JPS5913764A - Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione - Google Patents

Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione

Info

Publication number
JPS5913764A
JPS5913764A JP12393382A JP12393382A JPS5913764A JP S5913764 A JPS5913764 A JP S5913764A JP 12393382 A JP12393382 A JP 12393382A JP 12393382 A JP12393382 A JP 12393382A JP S5913764 A JPS5913764 A JP S5913764A
Authority
JP
Japan
Prior art keywords
reaction
solvent
raw material
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12393382A
Other languages
Japanese (ja)
Inventor
Shigeo Wake
和気 繁夫
Hidenori Dandan
段々 英則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12393382A priority Critical patent/JPS5913764A/en
Publication of JPS5913764A publication Critical patent/JPS5913764A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:In preparing the titled substance useful as an intermediate for synthesizing glutamic acid, etc. by reacting 4-oxobutanenitrile as a raw material with NH4, CO2, prussic acid, etc., to improve its purity and yield economically, by making a feed amount of the raw material with high concentration based on a solvent, adjusting the reaction solution to >= a given pH after the reaction. CONSTITUTION:At least one of 4-oxobutanenitrile, 2-hydroxypentanedinitrile, and 2-aminopentanedinitrile as a raw material is used as a raw material, and water or a mixed solvent such as water-methanol, etc. is used as a solvent. 15-40wt%, preferably 20-35wt% raw material based on the solvent is reacted with ammonia and/or ammonium salt, carbon dioxide and/or carbonate and prussic acid and/or its salt. After the reaction is over, the reaction solution is adjusted to <=9pH, preferably 1-9 with a mineral acid, so that crystal of the desired compound is precipitated, and collected by filtration.

Description

【発明の詳細な説明】 本発明は5−(2−シアノエチル)−2,4−イミダゾ
リジンシオンを製造する方法に関する。特に本発明はい
わゆるブヘラー・ベルゲス(BUCLIERER−BE
JtUS )反応により、(a) 4−オキソブタンニ
トリル、2−ヒドロキシペンタンジニトリルおよび2−
アミノペンタンジニトリルの中の少くとも1種、(b)
アンモニアまたは/およびアンモニウム塩、(C)二酸
化炭素または/および炭酸塩並びに(d)青酸または/
およびその塩とを反応させて5−(2−シアノエチル)
−2,4イミタゾリジンシオンを製造する方法の改良に
関するものであり、グルタミン酸、オルニチン、トリプ
トファン等の種々の有用な有用な有機化合物の合成中間
体である5−(2−シアノエチル)−2,4−イミダゾ
リジンジオンを経済的に且つ工業的容易に製造する方法
を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 5-(2-cyanoethyl)-2,4-imidazolidine silone. In particular, the invention relates to the so-called BUCLIERER-BE
JtUS) By reaction, (a) 4-oxobutanenitrile, 2-hydroxypentanedinitrile and 2-
At least one type of aminopentanedinitrile, (b)
ammonia or/and ammonium salt, (C) carbon dioxide or/and carbonate and (d) hydrocyanic acid or/
and its salt to form 5-(2-cyanoethyl)
5-(2-cyanoethyl)-2, which is an intermediate for the synthesis of various useful organic compounds such as glutamic acid, ornithine, and tryptophan. It is an object of the present invention to provide a method for producing 4-imidazolidinedione economically and industrially.

カルボニウム化合物、シアン化合物および炭酸アンモニ
ウム(または重炭酸アンモニウム)を水または水−有機
溶媒中で反応させて5−置換−2,4−イミタソリジン
シオンを合成する方法は古くから知られている。この方
法はその後、改良が加えられて5−置換−2,4−イミ
タゾリジンシオンの一般的合成法として体系化υ され、それ以来、一般にB10 II E ]tE几−
B1号I(Gs反応と呼ばれている。
A method for synthesizing 5-substituted-2,4-imitasolidinesions by reacting carbonium compounds, cyanide compounds, and ammonium carbonate (or ammonium bicarbonate) in water or a water-organic solvent has been known for a long time. This method was subsequently improved and systematized as a general synthesis method for 5-substituted-2,4-imitazolidine ions, and since then it has generally been used as
B1 No. I (called Gs reaction).

