JPH01139569A - Production of 4-methylimidazole - Google Patents

Production of 4-methylimidazole

Info

Publication number
JPH01139569A
JPH01139569A JP29610587A JP29610587A JPH01139569A JP H01139569 A JPH01139569 A JP H01139569A JP 29610587 A JP29610587 A JP 29610587A JP 29610587 A JP29610587 A JP 29610587A JP H01139569 A JPH01139569 A JP H01139569A
Authority
JP
Japan
Prior art keywords
reaction
formaldehyde
ammonium sulfate
ammonia
mgx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29610587A
Other languages
Japanese (ja)
Inventor
Koichi Takeuchi
竹内 黄一
Kenichi Arai
研一 荒井
Mitsuaki Senda
光昭 千田
Mitsuo Itakura
板倉 光雄
Naokazu Shiotani
塩谷 直和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP29610587A priority Critical patent/JPH01139569A/en
Publication of JPH01139569A publication Critical patent/JPH01139569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title substance in high purity and yield, by dropping methylglyoxal and formaldehyde to an aqueous solution of ammonium sulfate and, after attaining pH having prescribed low range and carrying out the reaction while adding ammonia to reaction system so as to maintain the above- mentioned pH. CONSTITUTION:When methylglyoxal(MGX) is reacted with formaldehyde and ammonia in the presence of ammonium sulfate to provide the title substance, to an aqueous solution of ammonium sulfate a mixture of MGX and formaldehyde is dropped or MGX and formaldehyde are each simultaneously dropped and after pH becomes 2-4, the reaction is carried out at 70-80 deg.C for 2-5hr while adding ammonia so as to maintain the pH value. Production of 2,4- dimethylimidazole and dimer thereof which are by-products can be suppressed in simplified process by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度4−メチルイミダゾール(以下、4−M
lと略記する。)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides high purity 4-methylimidazole (hereinafter referred to as 4-M
It is abbreviated as l. ).

4−Mlは医薬品を製造するための価値ある中間体であ
る。
4-Ml is a valuable intermediate for manufacturing pharmaceuticals.

〔従来の技術〕[Conventional technology]

4−MIの製造方法としては米国特許第3,715.3
65号に記載がある。該発明は電離定数lXl0−3よ
り大きい酸のアンモニウム塩を用い、PH7以下の水媒
体中でグリオキザール又はメチルグリオキザール(以下
、MGXと略記する。)をホルムアルデヒドと反応させ
て、イミダゾール類を製造するものであり、核酸として
特に硫酸アンモニウム及び蓚酸を挙げている。
The method for producing 4-MI is described in U.S. Patent No. 3,715.3.
It is stated in No. 65. This invention produces imidazoles by reacting glyoxal or methylglyoxal (hereinafter abbreviated as MGX) with formaldehyde in an aqueous medium with a pH of 7 or less using an ammonium salt of an acid with an ionization constant greater than 1X10-3. , which specifically mentions ammonium sulfate and oxalic acid as nucleic acids.

MGXから4−MIを製造する具体例としては、?IG
X、硫酸アンモニウム及びホルマリンを混合し、これに
アンモニア水を滴下して、PH4,7からPH4,4で
反応せしめ、その後、水酸化カルシウムを添加して、ア
ンモニアを飛散させ、硫酸根を硫酸カルシウムとして沈
澱させ、沈R物を濾別した後、脱水、蒸留して4−MI
を得ると開示している。しかしながら、その製品純度は
ガスクロマトグラフ分析による面積純度で77.2%、
収率は59%である。それは医薬中間体として用いるに
は、更に精製操作が必要であり、そのため収率も低下し
、その方法4ま満足な方法ではない。
What is a specific example of producing 4-MI from MGX? I.G.
X, ammonium sulfate and formalin are mixed, aqueous ammonia is added dropwise to this, the pH is changed from 4.7 to 4.4, and then calcium hydroxide is added to scatter the ammonia and the sulfate group is converted into calcium sulfate. After precipitating and filtering the precipitate, it is dehydrated and distilled to obtain 4-MI.
It is disclosed that it will be obtained. However, the product purity was 77.2% in terms of area purity as determined by gas chromatography analysis.
Yield is 59%. In order to use it as a pharmaceutical intermediate, further purification operations are required, resulting in lower yields, and Method 4 is not a satisfactory method.

