JPS59136912A - Rein-bonded rare-earth cobalt magnet - Google Patents

Rein-bonded rare-earth cobalt magnet

Info

Publication number
JPS59136912A
JPS59136912A JP1032083A JP1032083A JPS59136912A JP S59136912 A JPS59136912 A JP S59136912A JP 1032083 A JP1032083 A JP 1032083A JP 1032083 A JP1032083 A JP 1032083A JP S59136912 A JPS59136912 A JP S59136912A
Authority
JP
Japan
Prior art keywords
magnet
thickness
less
earth cobalt
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1032083A
Other languages
Japanese (ja)
Inventor
Tatsuya Shimoda
達也 下田
Eiji Natori
栄治 名取
Masato Fujiwara
正人 藤原
Tetsuhiro Oguchi
小口 哲弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP1032083A priority Critical patent/JPS59136912A/en
Publication of JPS59136912A publication Critical patent/JPS59136912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To facilitate multipolar magnetization of a high coercive force magnet, and to realize high magnetic flux density inside of a resin-bonded rare-earth cobalt magnet when the device is to be injection molded by a method wherein thickness of the magnet is made to be specified value or less. CONSTITUTION:Thickness of a resin-bonded rare-earth cobalt magnet is made to 0.8mm. or less as to enable to perform easily multipolar magnetization of the magnet to be manufactured according to the injection molding method. For example, a material obtained by kneading R2TM17 magnetic powder of 60vol% and nylon 6 of 40vol% is made as raw material, a radially anisotropic magnet of 18mm. outer diameter, 5mm. height, 0.5 or 0.8mm. thickness is manufactured according to the magnetic field injection molding method, and is magnetized to 24 poles by a pulse magnetizer. The reason why thickness is limited to 0.8mm. or less is because width per one pole required for the present magnet is 2mm. or less, and moreover coercive force of the magnet is 7KOe or more, and sufficient magnetization can not be attained when thickness is not made to 1/3 or less even at the lowest.

Description

【発明の詳細な説明】 本発明は、射出成形法により製造される樹脂結合型希土
類コバルト磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resin-bonded rare earth cobalt magnet manufactured by injection molding.

希土類コバルト礎石は、フェライト、アルニコにつぐ第
三の磁石として年々、需要か伸びてきている。種類は、
合金系で分けるとR,O05系とR2TM17系があり
(R=希土類元素を示す、TM=コバルトを中心とした
遷移金属)、製造方法で分けると、焼結法と樹脂結合法
がある。樹脂結合法には、圧縮成形、射出成形、押出成
形と三通りの方法がある。RCo5系は最初に磁石化さ
れた合金系で現在焼結磁石の主流を占めている。一方、
R2TM17系はReO2系より、遅れて開発されたが
、性能はすぐれている。現在焼結法で、最大エネルギー
積(BH)max=50MGOeを出しているのは、R
tTMl、系である。このように、高性能を実現するの
には焼結法による製造が用いられている。しかし、焼結
希土類コバルト磁石は硬くて脆いという欠点があυ、製
造上、使用上で問題を残している。この欠点を補うため
に、開発されたのが樹脂結合型希土類コバルト磁石であ
る。この磁石は、非磁性材料である樹脂を含んでいるの
で、性能は焼結法によるものと比べて低いが、他の多く
の利点を有している。列挙すると■低コスト、■機械的
強度があり、割れ欠けの心配がない、■容易に寸法精度
が出せる、■磁石の形は金型の形に従うので、かわら状
の磁石、楕円形状、歯車を有する8石など、どんな異形
状でも作れる、■ラジアル方向に異方性を有する磁石の
製造が容易にできる、■通常の切削加工ができるので、
比較的少量のS石でも低コストで製造できる、■他部品
とアセンブルした磁石を姻造できる、■磁石間のバラつ
きが小さい−などが挙げられる。
The demand for rare earth cobalt cornerstone is increasing year by year as the third type of magnet after ferrite and alnico. The types are
By alloy type, there are R, O05 type and R2TM17 type (R = rare earth element, TM = transition metal, mainly cobalt), and by manufacturing method, there are sintering method and resin bonding method. There are three resin bonding methods: compression molding, injection molding, and extrusion molding. The RCo5 system was the first alloy system to be magnetized and currently occupies the mainstream of sintered magnets. on the other hand,
Although the R2TM17 series was developed later than the ReO2 series, its performance is superior. Currently, the sintering method that produces the maximum energy product (BH) max = 50 MGOe is R
tTMl, system. In this way, manufacturing using the sintering method is used to achieve high performance. However, sintered rare earth cobalt magnets have the disadvantage of being hard and brittle, which poses problems in manufacturing and use. To compensate for this drawback, a resin-bonded rare earth cobalt magnet was developed. Since this magnet contains resin, which is a non-magnetic material, its performance is lower than that produced by sintering, but it has many other advantages. To list them: ■Low cost; ■Mechanical strength, no worries about cracking and chipping; ■Dimension accuracy can be achieved easily; ■The shape of the magnet follows the shape of the mold, so it is possible to use straw-shaped magnets, oval shapes, and gears. It can be made into any irregular shape, such as 8-stone magnets, ■ It is easy to manufacture magnets with anisotropy in the radial direction, and ■ It can be processed by normal cutting.
Some of the advantages are that even a relatively small amount of S stone can be manufactured at low cost; (1) magnets can be assembled with other parts; (2) variations between magnets are small.