米国時π[第8168558号明細書、特公昭39 1
9805’19公報オヨヒ特公lIe 40−2258
2号公報ニハ、コノr3.f c o I!; 1u;
 1t −r3 F’; H,OS 反応’e利用Lし
5  (2−シフ/y−fル)−2,4−イミタゾリシ
ンシオン(以下CF: r D と略示する)を得る方
法が記載されている3、これらの公知の方法ではいずれ
も溶媒に対する、4−オキソブタンニトリル又は2−ヒ
[−ロキシベンクンジニトリル又は2−アミノペンタン
ジニトリルの仕込量が約10重電%以下という比較的薄
い濃度で反応を行い、しかも反応後多量の溶媒を蒸発乾
固した後、CE 1. i)  を単離するという方法
を採用している。しがしながらこれらの方法は工業的製
法として採用しようとした場合、操作の煩雑さに加えて
多量の溶媒を蒸発させるための無駄なエネルギーを必要
とし、経済的に著しく不利となる。本発明者らは、これ
らの欠点を克服し、より経済的に有利なOE I I)
の工業的製造方法について種々検討を加えた結果、実質
的に水よりなる溶媒に対して原料である4−オキソブタ
ンニトリル、2−ヒドロキシペンタンジニトリルおよび
2−アミノペンクンジニトリルの中の少なくとも1種の
仕を行い且つ反応後、溶媒の留去を行うことなく鉱酸に
より反応生成液のPRを9以下に調整してCE I 1
)を晶析する事により 高い収率で高純においては、溶
媒に対するアルデヒドまたはシアンヒドリン類の仕込量
は約10重量形またはそれ以下で行うのが最適とされて
いた。しかしながら本発明者らはCEID  の合成に
おけるこれらの反応条f1の詳細な検討の結果CEID
 の合成についてIJ1実質的に水よりなる溶媒に対す
る4−オキツブタンニトリル、2−ヒドロキシペンタン
ジニトリルおよび2−アミノペンタンジニトリルの中の
少くとも1種の仕込量が15重−it%〜40重月、%
のような高濃度の条件下で反応を行ってもその反応収率
には何ら支障なく良好な収率で反応が進行することを見
出した。
U.S. time π [Specification No. 8168558, Japanese Patent Publication No. 391
9805'19 Publication Oyohi Special Publication lIe 40-2258
No. 2 publication Niha, Kono r3. f c o I! ;1u;
1t-r3F'; H,OS reaction 'e is used to obtain L5(2-Schif/y-f)-2,4-imitazolysinthion (hereinafter abbreviated as CF: rD). 3. In all of these known methods, the amount of 4-oxobutanenitrile, 2-hy[-loxybencundinitrile, or 2-aminopentanedinitrile based on the solvent is about 10% or less After performing the reaction at a relatively low concentration and evaporating a large amount of solvent to dryness after the reaction, CE 1. i) The method of isolating is adopted. However, if these methods are to be adopted as an industrial production method, they are economically disadvantageous because they require complicated operations and wasteful energy for evaporating a large amount of solvent. The inventors have overcome these drawbacks and developed a more economically advantageous OE II)
As a result of various studies on the industrial production method of After the seeding and reaction, the PR of the reaction product solution was adjusted to 9 or less with mineral acid without distilling off the solvent, and CE I 1
) to achieve high yield and high purity, it was considered optimal to charge the aldehyde or cyanohydrin in an amount of about 10% by weight or less relative to the solvent. However, as a result of detailed study of these reaction conditions f1 in the synthesis of CEID, the present inventors found that CEID
Regarding the synthesis of IJ1, the charging amount of at least one of 4-oxbutanenitrile, 2-hydroxypentanedinitrile and 2-aminopentanedinitrile to a solvent consisting essentially of water is 15 wt% to 40 wt%. Month,%
It has been found that even if the reaction is carried out under such high concentration conditions, the reaction proceeds at a good yield without any problem.