また、特開昭57−9766は前記米国特許を改良する
方法として、PI(が7以上の条件下、原料の供給順序
に特徴をもたせて、アンモニアとアルデヒドとMGXを
反応させ4−旧を得ることを開示し、PHが7以上で、
且つアンモニアを用いることにより反応器の腐食の問題
及び大量の無機塩溶液による余分の操作が必要なくなり
、米国特許第3,715,365号より存利であること
も開示している。
In addition, JP-A-57-9766 discloses a method for improving the above-mentioned US patent by reacting ammonia, aldehyde, and MGX under conditions where PI (is 7 or more) and giving characteristics to the order in which the raw materials are supplied to obtain 4-old. Disclose that, and the pH is 7 or higher,
It is also disclosed that the use of ammonia eliminates the problem of reactor corrosion and the need for extra operations with large amounts of inorganic salt solutions, which is more advantageous than U.S. Pat. No. 3,715,365.

しかし、実施例に示される如く、PH9,2〜P)!9
.4の領域で反応すると?IGXの分解が起こり、アセ
トアルデヒドが生成し、2.4−ジメチルイミダゾール
(以下、I)Mlと略記する。)の副生が多くなる。該
特許では、この副生を抑制するために希薄溶液で実施し
ているが完全ではない。
However, as shown in the examples, PH9,2~P)! 9
.. What if it reacts in area 4? Decomposition of IGX occurs and acetaldehyde is produced, abbreviated as 2,4-dimethylimidazole (hereinafter referred to as I)Ml. ) becomes more of a by-product. In this patent, a dilute solution is used to suppress this by-product, but it is not perfect.

更に特開昭60−104072号及び特開昭60−10
5664号では、米国特許第3,715.365号の改
良法として、MGXに対して総水量を規制することによ
り、高純度の4−旧を高収率で得ているが、米国特許と
同じようにアンモニア源として蓚酸アンモニウムを用い
るために、4−MIの蓚酸塩の濾過及びアンモニアで開
基を分解した後の蓚酸アンモニウムの濾過と濾過工程が
多く、プロセスが複雑となり、経済的でない、。
Furthermore, JP-A-60-104072 and JP-A-60-10
No. 5664, as an improved method of U.S. Patent No. 3,715.365, obtains high-purity 4-old at a high yield by regulating the total amount of water for MGX, but it is the same as the U.S. patent. In order to use ammonium oxalate as an ammonia source, there are many steps such as filtration of 4-MI oxalate and filtration of ammonium oxalate after decomposing the open group with ammonia, making the process complicated and uneconomical.

(発明が解決しようとする問題点) 本発明者らは、副生するDMI及び4−Ml 2モルと
ホルムアルデヒド1モルより生成するメチレンビスイミ
ダゾール類を抑制し、且つ反応濃度が濃く、濾過等の複
雑な工程を含まない、簡略化された工業的に容易に実施
可能な、高純度、高収率の4−門Iが得られるプロセス
を開発すべく検討した結果、PH2〜P)14に調節し
ながら、MGXとホルムアルデヒド及びアンモニアを硫
酸アンモニウム存在下、水媒体中で反応させて好結果を
得、先に出願した。
(Problems to be Solved by the Invention) The present inventors have developed a method that suppresses the methylene bisimidazoles produced from 2 moles of DMI and 4-Ml as by-products and 1 mole of formaldehyde, and has a high reaction concentration, so that filtration, etc. As a result of our study to develop a process that does not involve complicated steps, is simplified, can be easily carried out industrially, and can obtain 4-group I with high purity and high yield, we found that the pH was adjusted to 2 to 14. However, good results were obtained by reacting MGX with formaldehyde and ammonia in an aqueous medium in the presence of ammonium sulfate, and the application was filed earlier.

