead of this resistance value, this and a high 4-mesh coefficient (90
% or more)' The power factor of the power supplied to the f4i pole may be used.

この電気炉設備において操業時の電極深度(L)を測定
するに当っては、ガス温検知センサーによって測定され
る温度(1)とガス組成分析器により求められるCO画
濃度P)とから、前記CI)式によって電極深度指数(
X)を求め、この値から炉内電気抵抗値をパラメータと
して電極深度(L)に換算する。即ち電極深度指数(X
)と電極深度(L)との間には、炉内電気抵抗値に応じ
て夫々−次直線的な関係があるので、予め多数の実験を
行なって回帰線を求めておく。例えば第4図は表1の炉
2でシリコマンガンを製造する場合の予備実験で得た回
帰線を示したものであり、回帰線は一次旧線を示してい
る。
In measuring the electrode depth (L) during operation in this electric furnace equipment, the above-mentioned CI), the electrode depth index (
X) is determined, and this value is converted into an electrode depth (L) using the in-furnace electrical resistance value as a parameter. That is, the electrode depth index (X
) and the electrode depth (L), there is a linear relationship depending on the in-furnace electrical resistance value, so a regression line is determined by conducting a number of experiments in advance. For example, FIG. 4 shows a regression line obtained in a preliminary experiment when producing silicomanganese in Furnace 2 in Table 1, and the regression line shows the primary old line.

従ってガス温度■及びガス中のCO画濃度実測値を元に
〔19式から算出されるill深度指数(x)を算出し
、これを炉内電気抵抗の実測値に応じた前記回帰線に当
てはめれば、電極深度(L)を求めることができる。尚
〔19式に詔ける定数α、β、γは、前述の如く電気炉
の梅類、操業条件、装入原料等によって決まるものであ
り、これらの係数も予備実験で確定されたものを使用す
る。
Therefore, the ill depth index (x) calculated from equation 19 is calculated based on the gas temperature ■ and the measured value of the CO concentration in the gas, and this is applied to the regression line according to the measured value of the electrical resistance inside the furnace. Then, the electrode depth (L) can be determined. As mentioned above, the constants α, β, and γ in Equation 19 are determined by the type of electric furnace, operating conditions, charging material, etc., and these coefficients were also determined through preliminary experiments. do.

例えば下記第1表は、2拙類の電気炉を使用してシリコ
マンガンを製造する場合の電極深度測定実験の結果を示
したもので、電極深度指数(X)から電極深度(L)へ
の変換には第4図の回帰線等を用いた。尚比較の為、前
記従来法■によって得た実測第1表からも明らかな様に
、本発明の方法であれば8%以内という極めて小さな誤
差で電極深度をほぼ正確に測定することができる。又装
入原料や操業条件等を種々変更して多数の実験を行なっ
たが、何れの場合も予備実験で炉内電気抵抗に応じた回
帰線及び〔13式の係数α、β、γを厳密に決めておけ
は、多くとも5%以内、殆んどの場合は8%以下の誤差
で電極深度(L)を正確に測定し得ることが確認された
For example, Table 1 below shows the results of an electrode depth measurement experiment when producing silicomanganese using two types of electric furnaces, and shows the relationship between the electrode depth index (X) and the electrode depth (L). The regression line in Figure 4 was used for the conversion. For comparison, as is clear from Table 1 of the actual measurements obtained using the conventional method (2), the method of the present invention can almost accurately measure the electrode depth with an extremely small error of within 8%. In addition, a large number of experiments were conducted with various changes in the charging material and operating conditions, but in each case, preliminary experiments showed that the regression line according to the electrical resistance in the furnace and the coefficients α, β, and γ of [Equation 13] were It has been confirmed that the electrode depth (L) can be accurately measured with an error of 5% or less at most, and 8% or less in most cases.