又、他方、本発明者らは反応後のCEID の結晶の単
離方法についても詳細な検討を加えた。
On the other hand, the present inventors also conducted detailed studies on the method for isolating CEID crystals after the reaction.

通常B20HE RE JL−13E RG S反応は
吹酸アンモニウム又は重炭酸アンモニウムの過剰の存在
下で反応を行い、反応後の反応液にはこれらのアンモニ
ウム塩が残存しでいろ。こういう条件下では生成物であ
るCEIDの水に対する電解度は極めて大きく反応液を
単に冷却するだけではCEIDの結晶を単離する事がで
きないかあるいは一部が結晶として折143 Lでも電
解「jヌが大きく収率は劣悪となる。そのIコめ従来法
では前。
Usually, the B20HE RE JL-13E RG S reaction is carried out in the presence of an excess of ammonium blown acid or ammonium bicarbonate, and these ammonium salts should not remain in the reaction solution after the reaction. Under these conditions, the electrolysis of the product CEID with respect to water is extremely large, and CEID crystals cannot be isolated simply by cooling the reaction solution, or some of them may remain as crystals. is large, resulting in poor yield.The conventional method has the same effect.

述の如く反応後溶媒を蒸発乾固した後、CEIDの単離
を行う方法がとられていた。ところで、本発明者は、0
Eil)の水に対する溶解度のPR依存性についての検
削を行った結果第1図に示す如く、pH9伺近を境とし
′Cその溶解度が著合成反応後、鉱酸にて反応液のpH
を9以下に調整した後、CEII)  の結晶を析出せ
しめる事によりCEIDが良好な収率で単離てきる事を
見出した。以上2つの新しい発見を組合せる事による本
発明の方法により、従来法のように溶媒の蒸発の必要性
かまったくなくなり、操作が非常に簡略化されるはかり
でなく、エネルギコストも大巾に削減され、経済性が著
しく向上した。更に従来法のように溶媒を蒸発乾固する
方法では副反応物、その他の不純物も全一10EIDに
混入してくるため、高純度なCElDを得るため1こは
、何らかの精製を必敦としたが本発明の方法では0Ei
Dを反応溶媒である水より晶折させるため、微量の不純
物は溶媒に溶けたままになり単に析出した0EID  
の結晶を口過するだけで高純度なCEIDを得る事か可
能となる。
As described above, the method used was to evaporate the solvent to dryness after the reaction and then isolate CEID. By the way, the inventor has 0
As shown in Figure 1, as shown in Figure 1, the solubility of Eil) was significantly increased near pH 9. After the synthesis reaction, the pH of the reaction solution was adjusted with mineral acid.
It has been found that CEID can be isolated in a good yield by adjusting the value to 9 or less and precipitating crystals of CEII). The method of the present invention, which combines the above two new discoveries, completely eliminates the need for solvent evaporation as in conventional methods, greatly simplifies operation, and significantly reduces energy costs. The economic efficiency was significantly improved. Furthermore, in the conventional method of evaporating the solvent to dryness, side reactions and other impurities are mixed into the total 10EID, so some kind of purification was necessary in order to obtain highly pure CEID. However, in the method of the present invention, 0Ei
Because D is crystallized from water, which is the reaction solvent, trace amounts of impurities remain dissolved in the solvent, and 0EID simply precipitates.
It is possible to obtain highly pure CEID simply by passing the crystals through the mouth.

本発明方法において原料として用いられる4−オキソブ
タンニトリルは公知の方法、例えばアクリCF二I−リ
ル、−酸化炭素および水素からあるいはアクロレインと
青酸またはその塩から合成されたもの等が使用できる。
The 4-oxobutanenitrile used as a raw material in the method of the present invention can be synthesized by a known method, for example, one synthesized from acrylCFdiI-lyl, -carbon oxide and hydrogen or from acrolein and hydrocyanic acid or a salt thereof.