しかし、先の出願では、生成4−旧を抽出、回収し、抽
残水を元の反応系にリサイクルするときに大きな欠点を
有することが判明した。
However, the previous application was found to have major drawbacks when extracting and recovering the product 4-old and recycling the raffinate water back to the original reaction system.

即ち、硫酸アンモニウム存在下、水媒体中で生成した4
−旧は、4−旧の硫酸塩として存在し、これを抽出、回
収するためには、アンモニアを用いてPI(8〜PFI
9とし硫酸アンモニウムと遊離の4−[とじて抽出し、
抽残水中の硫酸アンモニウムは元の反応系にリサイクル
される。このリサイクル系で反応と抽残水のPHが異な
り、P H調節用に硫酸を追加しなければならない、そ
のためリサイクル系の硫酸バランスが取れず、原料原単
位の悪化及び廃水負荷の増加をもたらし好ましくない。
That is, 4 produced in an aqueous medium in the presence of ammonium sulfate
-Old exists as a sulfate of 4-Old, and in order to extract and recover it, ammonia is used to extract PI (8-PFI).
9 and extracted with ammonium sulfate and free 4-[
Ammonium sulfate in the raffinate water is recycled to the original reaction system. In this recycling system, the PH of the reaction and raffinate water is different, and sulfuric acid has to be added to adjust the PH.As a result, the sulfuric acid balance in the recycling system cannot be achieved, resulting in deterioration of the raw material consumption rate and increase in wastewater load, which is not desirable. do not have.

C問題点を解決するための手段および作用〕本発明者ら
は、このリサイクル系の完全クローズ化を目的として鋭
意検討した結果、原料の供給方法及び反応液中のPHを
調節するタイミングを工夫することにより、高収率で高
純度の4−?IIが得られるのは勿論のこと、リサイク
ル系が完全クローズ化可能であることを見出し、本発明
を完成させるに至ったものである。
Means and action for solving problem C] As a result of intensive study with the aim of completely closing this recycling system, the present inventors devised a raw material supply method and the timing of adjusting the PH in the reaction solution. By this, high yield and high purity of 4-? They discovered that not only can they obtain II, but also that the recycling system can be completely closed, leading to the completion of the present invention.

即ち本発明は、メチルグリオキザールと、ホルムアルデ
ヒドとおよびアンモニアとを硫酸アンモニウム存在下、
反応させて4−メチルイミダゾールを製造する際、硫酸
アンモニウム水溶液にメチルグリオキザールとホルムア
ルデヒドの混合液を滴下、若しくはメチルグリオキザー
ルとホルムアルデヒドを各々同時に滴下し、反応液中の
PHが2〜4の領域内になった後、同領域内を保つよう
にアンモニアを追加することを特徴とする4−メチルイ
ミダゾールの製造方法である。
That is, the present invention provides methylglyoxal, formaldehyde, and ammonia in the presence of ammonium sulfate.
When reacting to produce 4-methylimidazole, a mixture of methylglyoxal and formaldehyde is added dropwise to an aqueous ammonium sulfate solution, or methylglyoxal and formaldehyde are each added dropwise at the same time, so that the pH of the reaction solution falls within the range of 2 to 4. This is a method for producing 4-methylimidazole, which is characterized by adding ammonia so as to maintain the same range.