近年、磁石の応用分野が広がるにつれて磁石を多極着磁
して使用するという用途が多くなってきた。例として挙
げると、磁気カップリングと小型モータである。特に小
型モーター分野に多極着磁しfC8’5の需要が多い。
In recent years, as the field of application of magnets has expanded, the use of multi-pole magnetized magnets has increased. Examples include magnetic couplings and small motors. Especially in the field of small motors, multi-pole magnetized fC8'5 is in high demand.

小型モーター用ではPM型のステッピングモーターの磁
石が最も数が多い。
For small motors, PM type stepping motor magnets are the most common.

PM型ステッピングモーターに使用されている磁石はい
わゆるラジアル異方性磁石で、第1図に示されるように
、内側から外側へあるいは外側から内側へ向けて磁化で
き、容易に多極化できる。最初この種の磁石にはフェラ
イト磁石が使用されでいたが、モーターの小型化、高性
能化に伴い希土類コバルト磁石が使用されるようVcz
2だ。しかし、希土類コバルト磁石を用いることにより
新たな問題点がでてきた。つまり、コスト高と高保磁力
のために着磁が充分にできないということである。そも
そもコストではフェライト磁石を使用し1こモーターと
の競争であるので、原料粉末の値段が、フェライトの3
0〜50倍もある希土類コバルトではよほどよい設計を
しないと競合できない。
The magnets used in PM-type stepping motors are so-called radial anisotropic magnets, which can be magnetized from the inside to the outside or from the outside to the inside, as shown in FIG. 1, and can be easily multipolarized. Initially, ferrite magnets were used for this type of magnet, but as motors became smaller and higher performance, rare earth cobalt magnets were used.
It's 2. However, new problems have arisen with the use of rare earth cobalt magnets. In other words, sufficient magnetization cannot be achieved due to high cost and high coercive force. In the first place, in terms of cost, it is competitive with motors that use ferrite magnets, so the price of raw material powder is 3 times higher than that of ferrite.
Cobalt, a rare earth element that is 0 to 50 times more expensive, cannot compete without a very good design.

そのため、希土類コバルトの特性をN70%引き出すよ
゛うに、磁石を使用しなくてはいけない。従って、割れ
たり欠けた9の問題もさることながら、多極着出で完全
に磁気飽和し、しかも安定性がある磁石を作製しなけれ
ばならない。
Therefore, a magnet must be used to bring out 70% of the characteristics of rare earth cobalt. Therefore, it is necessary to create a magnet that is completely magnetically saturated with multi-pole deposition and is stable, in addition to the problem of broken or chipped 9's.