また、2−ヒドロキシペンタンジニトリルについては公
知の方法により4−オキソブタンニトリルと青酸か’l
 容JAに合成され、2−アミノペンタンジニトリルに
ついては公知の方法により2−ヒドロキシペンタンジニ
トリルとアンモニアから容易に合成される。本発明方法
の実証に当っては、4−オキソブタンニトリルをu1発
原料としてもよいし、−且、4−オキソブタンニトリル
と青酸から2−ヒドロキシペンタンジニトリルを合成し
、それを出発原料としてもよく、さらに4−オキソブタ
ンニトリル、2−ヒドロキシペンタンジニトリルが共存
する状態で実施してもさIノつカニない。又は2−ヒド
ロキシペンタンジニトリルとアンモニアから2−アミノ
ペンクンジニトリルを合成し、それを出発原料としても
よい。アンモニアまたはアンモニウム塩としては、例え
ばアンモニアガス、液体アンモニア、炭酸アンモニウム
、炭酸水素アンモニウム、塩化アンモニウム、臭化アン
モニウム、酢酸アンモニウム、カルバミン酸アンモニウ
ム、シアン化アンモニウム等が用いらI]る。使用量に
ついて(、′限定的でなく、通常のB/cHbJtnu
、−丁(ERG8反応に用いられる量でよく、例えば前
記(a)1モルに対して1モル以上、好ましくは1〜5
モルが用いられる。二酸化炭素または炭酸塩としては、
例えば、二酸化炭素、炭酸アンモニウム、炭酸水素アン
モニウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸
カリウム、炭酸水素カリウム等が用いられる。使用量に
ついては特に制限はなく、通常のBoo HE RE 
R−B E RG S反応に用いられる量でよく、例え
ば、前F(a)1モルに削17て1モル以上好ましくは
1〜5モルが用いられろうアンモニアまたはアンモニウ
ム塩と二酸化炭素または炭酸塩の9的関係にflj!l
 Iiμはない。青酸またはその塩としては、シアン化
水素、シアン化ナトリウム、シアン化カリウド、シアン
化アンモニウム等が用いられる。使用量に特に制限はな
く、通常のB//(3HE几E R−I3 E I(、
G S反応に用いられる邦でよく、例えば出発原料とし
て4−オキソブタンニトリルを用いるときは4−オキソ
ブタンニトリル1モルに対して1モル以り、好ましくは
1〜2モルが用いられる。
For 2-hydroxypentanedinitrile, 4-oxobutanenitrile and hydrocyanic acid were prepared using a known method.
2-aminopentanedinitrile is easily synthesized from 2-hydroxypentanedinitrile and ammonia by a known method. In demonstrating the method of the present invention, 4-oxobutanenitrile may be used as the starting material, or 2-hydroxypentanedinitrile may be synthesized from 4-oxobutanenitrile and hydrocyanic acid and used as the starting material. Furthermore, there is no problem even if it is carried out in the presence of 4-oxobutanenitrile and 2-hydroxypentanedinitrile. Alternatively, 2-aminopencundinitrile may be synthesized from 2-hydroxypentanedinitrile and ammonia and used as a starting material. Examples of ammonia or ammonium salts include ammonia gas, liquid ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium acetate, ammonium carbamate, ammonium cyanide, and the like. Regarding the usage amount (, 'not limited, normal B/cHbJtnu
, -di (the amount used in the ERG8 reaction may be used, for example, 1 mol or more per 1 mol of the above (a), preferably 1 to 5
Moles are used. As carbon dioxide or carbonate,
For example, carbon dioxide, ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, etc. are used. There is no particular limit on the amount used, and the usual Boo HE RE
The amount used in the R-B E RG S reaction may be used, for example, 1 mol or more, preferably 1 to 5 mol of F(a), is used. Ammonia or ammonium salt and carbon dioxide or carbonate are used. Flj to the 9 relationship of! l
There is no Iiμ. As hydrocyanic acid or its salt, hydrogen cyanide, sodium cyanide, potassium cyanide, ammonium cyanide, etc. are used. There is no particular restriction on the amount used, and normal B//(3HE几ER-I3E I(,
It may be used in the GS reaction. For example, when 4-oxobutanenitrile is used as a starting material, it is used in an amount of 1 mol or more, preferably 1 to 2 mol, per 1 mol of 4-oxobutanenitrile.