本発明方法によれば、反応初期における硫酸アンモニウ
ム水溶液のPHは調節する必要がなく、反応によって硫
酸アンモニウムのアンモニアが消費され、PHが徐々に
低下してPH2〜PH4になった後、アンモニアを追加
して同領域を保ちながら反応を進行させるために、硫酸
を追加する必要がなくリサイクル系が可能となったもの
である。
According to the method of the present invention, there is no need to adjust the pH of the ammonium sulfate aqueous solution at the initial stage of the reaction, and after the ammonia in ammonium sulfate is consumed by the reaction and the pH gradually decreases to PH2 to PH4, ammonia is added. In order to allow the reaction to proceed while maintaining the same range, there is no need to add sulfuric acid, making a recycling system possible.

本発明による製造方法は、硫酸アンモニウム存在下、?
IGXとホルムアルデヒド及びアンモニアとを反応させ
るのが主であり、PHが4を越えると硫酸アンモ;、ラ
ムのアンモニウムイオンが反応に大きく関与してくると
推定される。
The production method according to the present invention is performed in the presence of ammonium sulfate.
IGX is mainly reacted with formaldehyde and ammonia, and when the pH exceeds 4, ammonium ions of ammonium sulfate and rum are presumed to be significantly involved in the reaction.

硫酸アンモニウムの使用量はMGXに対して1以上であ
れば良く、アンモニアは反応に使用されると共に反応P
Hを2〜4に維持するために使用されるのでモル比は2
以上となる。
The amount of ammonium sulfate used should be 1 or more based on MGX, and ammonia is used in the reaction and also in the reaction P.
It is used to maintain H between 2 and 4, so the molar ratio is 2.
That's all.

ホルムアルデヒドの過剰は、MGXに対して1.1倍程
度は可能であるが、それを越えると副反応を促進し不都
合である。
It is possible to use formaldehyde in excess of about 1.1 times that of MGX, but if it exceeds this, side reactions will be promoted, which is disadvantageous.

反応温度は50〜100℃、好ましくは70〜80°C
が良い。
Reaction temperature is 50-100°C, preferably 70-80°C
is good.

反応時間は温度に依存するが2〜5時間で良い。The reaction time depends on the temperature, but may be 2 to 5 hours.

以上の条件で反応して得られた4−Mlは、硫酸塩とし
て存在しているので、アンモニアを用いてPI(を8〜
9にすると4−Mlは遊離となり、硫酸は硫酸アンモニ
ウムとなる。この塩交換液から水に不溶な有機溶媒、例
えばイソブタノール等を用いて4−旧を抽出し、抽出後
の抽残水は原料系より増加する分の水を単蒸留で除去後
、反応系に戻される。反応系に戻される抽残水のPHは
5〜6であり、硫酸の追加はな(、そのまま反応に用い
られてリサイクルされる。
Since 4-Ml obtained by the reaction under the above conditions exists as a sulfate, PI (from 8 to
9, 4-Ml becomes free and sulfuric acid becomes ammonium sulfate. 4-O is extracted from this salt exchange solution using a water-insoluble organic solvent such as isobutanol, and the raffinate water after the extraction is used to remove the water that increases from the raw material system by simple distillation. will be returned to. The pH of the raffinate water returned to the reaction system is 5 to 6, and sulfuric acid is not added (it is used as is for the reaction and recycled.

原料系より入る水は単蒸留で除去可能であり、無機塩及
び有機物含有廃液は系外に出ることな(、クローズ化さ
れてリサイクルされ、原料原単位の向上は勿論のこと廃
水の低減化をもたらす。
The water that enters the raw material system can be removed by simple distillation, and the waste liquid containing inorganic salts and organic matter does not leave the system (it is closed and recycled, which not only improves the raw material consumption rate but also reduces waste water). bring.

〔実施例〕〔Example〕

以下に実施例を挙げ本発明を具体的に説明する。 The present invention will be specifically explained below with reference to Examples.