本発明はかかる問題点を克服するためになされlこもの
である。すなわち、樹脂結合型磁石を射出成形法で成形
して、肉厚o、 s mm以下のラジアル異方性リング
状磁石、あるいは平板状磁石を作製す冬ことにより高保
磁力磁石の着磁を完全に行うことが可能IC7z、9、
テバイス内部での高田東密度化が実現でき、加えて低重
量化や射出成形なので圧形費が低減でき、テバイスの低
コスト化が図られ、全体としてテバイスのコストパフォ
ーマンスヲ向上させることができる。ここで肉厚を、0
.8朋以下と限定したのは、現在の磁石に要求される一
極あたりの幅が2m冨以下になっており、しかも研石の
保磁力が7KOθ以上なので、最低でも肉厚はA以下に
しないと充分;flNmlができないという理由からで
ある。
The present invention has been made to overcome such problems. In other words, by molding a resin-bonded magnet by injection molding to produce a radially anisotropic ring-shaped magnet or a flat magnet with a wall thickness of 0, s mm or less, the magnetization of a high coercive force magnet can be completely achieved. Can be done IC7z, 9,
Higashi Takada density can be achieved inside the device, and in addition, the weight is reduced and injection molding is used, so the pressing cost can be reduced, the cost of the device can be reduced, and the cost performance of the device as a whole can be improved. Here, set the wall thickness to 0
.. The reason why we limited it to 8 mm or less is because the width per pole required for current magnets is 2 m or less, and the coercive force of the grinding stone is 7 KOθ or more, so at least the wall thickness should not be less than A. This is because flNml is not sufficient.

以下実施例に従い本発明を説明してゆく。The present invention will be described below with reference to Examples.

実施例 1゜ 磁場射出成形法により、第1(9)に示したようなラジ
アル異方性磁石を作製した。研石寸法は、外径が18m
m、高さが5鴎、肉厚が0.5 、0.8 、1.1關
の3種類である。射出成形原料は、R2T、M17系の
硲粉60体積嘱とナイロン6を40体積受混練したもの
である。得られ7辷試料は、パルス着磁気で24極着磁
された。試料の磁束密度tユホール素子を用いて、磁石
を回転させて測足し1こ。得られるデータは第21凶に
示すようなグラフである。結果を第1表に示す。ただし
パーミアンス系数はすべて1・2である。第1表により
、肉厚が厚いと着磁が完全でないことが示されている。
Example 1 A radially anisotropic magnet as shown in No. 1 (9) was produced by a magnetic field injection molding method. The outer diameter of the grinding stone is 18m.
There are three types: 5mm in height, 0.5mm in thickness, 0.8mm in thickness, and 1.1mm in thickness. The raw material for injection molding was obtained by kneading 60 volumes of R2T, M17-based millet powder and 40 volumes of nylon 6. The obtained 7-length sample was magnetized with 24 poles by pulse magnetization. Measure the magnetic flux density of the sample by rotating the magnet using a Yuhaul element. The data obtained is a graph as shown in the 21st graph. The results are shown in Table 1. However, the permeance series numbers are all 1.2. Table 1 shows that if the wall thickness is large, the magnetization is not perfect.

[1,87Bm以下が望ましい。[1.87 Bm or less is desirable.

実施例 2゜ 磁場射出成形法により、第6図に示したような磁石を作
製した。射出原料は実施例1.と同じものを使用した。
Example 2 A magnet as shown in FIG. 6 was produced by magnetic field injection molding. The injection raw material was as in Example 1. I used the same one.

磁化方向は図中の矢印で示しである。The magnetization direction is indicated by an arrow in the figure.

tが50711m、Wが1’oim、tが0.4から2
.0 mmまで0.1朋おきに計17種類の磁石を作製
した。これらの研石を第5図に示すような仕方で、10
0極着磁した。パーミアンスは1・5にして、ホール素
子をt方向に動かして表面磁束密度Bdを測定した。結
果を第4図に示す。tが0.8朋以下で高い磁気性能が
出ていることが分る。
t is 50711m, W is 1'oim, t is 0.4 to 2
.. A total of 17 types of magnets were produced every 0.1 mm up to 0 mm. These grinding stones were cut into 10 pieces in the manner shown in Figure 5.
It was magnetized to 0 pole. The permeance was set to 1.5, and the surface magnetic flux density Bd was measured by moving the Hall element in the t direction. The results are shown in Figure 4. It can be seen that high magnetic performance is achieved when t is 0.8 or less.