本発明の方法で使用される溶媒は本質的には水であるが
、若干量の水に可溶な有機溶媒が混入していても何ら支
障はない。例えば、水−メタノール、水−エタノール、
水−ア十トニトリル等の混合溶媒も使用できる。使用す
る溶媒量は溶媒に対して原料である4−オキソブタンニ
トリル、2−ヒドロキシペンタンジニトリルおよび2−
アミノペンクンジニトリルの中の少なくとも1種の仕込
量が15重量%〜40重量%、好寸しくけ20重量%〜
85重輩%になるように調整する事が重要である。溶媒
の量がこの範囲以上にある場合には、CEID  の晶
析時において溶解によるロスが増加し、製品の取出し収
率が低下する。又溶媒の号がこの範囲未満の少い量であ
る場合は副反応が増大しCEID  の反応収率の低下
をきたすと共に製品の純度が低下し好ま1ツくない。
Although the solvent used in the method of the present invention is essentially water, there is no problem if a small amount of a water-soluble organic solvent is mixed in. For example, water-methanol, water-ethanol,
Mixed solvents such as water and tentonitrile can also be used. The amount of solvent used is the raw materials 4-oxobutanenitrile, 2-hydroxypentanedinitrile and 2-
The amount of at least one of the aminopencundinitriles is 15% to 40% by weight, and the amount of the appropriate amount is 20% by weight to 20% by weight.
It is important to adjust the ratio to 85%. If the amount of the solvent is above this range, loss due to dissolution during crystallization of CEID will increase and the yield of the product will decrease. If the amount of the solvent is less than this range, side reactions will increase and the reaction yield of CEID will decrease, as well as the purity of the product will decrease, which is not preferable.

本発明方法で使用される鉱酸としては、硫酸、塩酸、硝
酸等が用いられ、その濃度には特に制限はないっ使用量
については、反応液のpHを9以下に調整しうる量を用
いろ。
The mineral acids used in the method of the present invention include sulfuric acid, hydrochloric acid, nitric acid, etc., and there are no particular restrictions on their concentrations. colour.

υ 本発明を実施する際のB、3’C11ERER−BER
G8反応後のpHは9以下、好ましくはPH1〜9に調
整すること番こより良好な結果を与えろ。本発明は1よ
り低いpHにおいても実施しうるが、CEID を次工
程で酸性条件下で使用する場合以外は特に利点はない。
υ B, 3'C11ERER-BER when carrying out the present invention
The pH after the G8 reaction should be adjusted to 9 or less, preferably 1 to 9, to give better results. Although the present invention may be practiced at a pH below 1, there are no particular advantages unless the CEID is used in the next step under acidic conditions.

本発明の方法における反応温度および反応時間について
は特に制限はなく、通常のB、yOHE RE R−B
E RG S反応をこおけるように例えば、室温〜15
0℃の反応温度において5分〜IO時間反応さ÷るっ本
発明の方法においてCE I D の晶析を朽う際の晶
析温度、晶析時間については特に制限はないが、高嵩で
晶析を行った場合、溶解によるロスが増加する為、通常
60℃以下、好ましくは30℃以下、溶液の凍結温度以
上の温度で行う。晶析時間は通常10分〜8時間の範囲
で充分であるがそれ月ノ上放置しておいても支障はない
。晶析後o)CE]Dの取出し方法については、通常の
結晶の分離方法を用いる事ができ、例えは遠心分離機や
スーパーテカンター等を用いる方法が採用さ第1る。本
発明の方法を実施する際の操作圧力に1.j特に制限な
く、常圧でも行う小ができるし父、加圧子で行う事も可
能でJ)る。操作は、バッチ方式で行う事もできるし、
又連続操作による実施も可能である。更に結晶分離後の
口銭については、通常よく行われるようにその1部を濃
縮後又はそのままリサイクル使用する事も可能である。
There are no particular restrictions on the reaction temperature and reaction time in the method of the present invention, and ordinary B, yOHE RE R-B
For example, to allow the ERGS reaction to occur at room temperature to 15
There is no particular restriction on the crystallization temperature and crystallization time when crystallizing CE ID in the method of the present invention. When crystallization is performed, losses due to dissolution increase, so it is usually carried out at a temperature of 60° C. or lower, preferably 30° C. or lower, and higher than the freezing temperature of the solution. A crystallization time of 10 minutes to 8 hours is usually sufficient, but there is no problem if the crystallization is allowed to stand for more than a month. As for the method for removing o) CE]D after crystallization, a conventional crystal separation method can be used, and for example, a method using a centrifuge, a supertecanter, etc. is employed. Regarding the operating pressure when carrying out the method of the present invention: 1. There are no particular restrictions, and it can be done under normal pressure, and it can also be done with a pressurizer. Operations can also be performed in batch mode,
It is also possible to carry out continuous operation. Furthermore, it is also possible to recycle a portion of the money after crystal separation, either after concentrating it or as is, as is commonly done.