実施例1 攪拌機、還流コンデンサー付の12ガラス製セパラブル
フラスコに蒸留水316.9g、硫酸アンモニウム14
5.4gを仕込み、80°Cまで昇温した。昇温後、P
Hは5.0であった。 PHを確認後、40重量%MG
X水溶液177.6gと37重景%ホルマリン80.8
gの混合液を2時間で滴下した。その間PHが低下し、
PHが2になった後、PH2を維持するために28重量
%アンモニア水溶液40.5gを追加しながら行った0
滴下終了後、同じPH値で2時間熟成反応を行い、反応
を完結させた。 HPLC分析結果、4−M1収率は(
対MGX 、以下同じ)88.66%、DMI収率は(
対MGX 。
Example 1 316.9 g of distilled water and 14 ammonium sulfate were placed in a 12 glass separable flask equipped with a stirrer and a reflux condenser.
5.4g was charged and the temperature was raised to 80°C. After heating up, P
H was 5.0. After checking the pH, 40% by weight MG
177.6g of X aqueous solution and 80.8g of 37% formalin
A mixture of g was added dropwise over 2 hours. During that time, the pH decreases,
After the pH reached 2, 40.5 g of 28% by weight ammonia aqueous solution was added to maintain the pH.
After completion of the dropwise addition, an aging reaction was carried out for 2 hours at the same pH value to complete the reaction. As a result of HPLC analysis, the yield of 4-M1 is (
MGX (hereinafter the same)) 88.66%, DMI yield (
Against MGX.

以下同じ)0.21%であった。(same below) was 0.21%.

実施例2 実施例1と同じ反応器に蒸留水316.9g、硫酸アン
モニウム145.4gを仕込み、80°Cに昇温して溶
解させた。 PHを確認後、40重景%?IGX水溶液
177.6gと37重景%ホルマリン80.8gの混合
液を2時間で滴下した。その間PRが低下し、PHが4
になった後PH4を維持するために28重量%アンモニ
ア水溶液62.7gを追加しながら行った0滴下終了後
、同じPH値で2時間熟成反応を行い、反応を完結させ
た。
Example 2 316.9 g of distilled water and 145.4 g of ammonium sulfate were charged into the same reactor as in Example 1, and the temperature was raised to 80°C to dissolve them. After checking the pH, 40%? A mixed solution of 177.6 g of IGX aqueous solution and 80.8 g of 37% formalin was added dropwise over 2 hours. During that time, PR decreases and PH increases to 4.
After the addition of 62.7 g of a 28 wt % ammonia aqueous solution was completed to maintain the pH at 4, an aging reaction was carried out for 2 hours at the same pH value to complete the reaction.

)IPLc分析結果、4−M!収率は85゜7%、[1
MI収率は0.44%であった。
) IPLc analysis results, 4-M! Yield: 85.7%, [1
MI yield was 0.44%.

比較例1 実施例1において、95重量%硫酸を添加せず、硫酸ア
ンモニウムのみとし、そのままのPH5,1を28重量
%アンモニア水溶液を追加して維持しながら、実施例1
と同じように反応を行った。その結果、4−M1収率は
80%、聞I収率は0.62%であった。
Comparative Example 1 In Example 1, 95% by weight sulfuric acid was not added, only ammonium sulfate was used, and while maintaining the same pH of 5.1 by adding 28% by weight ammonia aqueous solution, Example 1
I reacted in the same way. As a result, the yield of 4-M1 was 80%, and the yield of 4-M1 was 0.62%.

比較例2 比較例1において、28重量%アンモニア水溶液の追加
はなく、反応に従ってpHが低下するままに反応を行っ
た。熟成反応2時間後のPI(は1.2であり、その結
果、4−M1収率は79.4%、DMI収率は0.77
%であった。
Comparative Example 2 In Comparative Example 1, the 28% by weight ammonia aqueous solution was not added, and the reaction was carried out with the pH decreasing as the reaction progressed. PI after 2 hours of aging reaction was 1.2, and as a result, the 4-M1 yield was 79.4% and the DMI yield was 0.77.
%Met.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、簡略化されたプロセスで副生す
る[1MIや二量体の生成を抑制し、高純度、高収率の
4−Mlが得られる。
According to the method of the present invention, 4-Ml of high purity and high yield can be obtained by suppressing the production of by-product [1Ml and dimer] through a simplified process.