本発明法による磁石は、ステップモータ、リニアモータ
分野に幅広く利用可能であり、民生、産業分野への貢献
度は多大である。
The magnet produced by the method of the present invention can be widely used in the fields of step motors and linear motors, and has made a significant contribution to the consumer and industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、多極着磁されたリング状のラジアル異方性研
石である。第2図は、多極着磁ラジアル異方性研石の磁
束密度の測定例を示す。第6図は多極着磁された平板状
の磁石を示す。第4図は、多極N磁された子機状磁石の
厚みと表囲磁束密度との関係を示す。 以   上 第1  f、= 第2図 第30j ρ、9     /、ρ     t5     ン、
ρ1(、、に)→ 第4図
FIG. 1 shows a multi-pole magnetized ring-shaped radial anisotropic grinding stone. FIG. 2 shows an example of measuring the magnetic flux density of a multipolar magnetized radial anisotropic grinding stone. FIG. 6 shows a multi-pole magnetized flat magnet. FIG. 4 shows the relationship between the thickness and surface magnetic flux density of a child-like magnet with multi-pole N magnetization. Above, 1st f, = Figure 2, 30j ρ, 9 /, ρ t5 ,
ρ1(,,ni) → Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 射出成形法により製造される希土類コノ(ルト小石にお
(Aて、多極Nsが容易に行えるように、肉厚が0.8
」以下であることを特徴とする樹脂結合型希土類コバル
ト磁石。
Rare earth pebbles manufactured by injection molding method (A) have a wall thickness of 0.8 mm so that multipolar Ns can be easily formed.
A resin-bonded rare earth cobalt magnet characterized by having the following properties:
JP1032083A 1983-01-25 1983-01-25 Rein-bonded rare-earth cobalt magnet Pending JPS59136912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032083A JPS59136912A (en) 1983-01-25 1983-01-25 Rein-bonded rare-earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032083A JPS59136912A (en) 1983-01-25 1983-01-25 Rein-bonded rare-earth cobalt magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4097891A Division JPH081852B2 (en) 1992-04-17 1992-04-17 Resin-bonded rare earth magnet

Publications (1)

Publication Number Publication Date
JPS59136912A true JPS59136912A (en) 1984-08-06

Family

ID=11746937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032083A Pending JPS59136912A (en) 1983-01-25 1983-01-25 Rein-bonded rare-earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPS59136912A (en)

Similar Documents

Publication Publication Date Title
CN101689424B (en) R-TM-B radial anisotropic ring magnet, process for production of the same, metal mold for producing the same, and rotor for brushless motor
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US5416457A (en) Lateral orientation anisotropic magnet
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2000060080A (en) Permanent-magnet motor and other device applied thereon
JP2018142635A (en) Molding die for anisotropic bond magnet and manufacturing method using the same
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JPS59136912A (en) Rein-bonded rare-earth cobalt magnet
JPH05114511A (en) Resin bonded rare earth magnet
JP2516176B2 (en) Method for manufacturing resin-bonded permanent magnet
JPH05175038A (en) Anisotropic cylindrical magnet
JPH0687634B2 (en) Permanent magnet type motor
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
CN114530960B (en) Motor with a motor housing
JPS5923448B2 (en) anisotropic magnet
JPH0726804Y2 (en) Cylindrical outer peripheral multi-pole magnet
JP2006280056A (en) Magnet and manufacturing method therefor, and rotor for stepping motor
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPH071727B2 (en) Anisotropic resin magnet and manufacturing method thereof
JP2001185412A (en) Anisotropic bonded magnet
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JP2563404B2 (en) Anisotropic permanent magnet
JP2558760B2 (en) Anisotropic permanent magnet
JP5120534B2 (en) Anisotropic ferrite magnet and motor