栴十岬塙4千次に実施例により本発明をさらに詳しく説
明するが、本発明は、これらの実施例により制限をうけ
るものではない。又実施例中に示しjこ収率(@は1べ
てモル基準により示したものである。
EXAMPLES The present invention will be explained in more detail with reference to the following Examples, but the present invention is not limited by these Examples. In addition, the yields shown in the Examples (@ are shown on a molar basis).

実施例1 攪拌機と還流冷却器付きの1(フラスコ1こ、重炭酸ア
ンモニウム2302、青酸0.3y−1水490 ml
を仕込み、72℃に加温して純度98.8MI量%の2
−ヒドロキシペンタンジニトリル111.4y−を50
分かけて仕込んだ後、85℃で50分反応を行なった。
Example 1 1 (1 flask with stirrer and reflux condenser, 2302 ammonium bicarbonate, 490 ml of hydrocyanic acid 0.3y-1 water)
2 with a purity of 98.8 MI amount% by heating to 72°C.
-Hydroxypentanedinitrile 111.4y-50
After charging over several minutes, the reaction was carried out at 85° C. for 50 minutes.

反応液を室温に冷却後、97重量%硫酸により、反応液
のpJ(を7にI肩整し、5℃で3時間晶析を行なつt
コ。得られ1こ仄黄色の結晶を液体クロマトグラフィー
で分析したところ、収率は81.2%であった。
After cooling the reaction solution to room temperature, the pJ of the reaction solution was adjusted to 7 with 97% sulfuric acid, and crystallization was performed at 5°C for 3 hours.
Ko. When the obtained slightly yellow crystal was analyzed by liquid chromatography, the yield was 81.2%.

実施例2 97重脅二%硫酸のかわりに30重量%塩酸を用いる以
外は、実施例1と全く同操作を行1(−) fニドC/
’)、’Ii 率i、t、 80.1 n; r h 
ッfコ。
Example 2 The same operation as in Example 1 was carried out except that 30% by weight hydrochloric acid was used instead of 97% sulfuric acid.
'), 'Ii rate i, t, 80.1 n; r h
F-ko.

実施例 97市川形硫酸のかわりに201■硝酸を用いる以外は
、実施例1と全く同操作を行/fつたところ、収率は7
8.3%であった。
Example 97 The same operation as in Example 1 was carried out except that 201■ nitric acid was used instead of Ichikawa-type sulfuric acid, and the yield was 7.
It was 8.3%.

ゾ%/M例4 純四〆98.8重量%の2−ヒドロ片ジペンター/ジニ
1−リル]、11.45’のかわりに、純度〇 7. 
り ’Rt 量%の2−アミノベン々ンジニトリル11
.]、8.9を用いる以外は実施例1と全く同操作を行
なったところ、収率は82,0%で1七トン つ jこ
 っ 実施例5 内容fa ]−lのステンレス製刈−トクレーブに炭酸
アンモニウム1505r、 t[0,4F−。
%/M Example 4 Purity 〇 instead of 98.8% by weight of 2-hydrodipenter/dinyl-1-lyl], 11.45' 7.
2-Aminobenzenedinitrile 11
.. ], 8.9 was used, and the yield was 82.0%, which was 17 tons. ammonium carbonate 1505r, t[0,4F-.