特許出願人 三井東圧化学株式会社Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)メチルグリオキザールと、ホルムアルデヒドとお
よびアンモニアとを硫酸アンモニウム存在下、反応させ
て4−メチルイミダゾールを製造する際、硫酸アンモニ
ウム水溶液にメチルグリオキザールとホルムアルデヒド
の混合液を滴下、若しくはメチルグリオキザールとホル
ムアルデヒドを各々同時に滴下し、反応液中のPHが2
〜4の領域内になった後、同領域内を保つようにアンモ
ニアを追加することを特徴とする4−メチルイミダゾー
ルの製造方法。
(1) When producing 4-methylimidazole by reacting methylglyoxal, formaldehyde, and ammonia in the presence of ammonium sulfate, a mixture of methylglyoxal and formaldehyde is added dropwise to an aqueous ammonium sulfate solution, or methylglyoxal and formaldehyde are each added simultaneously. dropwise until the pH in the reaction solution is 2.
A method for producing 4-methylimidazole, which comprises adding ammonia to maintain the temperature within the range of 4 to 4 after reaching the range of 4.
JP29610587A 1987-11-26 1987-11-26 Production of 4-methylimidazole Pending JPH01139569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29610587A JPH01139569A (en) 1987-11-26 1987-11-26 Production of 4-methylimidazole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29610587A JPH01139569A (en) 1987-11-26 1987-11-26 Production of 4-methylimidazole

Publications (1)

Publication Number Publication Date
JPH01139569A true JPH01139569A (en) 1989-06-01

Family

ID=17829199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29610587A Pending JPH01139569A (en) 1987-11-26 1987-11-26 Production of 4-methylimidazole

Country Status (1)

Country Link
JP (1) JPH01139569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177575B1 (en) * 1998-06-12 2001-01-23 E. I. Du Pont De Nemours And Company Process for manufacture of imidazoles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177575B1 (en) * 1998-06-12 2001-01-23 E. I. Du Pont De Nemours And Company Process for manufacture of imidazoles

Similar Documents

Publication Publication Date Title
JP2007099778A (en) Process for producing methionine and salt thereof
US4368334A (en) p-Hydroxymandelic acid
JP4426104B2 (en) Process for producing hydroxymethylthiobutyric acid
JPH01139569A (en) Production of 4-methylimidazole
US5258550A (en) Process for preparing glycine
JP2002105048A (en) Method for producing 2-hydroxy-4- methylthiobutanenitrile
JPH01180843A (en) Production of bisphenol a
JPH01149771A (en) Production of 4-methylimidazole
JPH08283209A (en) Production of allylamine
JPS6357574A (en) Production of imidazoles
JPH01139567A (en) Production of 4-methylimidazole
JPH01149772A (en) Production of 4-methylimidazole
JPH0244472B2 (en)
JPH01149769A (en) Production of 4-methylimidazole
JPH1025273A (en) Production of acetone cyanhydrin
JPH01149770A (en) Production of 4-methylimidazole
US6262304B1 (en) Process for producing dimethylcyanamide
JPH01139568A (en) Production of 4-methylimidazole
US8222445B2 (en) Process for preparing and method of purifying alkali metal and alkaline earth metal tricyanomethanides
CN106397359A (en) Preparation method of almotriptan intermediate 4-(1-pyrrolidyl sulfomethyl)-phenylhydrazine
JP2613518B2 (en) Method for producing 4,4-dimethoxy-2-butanone
JPS6127979A (en) Preparation of hydroxyflavan compound
JPS5913764A (en) Preparation of 5-(2-cyanoethyl)-2,4-imidazolidinedione
JPH0276859A (en) Production of 4-methyl-5-((2-aminoethyl)-thiomethyl)-imidazole
JPH0380789B2 (en)