本発明は概略以上の様に構成されており、予備実験によ
る前記回帰線の作成及び〔13式の定数α、β、γの設
定作粟は煩雑であるが、これらを厳招・に設定した後に
おいては、実操業におけるガス温度、CO濃度及び炉内
電気抵抗を測定するだけで電極深度を極めて迅速且つ正
確に測定することができる。しかも以下に列記する如〈
従来法で指摘されていた問題をことごとく解消すること
ができ、電気炉の操業効率を向上すると共に電力原単位
を大幅に低減し得ることになった。
The present invention is roughly configured as described above, and although the creation of the regression line through preliminary experiments and the setting of the constants α, β, and γ of Equation 13 are complicated, these steps are strictly required. Later, the electrode depth can be measured extremely quickly and accurately by simply measuring the gas temperature, CO concentration, and electrical resistance in the furnace during actual operation. Moreover, as listed below
All of the problems that had been pointed out in the conventional method could be resolved, and the operating efficiency of the electric furnace could be improved, as well as the electric power consumption rate could be significantly reduced.

■正電・開戸を行なうことなく測定が行なえるので、作
業員の労働負担及び危険負担が解消される。
■Measurements can be carried out without the need for positive electricity or door opening, which eliminates the burden of labor and risk on workers.

■電極深度を操業中に短い周期で継続して測定すること
ができるので、電極の消耗等に応じて電極先端を常に最
適位置に調整することができ、操業効率及び電力原単位
が大幅に改善される。
■Since the electrode depth can be measured continuously at short intervals during operation, the electrode tip can always be adjusted to the optimal position according to electrode wear, etc., greatly improving operational efficiency and power consumption. be done.

■測定用機器は炉蓋等に固定しておけばよいので、セン
サー等を昇降させる従来法に比べて機器の損傷が激減す
ると共に、シールが簡単であるので炉内ガスの漏出によ
るガス中毒や爆発等を起こす懸念もない。
■Since the measuring equipment only needs to be fixed to the furnace lid, damage to the equipment is drastically reduced compared to the conventional method of raising and lowering sensors, etc., and since the sealing is easy, there is no risk of gas poisoning due to leakage of gas inside the furnace. There is no concern that it will cause an explosion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常の密閉電気炉の操業例を示す概略断面説明
図、第2図は本発明の実施例を示す概略断面説明図、第
3図は電気炉の横断面略図、第4図は炉内電気抵抗をパ
ラメータとする電極深度指数と電極深度の関係を例示す
る回帰線グラフである。 1 電気炉炉壁、   2・・・電極、8・炉蓋、  
   4・・原料装入口、5・・排ガスダクト、  6
 ガス温検知センサー、7・・ガス抜出管、 A・・・原料(鉱石及びコークス)、 C・・コークスベッド、s・・・スラグ及びコークス、
L 電極深度。
FIG. 1 is a schematic cross-sectional diagram showing an example of operation of a normal closed electric furnace, FIG. 2 is a schematic cross-sectional diagram showing an embodiment of the present invention, FIG. 3 is a schematic cross-sectional diagram of an electric furnace, and FIG. It is a regression line graph illustrating the relationship between the electrode depth index and the electrode depth using the in-furnace electrical resistance as a parameter. 1. Electric furnace wall, 2. Electrode, 8. Furnace lid,
4. Raw material charging port, 5. Exhaust gas duct, 6
Gas temperature detection sensor, 7... Gas extraction pipe, A... Raw materials (ore and coke), C... Coke bed, s... Slag and coke,
L Electrode depth.

Claims (1)