水400m/を仕込み攪拌下に、40℃に保ちながら、
純度98.13(量f52−ヒドロキシペンタンジニト
リル112.1fi’を1時間がけて仕込み、すみやか
に62℃に加温後、4時間反応させた。反応液を室温に
冷却後、オートクレーフから取出し、7OiK葉%硫酸
で反応液のpHを4.5に調整し、 2℃に冷却した後
2時間晶析を行なった、得られた淡黄色の結晶を液体ク
ロマ1−グラフィーで分析したところ、収率は88.6
%であった。
Pour 400 m of water and keep it at 40℃ while stirring.
Purity 98.13 (amount f52-hydroxypentanedinitrile 112.1 fi') was charged over 1 hour, immediately heated to 62°C, and reacted for 4 hours. After cooling the reaction solution to room temperature, it was taken out from the autoclave. The pH of the reaction solution was adjusted to 4.5 with 7OiK leaf% sulfuric acid, and after cooling to 2°C, crystallization was performed for 2 hours. When the obtained pale yellow crystals were analyzed by liquid chromatography, the yield was determined. The rate is 88.6
%Met.

実施例6 攪拌機と還流冷却器を備えたフラスコに炭酸アンモニウ
ム144P1青酸28.45’、水800−を仕込み、
次いで攪拌下に室温で、純度97.0重態%の4−オキ
ノブタンニトリル85.69−を仕込んだ後、すみやか
に77℃に加温して3時間反応させた。反応液を室温に
冷却後、50重量%硫酸でpH6に調整し、10℃で7
時間晶析を行なった。得られた淡黄色の結晶を液体クロ
マトグラフィーで分析したところ、収率は76.5%で
あった。
Example 6 A flask equipped with a stirrer and a reflux condenser was charged with 144 P of ammonium carbonate, 28.45 P of hydrocyanic acid, and 800 P of water.
Subsequently, 85.69 ml of 4-ochinobutanenitrile having a purity of 97.0% by weight was charged at room temperature with stirring, and then the mixture was immediately heated to 77° C. and reacted for 3 hours. After cooling the reaction solution to room temperature, the pH was adjusted to 6 with 50% by weight sulfuric acid, and the pH was adjusted to 7 at 10°C.
Time crystallization was performed. When the obtained pale yellow crystals were analyzed by liquid chromatography, the yield was 76.5%.

実施例7 炭酸アンモニウム1445’、水800 mlのかわり
に炭酸アンモニウム1255’、水230づを用いる以
外は、実施例6と全く同操作を行なった。収率は73.
2%であった。
Example 7 The same procedure as in Example 6 was carried out except that 1255 ml of ammonium carbonate and 230 ml of water were used instead of 1445 ml of ammonium carbonate and 800 ml of water. Yield is 73.
It was 2%.

実施例8 炭酸アンモニウム144¥、水800mlノかわりに、
炭酸アンモニウム192g−1水500−を用いる以外
は、実施例6と全く同操作を行なった。収率は72.9
CF)でありた。
Example 8 Instead of ammonium carbonate 144 yen and water 800 ml,
The same procedure as in Example 6 was carried out except that 192 g of ammonium carbonate was used and 500 g of water was used. Yield is 72.9
CF).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5℃におけるC E I D  の水Iこ対す
る溶解度とpBの関係を示す。
FIG. 1 shows the relationship between the solubility of C E I D in water I and pB at 5°C.

Claims (1)

【特許請求の範囲】[Claims] (a)4−オキソブタンニトリル、2−ヒドロキシペン
タンジニトリルおよび2−アミノペンタンジニトリルの
中の少なくとも1種、(b)アンモニア貸j:は/およ
びアンモニウムm、(C)二酸化炭素または/および炭
酸塩並びに(d)青酸または/およびその塩とを反応さ
せて5−(2−シアノエチル)−2,4−イミダゾリジ
ンジオンを製造するに肖り、実質的に水よりなる溶媒に
対して原料(Fl)の仕込量が15〜40重匍%になろ
条件−Fで反応を行い、且つ反応後、鉱酸により反応生
成液のi山を9以下に調整し、 5−(2−シアノエチ
ル)−2,4−イミダゾリジンジオンの製j告法。
(a) at least one of 4-oxobutanenitrile, 2-hydroxypentanedinitrile and 2-aminopentanedinitrile, (b) ammonia and/or ammonium, (C) carbon dioxide or/and 5-(2-cyanoethyl)-2,4-imidazolidinedione is produced by reacting carbonate and (d) hydrocyanic acid or/and its salt, and the raw material is added to a solvent consisting essentially of water. The reaction was carried out under conditions -F until the amount of (Fl) charged was 15 to 40% by weight, and after the reaction, the i-mount of the reaction product solution was adjusted to 9 or less with mineral acid, and 5-(2-cyanoethyl) -Production method of 2,4-imidazolidinedione.
JP12393382A 1982-07-15 1982-07-15 Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione Pending JPS5913764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12393382A JPS5913764A (en) 1982-07-15 1982-07-15 Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12393382A JPS5913764A (en) 1982-07-15 1982-07-15 Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione

Publications (1)

Publication Number Publication Date
JPS5913764A true JPS5913764A (en) 1984-01-24

Family

ID=14872939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12393382A Pending JPS5913764A (en) 1982-07-15 1982-07-15 Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione

Country Status (1)

Country Link
JP (1) JPS5913764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128163U (en) * 1984-02-02 1985-08-28 シャープ株式会社 Upper and lower wick type oil combustor
JPH03102107A (en) * 1990-08-29 1991-04-26 Sharp Corp Odor reducing device for wick height adjusting type oil firing heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128163U (en) * 1984-02-02 1985-08-28 シャープ株式会社 Upper and lower wick type oil combustor
JPH0419336Y2 (en) * 1984-02-02 1992-04-30
JPH03102107A (en) * 1990-08-29 1991-04-26 Sharp Corp Odor reducing device for wick height adjusting type oil firing heater

Similar Documents

Publication Publication Date Title
JPS5913764A (en) Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione
JPH0395145A (en) Production of alpha-amino acid
JPH01139559A (en) Production of 4-chloro-3-hydroxybutyronitrile
JPH051023A (en) Production of alkanesulfonanilide derivative
JP3848714B2 (en) Process for producing ethylenediamine-N, N&#39;-disuccinic acid and its ferric complex salt
JPH0412265B2 (en)
JPH08268995A (en) Production of aminoalkylsulfonates
JP3259196B2 (en) Method for producing 2-hydrazino-4,6-dimethoxypyrimidine
JP2801781B2 (en) Glycine production method
WO1989009766A2 (en) Process for the preparation of 2,4,6-triiodo-5-amino-n-alkylisophthalamic acid
JP3181722B2 (en) Method for purifying 2-alkyl-4-halogeno-5-formylimidazole
JPH03181458A (en) Production of oxiracetam
KR20220015168A (en) Method for preparing mesotrione
JPS5913763A (en) Preparation of 5-(2-cyanoethyl)2,4-imidazolidinedione
JPS60258158A (en) Preparation of cysteine derivative
JPH0114227B2 (en)
JP2003321458A (en) Method for producing hydantoin
JPH07100698B2 (en) Process for producing 4-methylimidazole
JPH01149769A (en) Production of 4-methylimidazole
JPWO2003074470A1 (en) Method for producing tert-leucine
JPS641472B2 (en)
JPH0796537B2 (en) Method for purifying 3- (3,4-dihydroxyphenyl) serine
WO1989001469A1 (en) Process for purifying 4,4&#39;-dihydroxydiphenyl sulfone
JPH03232847A (en) Production of glycine
JPH01139569A (en) Production of 4-methylimidazole