【特許請求の範囲】 密閉電気炉の操業に際し、該電気炉から発生するガスの
温度α)及び該ガス中のCO含有率Φ)を測定して下記
CI)式より電極深度指数1、X)を求める一万、電極
深度指数(X)と電極深度との関係を、炉内電気抵抗値
をパラメータとして予め求めておき、実操業において求
められる電極深度指数(X)から各極側々の電極深度を
求めることを特徴とする密閉電気炉における電極深度の
測定方法。 x= a*T+l/@P+r    −CI)但しα、
β、γは電気炉の種類、操業条件、装入原料等によって
決まる定数
[Claims] When operating a closed electric furnace, the temperature α) of the gas generated from the electric furnace and the CO content Φ) in the gas are measured, and the electrode depth index 1, X) is calculated from the following CI) formula. To calculate the relationship between the electrode depth index (X) and the electrode depth, the relationship between the electrode depth index (X) and the electrode depth is determined in advance using the in-furnace electrical resistance value as a parameter, and the electrodes on each side of each pole are determined from the electrode depth index (X) determined in actual operation. A method for measuring electrode depth in a closed electric furnace, characterized by determining the depth. x= a*T+l/@P+r -CI) However, α,
β and γ are constants determined by the type of electric furnace, operating conditions, charging materials, etc.
JP1039983A 1983-01-24 1983-01-24 Method of measuring depth of electrode in sealed electric furnace Granted JPS59137783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039983A JPS59137783A (en) 1983-01-24 1983-01-24 Method of measuring depth of electrode in sealed electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039983A JPS59137783A (en) 1983-01-24 1983-01-24 Method of measuring depth of electrode in sealed electric furnace

Publications (2)

Publication Number Publication Date
JPS59137783A true JPS59137783A (en) 1984-08-07
JPS6223235B2 JPS6223235B2 (en) 1987-05-21

Family

ID=11749052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039983A Granted JPS59137783A (en) 1983-01-24 1983-01-24 Method of measuring depth of electrode in sealed electric furnace

Country Status (1)

Country Link
JP (1) JPS59137783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137255A (en) * 2010-12-27 2012-07-19 Wire Device:Kk Method of measuring electrode length in electric resistance type melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137255A (en) * 2010-12-27 2012-07-19 Wire Device:Kk Method of measuring electrode length in electric resistance type melting furnace

Also Published As

Publication number Publication date
JPS6223235B2 (en) 1987-05-21

Similar Documents

Publication Publication Date Title
TWI609970B (en) A control system for controlling a melting process in an electrical arc furanee (eaf) for melting a metallic material
CN108220513A (en) Energy Conservation of Blast Furnace furnace retaining method
CN110726662A (en) Experimental device for evaluating molten slag iron and erosion resistance of refractory material
Kotzï¿ ½, H.*, Bessinger, D.** & Beukes Ilmenite smelting at Ticor SA
JPS59137783A (en) Method of measuring depth of electrode in sealed electric furnace
JP2000192124A (en) Method for measuring molten material level in furnace hearth part of blast furnace and its instrument
JP2001181727A (en) Method for monitoring condition in electric furnace
JPH11335710A (en) Method for predicting furnace heat in blast furnace
JPS5842708A (en) Blast furnace operation
CN106244827B (en) A kind of smelting endpoint of smelting titanium slag with electric stove judges system and method
CN101592651B (en) Method for measuring carbon content of molten steel in electric steelmaking furnace
JP4050893B2 (en) Method and apparatus for evaluating soot level in blast furnace
Steinberg et al. Control of open slag bath furnaces at Highveld Steel and Vanadium Ltd: Development of operator guidance tables
SU1566189A1 (en) Method and apparatus for determining position of working end of electrode with through core in bath of closed electric ore-smelting furnace
JP2000192123A (en) Method for measuring molten material level in furnace hearth part of blast furnace and instrument therefor
JP3287235B2 (en) Blast furnace reaction abnormality detection method
JPH0227625B2 (en) TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO
JPH11246907A (en) Method for controlling blowing in converter
JP2003155508A (en) Instrument for measuring potential difference at bottom in blast furnace and method for estimating pig iron slag height in blast furnace
KR20220089480A (en) Apparatus for measuring molten iron temperature of blast furnace
JPH11323412A (en) Detection of furnace temperature drop in blast furnace
CN2723970Y (en) Detector for blast furnace top gas temperature
JP2530059Y2 (en) Wall electrode of DC arc furnace
JP4184633B2 (en) Blast furnace extraction method
KR200358340Y1 (en) The probe of the iron making process